心理科学进展 ›› 2023, Vol. 31 ›› Issue (12): 2295-2305.doi: 10.3724/SP.J.1042.2023.02295
收稿日期:
2023-04-03
出版日期:
2023-12-15
发布日期:
2023-09-11
通讯作者:
张丹丹, E-mail: zhangdd05@gmail.com
基金资助:
LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan()
Received:
2023-04-03
Online:
2023-12-15
Published:
2023-09-11
摘要:
新生儿自娩出起便开始利用臻于成熟的听觉系统对语音的各要素进行大脑表征和学习记忆。考察新生儿语音加工特点, 不仅能揭示语言功能在人类发展最初阶段的认知神经机制, 还能对自闭症等神经发育性疾病的早期预警和临床诊断提供有价值的线索。我们回顾并总结了新生儿对语音的感知、辨别和学习以及语言发展对自闭症的预测作用, 发现新生儿对特定语音存在感知偏好; 新生儿具备独特的音素辨别能力; 婴儿期语言加工的脑功能或结构指标对自闭症具有一定的预测价值。我们建议未来研究从三个方面开展工作。在基础研究方面:第一, 严格控制语音材料的韵律因素, 重新审查新生儿语言加工特征及大脑偏侧化问题; 第二, 揭示新生儿语音学习的认知神经机制以及睡眠的记忆巩固作用。在临床转化研究方面, 以高风险自闭症新生儿为追踪对象, 基于纵向多模态脑观测数据, 建立疾病风险评估系统, 揭示出生早期语言发展脑指标对自闭症的预测价值。
中图分类号:
李思瑾, 王庭栋, 彭芝琳, 张丹丹. (2023). 新生儿对语音的感知、辨别和学习. 心理科学进展 , 31(12), 2295-2305.
LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. (2023). Perception, discrimination, and learning of speech in newborns. Advances in Psychological Science, 31(12), 2295-2305.
[1] |
陈钰, 莫李澄, 毕蓉, 张丹丹. (2020). 新生儿语音感知的神经基础: 元分析. 心理科学进展, 28(8), 1273-1281.
doi: 10.3724/SP.J.1042.2020.01273 |
[2] | 陈钰, 张丹丹. (2020). 新生儿语音感知的脑机制. 心理科学, 43(4), 844-849. |
[3] | 于文汶, 陈淑美, 沈钧石, 张丹丹. (2022). 婴儿对语音和非语音的感知: 认知和神经机制. 心理学探新, 42(3), 201-209. |
[4] |
张丹丹, 陈钰, 敖翔, 孙国玉, 刘黎黎, 侯新琳, 陈玉明. (2019). 新生儿情绪性语音加工的正性偏向——来自事件相关电位的证据. 心理学报, 51(4), 462-470.
doi: 10.3724/SP.J.1041.2019.00462 |
[5] |
张丹丹, 李宜伟, 于文汶, 莫李澄, 彭程, 刘黎黎. (2023). 0-1岁婴儿情绪偏向的发展: 近红外成像研究. 心理学报, 55(6), 920-929.
doi: 10.3724/SP.J.1041.2023.00920 |
[6] |
周玉, 张丹丹. (2017). 婴儿情绪与社会认知相关的听觉加工. 心理科学进展, 25(1), 67-75.
doi: 10.3724/SP.J.1042.2017.00067 |
[7] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 |
[8] |
Arimitsu, T., Uchida-Ota, M., Yagihashi, T., Kojima, S., Watanabe, S., Hokuto, I.,... Minagawa-Kawai, Y. (2011). Functional hemispheric specialization in processing phonemic and prosodic auditory changes in neonates. Frontiers in Psychology, 2, 202. 10.3389/fpsyg.2011.00202
doi: 10.3389/fpsyg.2011.00202 URL pmid: 21954386 |
[9] |
Ayoub, M. J., Keegan, L., Tager-Flusberg, H., & Gill, S. V. (2022). Neuroimaging techniques as descriptive and diagnostic tools for infants at risk for autism spectrum disorder: A systematic review. Brain Sciences, 12(5), 602. 10.3390/brainsci12050602
doi: 10.3390/brainsci12050602 URL |
[10] |
Beauchemin, M., González-Frankenberger, B., Tremblay, J., Vannasing, P., Martínez-Montes, E., Belin, P.,... Lassonde, M. (2011). Mother and stranger: An electrophysiological study of voice processing in newborns. Cerebral Cortex, 21(8), 1705-1711. 10.1093/cercor/bhq242
doi: 10.1093/cercor/bhq242 URL |
[11] |
Belteki, Z., Lumbreras, R., Fico, K., Haman, E., & Junge, C. (2022). The vocabulary of infants with an elevated likelihood and diagnosis of autism spectrum disorder: A systematic review and meta-analysis of infant language studies using the CDI and MSEL. International Journal of Environmental Research and Public Health, 19(3), 1469. 10.3390/ijerph19031469
doi: 10.3390/ijerph19031469 URL |
[12] |
Benavides-Varela, S., Hochmann, J. -R., Macagno, F., Nespor, M., & Mehler, J. (2012). Newborn’s brain activity signals the origin of word memories. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17908-17913. 10.1073/pnas.1205413109
doi: 10.1073/pnas.1205413109 URL pmid: 23071325 |
[13] |
Bertoncini, J., Bijeljac-Babic, R., Blumstein, S. E., & Mehler, J. (1987). Discrimination in neonates of very short CVs. The Journal of the Acoustical Society of America, 82(1), 31-37. 10.1121/1.395570
doi: 10.1121/1.395570 URL |
[14] | Bisiacchi, P., & Cainelli, E. (2022). Structural and functional brain asymmetries in the early phases of life: A scoping review. Brain Structure & Function, 227(2), 479-496. 10.1007/s00429-021-02256-1 |
[15] |
Blasi, A., Lloyd-Fox, S., Sethna, V., Brammer, M. J., Mercure, E., Murray, L.,... Johnson, M. H. (2015). Atypical processing of voice sounds in infants at risk for autism spectrum disorder. Cortex, 71, 122-133. 10.1016/j.cortex.2015.06.015
doi: 10.1016/j.cortex.2015.06.015 URL pmid: 26200892 |
[16] |
Braukmann, R., Lloyd-Fox, S., Blasi, A., Johnson, M. H., Bekkering, H., Buitelaar, J. K., & Hunnius, S. (2018). Diminished socially selective neural processing in 5-month- old infants at high familial risk of autism. The European Journal of Neuroscience, 47(6), 720-728. 10.1111/ejn.13751
doi: 10.1111/ejn.2018.47.issue-6 URL |
[17] |
Cheng, Y., Lee, S. -Y., Chen, H. -Y., Wang, P. -Y., & Decety, J. (2012). Voice and emotion processing in the human neonatal brain. Journal of Cognitive Neuroscience, 24(6), 1411-1419. 10.1162/jocn_a_00214
doi: 10.1162/jocn_a_00214 URL pmid: 22360593 |
[18] |
Cheour, M., Ceponiene, R., Lehtokoski, A., Luuk, A., Allik, J., Alho, K., & Näätänen, R. (1998). Development of language-specific phoneme representations in the infant brain. Nature Neuroscience, 1(5), 351-353. https://doi. org/10.1038/1561
pmid: 10196522 |
[19] | Cheour, M., Martynova, O., Näätänen, R., Erkkola, R., Sillanpää, M., Kero, P.,... Hämäläinen, H. (2002). Speech sounds learned by sleeping newborns. Nature, 415(6872), 599-600. 10.1038/415599b |
[20] |
Cheour-Luhtanen, M., Alho, K., Kujala, T., Sainio, K., Reinikainen, K., Renlund, M.,... Näätänen, R. (1995). Mismatch negativity indicates vowel discrimination in newborns. Hearing Research, 82(1), 53-58. https://doi.org/10.1016/0378-5955(94)00164-l
URL pmid: 7744713 |
[21] |
Clairmont, C., Wang, J., Tariq, S., Sherman, H. T., Zhao, M., & Kong, X. -J. (2021). The value of brain imaging and electrophysiological testing for early screening of autism spectrum disorder: A systematic review. Frontiers in Neuroscience, 15, 812946. 10.3389/fnins.2021.812946
doi: 10.3389/fnins.2021.812946 URL |
[22] |
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 1174-1176. 10.1126/science.7375928
URL pmid: 7375928 |
[23] |
Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews. Neuroscience, 11(2), 114-126. 10.1038/nrn2762
doi: 10.1038/nrn2762 URL pmid: 20046194 |
[24] |
Diekelmann, S., Wilhelm, I., & Born, J. (2009). The whats and whens of sleep-dependent memory consolidation. Sleep Medicine Reviews, 13(5), 309-321. 10.1016/j.smrv.2008.08.002
doi: 10.1016/j.smrv.2008.08.002 URL pmid: 19251443 |
[25] |
Edwards, L. A., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2017). Differences in neural correlates of speech perception in 3 month olds at high and low risk for autism spectrum disorder. Journal of Autism and Developmental Disorders, 47(10), 3125-3138. 10.1007/s10803-017-3222-1
doi: 10.1007/s10803-017-3222-1 URL pmid: 28688078 |
[26] |
Fattinger, S., Jenni, O. G., Schmitt, B., Achermann, P., & Huber, R. (2014). Overnight changes in the slope of sleep slow waves during infancy. Sleep, 37(2), 245-253. 10.5665/sleep.3390
doi: 10.5665/sleep.3390 URL pmid: 24497653 |
[27] |
Ferry, A. L., Fló, A., Brusini, P., Cattarossi, L., Macagno, F., Nespor, M., & Mehler, J. (2016). On the edge of language acquisition: Inherent constraints on encoding multisyllabic sequences in the neonate brain. Developmental Science, 19(3), 488-503. 10.1111/desc.12323
doi: 10.1111/desc.12323 URL pmid: 26190466 |
[28] |
Finch, K. H., Seery, A. M., Talbott, M. R., Nelson, C. A., & Tager-Flusberg, H. (2017). Lateralization of ERPs to speech and handedness in the early development of autism spectrum disorder. Journal of Neurodevelopmental Disorders, 9, 4. 10.1186/s11689-017-9185-x
doi: 10.1186/s11689-017-9185-x URL pmid: 28174606 |
[29] |
Friederici, A. D. (2011). The brain basis of language processing: From structure to function. Physiological Reviews, 91(4), 1357-1392. 10.1152/physrev.00006.2011
doi: 10.1152/physrev.00006.2011 URL pmid: 22013214 |
[30] |
Friedrich, M., Wilhelm, I., Mölle, M., Born, J., & Friederici, A. D. (2017). The sleeping infant brain anticipates development. Current Biology, 27(15), 2374-2380.e3. 10.1016/j.cub.2017.06.070
doi: S0960-9822(17)30807-2 URL pmid: 28756948 |
[31] |
Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: The newborn brain detects identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24(3), 564-574. https://doi.org/10.1162/jocn_a_00157
doi: 10.1162/jocn_a_00157 URL pmid: 22066581 |
[32] |
Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences of the United States of America, 105(37), 14222-14227. 10.1073/pnas.0806530105
doi: 10.1073/pnas.0806530105 URL pmid: 18768785 |
[33] |
Hepper, P. G., & Shahidullah, B. S. (1994). The development of fetal hearing. Fetal and Maternal Medicine Review, 6(3), 167-179. 10.1017/S0965539500001108
doi: 10.1017/S0965539500001108 URL |
[34] |
Herringshaw, A. J., Ammons, C. J., DeRamus, T. P., & Kana, R. K. (2016). Hemispheric differences in language processing in autism spectrum disorders: A meta-analysis of neuroimaging studies. Autism Research, 9(10), 1046-1057. 10.1002/aur.1599
doi: 10.1002/aur.1599 URL pmid: 26751141 |
[35] |
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews. Neuroscience, 8(5), 393-402. 10.1038/nrn2113
doi: 10.1038/nrn2113 URL pmid: 17431404 |
[36] |
Hirota, T., & King, B. H. (2023). Autism spectrum disorder: A review. JAMA, 329(2), 157-168. 10.1001/jama.2022.23661
doi: 10.1001/jama.2022.23661 URL pmid: 36625807 |
[37] |
Horváth, K., Hannon, B., Ujma, P. P., Gombos, F., & Plunkett, K. (2018). Memory in 3-month-old infants benefits from a short nap. Developmental Science, 21(3), e12587. 10.1111/desc.12587
doi: 10.1111/desc.2018.21.issue-3 URL |
[38] |
Hu, X., Cheng, L. Y., Chiu, M. H., & Paller, K. A. (2020). Promoting memory consolidation during sleep: A meta- analysis of targeted memory reactivation. Psychological Bulletin, 146(3), 218-244. 10.1037/bul0000223
doi: 10.1037/bul0000223 URL |
[39] |
Johnson, E. G., Mooney, L., Graf Estes, K., Nordahl, C. W., & Ghetti, S. (2021). Activation for newly learned words in left medial-temporal lobe during toddlers’ sleep is associated with memory for words. Current Biology, 31(24), 5429-5438.e5. 10.1016/j.cub.2021.09.058
doi: 10.1016/j.cub.2021.09.058 URL |
[40] |
Kalashnikova, M., Peter, V., di Liberto, G. M., Lalor, E. C., & Burnham, D. (2018). Infant-directed speech facilitates seven-month-old infants’ cortical tracking of speech. Scientific Reports, 8(1), 13745. 10.1038/s41598-018-32150-6
doi: 10.1038/s41598-018-32150-6 URL pmid: 30214000 |
[41] |
Keehn, B., Wagner, J. B., Tager-Flusberg, H., & Nelson, C. A. (2013). Functional connectivity in the first year of life in infants at-risk for autism: A preliminary near-infrared spectroscopy study. Frontiers in Human Neuroscience, 7, 444. 10.3389/fnhum.2013.00444
doi: 10.3389/fnhum.2013.00444 URL pmid: 23964223 |
[42] |
Kostilainen, K., Partanen, E., Mikkola, K., Wikström, V., Pakarinen, S., Fellman, V., & Huotilainen, M. (2020). Neural processing of changes in phonetic and emotional speech sounds and tones in preterm infants at term age. International Journal of Psychophysiology, 148, 111-118. 10.1016/j.ijpsycho.2019.10.009
doi: S0167-8760(19)30536-7 URL pmid: 31734441 |
[43] |
Kotilahti, K., Nissilä, I., Näsi, T., Lipiäinen, L., Noponen, T., Meriläinen, P., Huotilainen, M., & Fellman, V. (2010). Hemodynamic responses to speech and music in newborn infants. Human Brain Mapping, 31(4), 595-603. 10.1002/hbm.20890
doi: 10.1002/hbm.20890 URL pmid: 19790172 |
[44] |
Kuhl, P. K. (2010). Brain mechanisms in early language acquisition. Neuron, 67, 713-727.
doi: 10.1016/j.neuron.2010.08.038 pmid: 20826304 |
[45] |
Kujala, A., Huotilainen, M., Hotakainen, M., Lennes, M., Parkkonen, L., Fellman, V., & Näätänen, R. (2004). Speech-sound discrimination in neonates as measured with MEG. Neuroreport, 15(13), 2089-2092. 10.1097/00001756-200409150-00018
URL pmid: 15486487 |
[46] |
Lewis, J. D., Evans, A. C., Pruett, J. R., Botteron, K. N., McKinstry, R. C., Zwaigenbaum, L.,... Infant Brain Imaging Study Network. (2017). The emergence of network inefficiencies in infants with autism spectrum disorder. Biological Psychiatry, 82(3), 176-185. 10.1016/j.biopsych.2017.03.006
doi: S0006-3223(17)31361-6 URL pmid: 28460842 |
[47] |
Li, G., Nie, J., Wang, L., Shi, F., Lyall, A. E., Lin, W., Gilmore, J. H., & Shen, D. (2014). Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cerebral Cortex, 24(5), 1289-1300. https://doi.org/10.1093/cercor/bhs413
doi: 10.1093/cercor/bhs413 URL |
[48] |
Lindell, A. K. (2020). Does atypical lateralization influence comorbid psychopathology in children with autism spectrum disorders? Advances in Neurodevelopmental Disorders, 4(1), 85-96. 10.1007/s41252-019-00147-5
doi: 10.1007/s41252-019-00147-5 URL |
[49] |
Liu, J., Okada, N. J., Cummings, K. K., Jung, J., Patterson, G., Bookheimer, S. Y., Jeste, S. S., & Dapretto, M. (2020). Emerging atypicalities in functional connectivity of language-related networks in young infants at high familial risk for ASD. Developmental Cognitive Neuroscience, 45, 100814. 10.1016/j.dcn.2020.100814
doi: 10.1016/j.dcn.2020.100814 URL |
[50] |
Liu, J., Tsang, T., Jackson, L., Ponting, C., Jeste, S. S., Bookheimer, S. Y., & Dapretto, M. (2019). Altered lateralization of dorsal language tracts in 6-week-old infants at risk for autism. Developmental Science, 22(3), e12768. 10.1111/desc.12768
doi: 10.1111/desc.2019.22.issue-3 URL |
[51] |
Liu, J., Tsang, T., Ponting, C., Jackson, L., Jeste, S. S., Bookheimer, S. Y., & Dapretto, M. (2021). Lack of neural evidence for implicit language learning in 9-month-old infants at high risk for autism. Developmental Science, 24(4), e13078. 10.1111/desc.13078
doi: 10.1111/desc.v24.4 URL |
[52] |
Lloyd-Fox, S., Blasi, A., Pasco, G., Gliga, T., Jones, E. J. H., Murphy, D. G. M.,... BASIS Team. (2018). Cortical responses before 6 months of life associate with later autism. The European Journal of Neuroscience, 47(6), 736-749. 10.1111/ejn.13757
doi: 10.1111/ejn.2018.47.issue-6 URL |
[53] |
Ma, W., Fiveash, A., Margulis, E. H., Behrend, D., & Thompson, W. F. (2020). Song and infant-directed speech facilitate word learning. Quarterly Journal of Experimental Psychology, 73(7), 1036-1054. 10.1177/1747021819888982
doi: 10.1177/1747021819888982 URL |
[54] |
Mahmoudzadeh, M., Dehaene-Lambertz, G., Fournier, M., Kongolo, G., Goudjil, S., Dubois, J., Grebe, R., & Wallois, F. (2013). Syllabic discrimination in premature human infants prior to complete formation of cortical layers. Proceedings of the National Academy of Sciences of the United States of America, 110(12), 4846-4851. 10.1073/pnas.1212220110
doi: 10.1073/pnas.1212220110 URL pmid: 23440196 |
[55] | Mahmoudzadeh, M., Wallois, F., Kongolo, G., Goudjil, S., & Dehaene-Lambertz, G. (2017). Functional maps at the onset of auditory inputs in very early preterm human neonates. Cerebral Cortex, 27(4), 2500-2512. https://doi.org/10.1093/cercor/bhw103 |
[56] |
May, L., Byers-Heinlein, K., Gervain, J., & Werker, J. F. (2011). Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech? Frontiers in Psychology, 2, 222. 10.3389/fpsyg.2011.00222
doi: 10.3389/fpsyg.2011.00222 URL pmid: 21960980 |
[57] |
May, L., Gervain, J., Carreiras, M., & Werker, J. F. (2018). The specificity of the neural response to speech at birth. Developmental Science, 21(3), e12564. 10.1111/desc.12564
doi: 10.1111/desc.2018.21.issue-3 URL |
[58] |
Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29(2), 143-178. 10.1016/0010-0277(88)90035-2
URL pmid: 3168420 |
[59] |
Molnar-Szakacs, I., Kupis, L., & Uddin, L. Q. (2021). Neuroimaging markers of risk and pathways to resilience in autism spectrum disorder. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging, 6(2), 200-210. 10.1016/j.bpsc.2020.06.017
doi: 10.1016/j.bpsc.2020.06.017 URL |
[60] | Moon, C., Cooper, R., & Fifer, W. (1993). Two-day-olds prefer their native language. Infant Behavior & Development, 16(4), 495-500. 10.1016/0163-6383(93)80007-U |
[61] |
Moon, C., Lagercrantz, H., & Kuhl, P. K. (2013). Language experienced in utero affects vowel perception after birth: A two-country study. Acta Paediatrica, 102(2), 156-160. 10.1111/apa.12098
doi: 10.1111/apa.2013.102.issue-2 URL |
[62] |
Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the United States of America, 110(37), 15145-15150. 10.1073/pnas.1302159110
doi: 10.1073/pnas.1302159110 URL pmid: 23980148 |
[63] |
Pecukonis, M., Perdue, K. L., Wong, J., Tager-Flusberg, H., & Nelson, C. A. (2021). Exploring the relation between brain response to speech at 6-months and language outcomes at 24-months in infants at high and low risk for autism spectrum disorder: A preliminary functional near- infrared spectroscopy study. Developmental Cognitive Neuroscience, 47, 100897. 10.1016/j.dcn.2020.100897
doi: 10.1016/j.dcn.2020.100897 URL |
[64] |
Peña, M., Maki, A., Kovacić, D., Dehaene-Lambertz, G., Koizumi, H., Bouquet, F., & Mehler, J. (2003). Sounds and silence: An optical topography study of language recognition at birth. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11702-11705. 10.1073/pnas.1934290100
URL pmid: 14500906 |
[65] |
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C.,... Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16056-16061. 10.1073/pnas.1102991108
doi: 10.1073/pnas.1102991108 URL pmid: 21896765 |
[66] |
Prabhakar, J., Johnson, E. G., Nordahl, C. W., & Ghetti, S. (2018). Memory-related hippocampal activation in the sleeping toddler. Proceedings of the National Academy of Sciences of the United States of America, 115(25), 6500-6505. 10.1073/pnas.1805572115
doi: 10.1073/pnas.1805572115 URL pmid: 29866845 |
[67] |
Ramus, F., Hauser, M. D., Miller, C., Morris, D., & Mehler, J. (2000). Language discrimination by human newborns and by cotton-top tamarin monkeys. Science, 288(5464), 349-351. 10.1126/science.288.5464.349
URL pmid: 10764650 |
[68] |
Rasch, B., Büchel, C., Gais, S., & Born, J. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science, 315(5817), 1426-1429. https://doi.org/10.1126/science.1138581
doi: 10.1126/science.1138581 URL pmid: 17347444 |
[69] |
Ratnarajah, N., Rifkin-Graboi, A., Fortier, M. V., Chong, Y. S., Kwek, K., Saw, S. -M.,... Qiu, A. (2013). Structural connectivity asymmetry in the neonatal brain. NeuroImage, 75, 187-194. 10.1016/j.neuroimage.2013.02.052
doi: S1053-8119(13)00197-3 URL pmid: 23501049 |
[70] |
Righi, G., Tierney, A. L., Tager-Flusberg, H., & Nelson, C. A. (2014). Functional connectivity in the first year of life in infants at risk for autism spectrum disorder: An EEG study. PloS One, 9(8), e105176. 10.1371/journal.pone.0105176
doi: 10.1371/journal.pone.0105176 URL |
[71] |
Rudoy, J. D., Voss, J. L., Westerberg, C. E., & Paller, K. A. (2009). Strengthening individual memories by reactivating them during sleep. Science, 326(5956), 1079. https://doi.org/10.1126/science.1179013
doi: 10.1126/science.1179013 URL pmid: 19965421 |
[72] |
Sansavini, A., Bertoncini, J., & Giovanelli, G. (1997). Newborns discriminate the rhythm of multisyllabic stressed words. Developmental Psychology, 33(1), 3-11. 10.1037//0012-1649.33.1.3
URL pmid: 9050385 |
[73] |
Sato, H., Hirabayashi, Y., Tsubokura, H., Kanai, M., Ashida, T., Konishi, I.,... Maki, A. (2012). Cerebral hemodynamics in newborn infants exposed to speech sounds: A whole-head optical topography study. Human Brain Mapping, 33(9), 2092-2103. 10.1002/hbm.21350
doi: 10.1002/hbm.21350 URL pmid: 21714036 |
[74] |
Seery, A., Tager-Flusberg, H., & Nelson, C. A. (2014). Event-related potentials to repeated speech in 9-month-old infants at risk for autism spectrum disorder. Journal of Neurodevelopmental Disorders, 6(1), 43. 10.1186/1866-1955-6-43
doi: 10.1186/1866-1955-6-43 URL pmid: 25937843 |
[75] |
Seery, A. M., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2013). Atypical lateralization of ERP response to native and non-native speech in infants at risk for autism spectrum disorder. Developmental Cognitive Neuroscience, 5, 10-24. 10.1016/j.dcn.2012.11.007
doi: 10.1016/j.dcn.2012.11.007 URL pmid: 23287023 |
[76] |
Simon, K. N. S., Werchan, D., Goldstein, M. R., Sweeney, L., Bootzin, R. R., Nadel, L., & Gómez, R. L. (2017). Sleep confers a benefit for retention of statistical language learning in 6.5month old infants. Brain and Language, 167, 3-12. 10.1016/j.bandl.2016.05.002
doi: S0093-934X(15)30150-4 URL pmid: 27291337 |
[77] |
Sket, G. M., Overfeld, J., Styner, M., Gilmore, J. H., Entringer, S., Wadhwa, P. D., Rasmussen, J. M., & Buss, C. (2019). Neonatal white matter maturation is associated with infant language development. Frontiers in Human Neuroscience, 13, 434. 10.3389/fnhum.2019.00434
doi: 10.3389/fnhum.2019.00434 URL pmid: 31920593 |
[78] |
Stickgold, R. (2005). Sleep-dependent memory consolidation. Nature, 437(7063), 1272-1278. 10.1038/nature04286
doi: 10.1038/nature04286 URL |
[79] |
Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 10, 21. 10.1186/1471-2202-10-21
doi: 10.1186/1471-2202-10-21 URL pmid: 19284661 |
[80] |
Telkemeyer, S., Rossi, S., Koch, S. P., Nierhaus, T., Steinbrink, J., Poeppel, D., Obrig, H., & Wartenburger, I. (2009). Sensitivity of newborn auditory cortex to the temporal structure of sounds. The Journal of Neuroscience, 29(47), 14726-14733. 10.1523/JNEUROSCI.1246-09.2009
doi: 10.1523/JNEUROSCI.1246-09.2009 URL |
[81] |
Tryfon, A., Foster, N. E. V., Sharda, M., & Hyde, K. L. (2018). Speech perception in autism spectrum disorder: An activation likelihood estimation meta-analysis. Behavioural Brain Research, 338, 118-127. 10.1016/j.bbr.2017.10.025
doi: S0166-4328(17)31024-0 URL pmid: 29074403 |
[82] |
van Dongen, E. V., Takashima, A., Barth, M., Zapp, J., Schad, L. R., Paller, K. A., & Fernández, G. (2012). Memory stabilization with targeted reactivation during human slow-wave sleep. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10575-10580. 10.1073/pnas.1201072109
doi: 10.1073/pnas.1201072109 URL pmid: 22691500 |
[83] |
Vannasing, P., Florea, O., González-Frankenberger, B., Tremblay, J., Paquette, N., Safi, D.,... Gallagher, A. (2016). Distinct hemispheric specializations for native and non-native languages in one-day-old newborns identified by fNIRS. Neuropsychologia, 84, 63-69. https://doi.org/10.1016/j.neuropsychologia.2016.01.038
doi: 10.1016/j.neuropsychologia.2016.01.038 URL pmid: 26851309 |
[84] |
Vouloumanos, A., & Werker, J. F. (2007). Listening to language at birth: Evidence for a bias for speech in neonates. Developmental Science, 10(2), 159-164. 10.1111/j.1467-7687.2007.00549.x
URL pmid: 17286838 |
[85] |
Werker, J. F., Yeung, H. H., & Yoshida, K. A. (2012). How do infants become experts at native-speech perception? Current Directions in Psychological Science, 21(4), 221-226. 10.1177/0963721412449459
doi: 10.1177/0963721412449459 URL |
[86] | World Health Organization. (2023). Autism spectrum disorders.Fact sheet. Retrieved March 29, 2023, from https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders |
[87] |
Wu, Y. J., Hou, X., Peng, C., Yu, W., Oppenheim, G. M., Thierry, G., & Zhang, D. (2022). Rapid learning of a phonemic discrimination in the first hours of life. Nature Human Behaviour, 6(8), 1169-1179. 10.1038/s41562-022-01355-1
doi: 10.1038/s41562-022-01355-1 URL pmid: 35654965 |
[88] |
Zeidan, J., Fombonne, E., Scorah, J., Ibrahim, A., Durkin, M. S., Saxena, S., … Elsabbagh, M. (2022). Global prevalence of autism: A systematic review update. Autism Research, 15(5), 778-790. 10.1002/aur.2696
doi: 10.1002/aur.2696 URL pmid: 35238171 |
[89] |
Zhang, D., Chen, Y., Hou, X., & Wu, Y. J. (2019). Near-infrared spectroscopy reveals neural perception of vocal emotions in human neonates. Human Brain Mapping, 40(8), 2434-2448. 10.1002/hbm.24534
doi: 10.1002/hbm.24534 URL pmid: 30697881 |
[1] | 刘敏, 刘巧云, 陈思齐, 徐之佳. 婴幼儿类言语发声对语言发展的预测及作用机制[J]. 心理科学进展, 2023, 31(7): 1239-1253. |
[2] | 黄钰杰, 赵荣, 克丽比努尔·艾尔肯, 李晶晶, 王俊琪, 潘海萍, 高军. 自闭症谱系障碍的社会功能障碍:触觉与催产素[J]. 心理科学进展, 2023, 31(5): 800-814. |
[3] | 寇娟, 杨梦圆, 魏子杰, 雷怡. 自闭症谱系障碍社交动机理论:机制及干预探索[J]. 心理科学进展, 2023, 31(1): 20-32. |
[4] | 徐慧, 王滔. 自闭症谱系障碍个体的社会动机缺陷[J]. 心理科学进展, 2022, 30(5): 1050-1061. |
[5] | 陈光华, 陶冠澎, 翟璐煜, 白学军. 自闭症谱系障碍的早期筛查工具[J]. 心理科学进展, 2022, 30(4): 738-760. |
[6] | 俞稼钰, 靳羽西, 梁丹丹. 自闭症谱系障碍人群词义加工的脑激活模式:基于fMRI研究的元分析[J]. 心理科学进展, 2022, 30(11): 2448-2460. |
[7] | 袁玉琢, 骆方. 人工智能辅助的自闭症早期患者的筛查与诊断[J]. 心理科学进展, 2022, 30(10): 2303-2320. |
[8] | 侯婷婷, 陈潇, 孔德彭, 邵秀筠, 林丰勋, 李开云. 机器学习在自闭症儿童早期识别和诊断领域的应用[J]. 心理科学进展, 2022, 30(10): 2321-2337. |
[9] | 干加裙, 王恩国. 自闭症谱系障碍个体的注意解离[J]. 心理科学进展, 2022, 30(1): 129-140. |
[10] | 霍超, 李祚山, 孟景. 自闭症谱系障碍个体的共情干预:扬长还是补短?[J]. 心理科学进展, 2021, 29(5): 849-863. |
[11] | 王磊, 贺荟中, 毕小彬, 周丽, 范晓壮. 社会动机理论视角下自闭症谱系障碍者的社交缺陷[J]. 心理科学进展, 2021, 29(12): 2209-2223. |
[12] | 贾磊, 徐玉帆, 王成, 任俊, 汪俊. γ节律神经振荡:反映自闭症多感觉整合失调的一项重要生物指标[J]. 心理科学进展, 2021, 29(1): 31-44. |
[13] | 陈钰, 莫李澄, 毕蓉, 张丹丹. 新生儿语音感知的神经基础:元分析[J]. 心理科学进展, 2020, 28(8): 1273-1281. |
[14] | 范晓壮, 毕小彬, 谢宇, 贺荟中. 高功能自闭症个体对威胁性情绪面孔的注意偏向[J]. 心理科学进展, 2020, 28(7): 1172-1186. |
[15] | 刘亚萍, 陈文锋, 傅小兰. 自闭症儿童的视觉加工异常与社交性阅读障碍[J]. 心理科学进展, 2019, 27(suppl.): 67-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||