心理科学进展 ›› 2021, Vol. 29 ›› Issue (2): 311-322.doi: 10.3724/SP.J.1042.2021.00311
收稿日期:
2020-04-27
出版日期:
2021-02-15
发布日期:
2020-12-29
通讯作者:
高军
E-mail:gaojunscience@126.com
基金资助:
XUE Bing, WANG Xuejiao, MA Ning, GAO Jun()
Received:
2020-04-27
Online:
2021-02-15
Published:
2020-12-29
Contact:
GAO Jun
E-mail:gaojunscience@126.com
摘要:
心理韧性指个体面对逆境、挫折或重大威胁等应激情境下的有效且灵活适应的能力, 促进机体恢复正常的生理和心理功能。研究表明海马是调控心理韧性的重要脑区, 且催产素可能通过作用于海马增强心理韧性。海马内部环路内嗅皮层-齿状回-CA3可能调节恐惧记忆的泛化和消退以增强心理韧性; 海马外部环路齿状回-杏仁核-伏隔核及海马-伏隔核环路调节情绪, 可能分别通过促进奖赏和带来厌恶进而增强或降低心理韧性。催产素作用于海马增强心理韧性的可能途径有:催产素促进海马神经发生, 降低海马腹侧成熟神经元对应激的敏感性, 提高海马“模式分离”功能, 降低应激记忆泛化; 催产素恢复海马谢弗侧枝-CA1突触长时程增强, 促进机体适应应激; 催产素降低海马糖皮质激素受体水平, 重新建立机体稳态。
中图分类号:
薛冰, 王雪娇, 马宁, 高军. (2021). 催产素调控心理韧性:基于对海马的作用机制. 心理科学进展 , 29(2), 311-322.
XUE Bing, WANG Xuejiao, MA Ning, GAO Jun. (2021). Effects of oxytocin on psychological resilience: The neurochemical mechanisms in the hippocampus. Advances in Psychological Science, 29(2), 311-322.
[1] | 林思婷, 罗梦娜, 汪丹, 李泽楷. (2019). 心理韧性测量工具的研究现状. 解放军护理杂志, 36(4), 54-57. doi: 10.3969/j.issn.1008-9993.2019.04.013 |
[2] | 刘浩然, 张晨风, 杨莉. (2019). 心理韧性及其神经机制: 来自非人类动物模型的证据. 心理科学进展, 27(2), 312-321. doi: 10.3724/SP.J.1042.2019.00312 |
[3] | 刘伟伟, 汪海彬, 李梅, 黄丽. (2017). 心理弹性的国内外研究回顾及展望. 宁波大学学报(教育科学版), 39(1), 18-23. doi: CNKI:SUN:LBJY.0.2017-01-006 |
[4] | 席居哲, 左志宏, WU, Wei. (2012). 心理韧性研究诸进路. 心理科学进展, 20(9), 1426-1447. doi: 10.3724/SP.J.1042.2012.01426 |
[5] | 杨婧, 王詠, 宋莉莉. (2019). 心理韧性的神经机制研究进展. 神经解剖学杂志, 35(1), 94-98. doi: 10.16557/j.cnki.1000-7547.2019.01.016 |
[6] | 诸彦含, 赵玉兰, 周意勇, 吴江. (2019). 组织中的韧性:基于心理路径和系统路径的保护性资源建构. 心理科学进展, 27(2), 357-369. doi: 10.3724/sp.j.1042.2019.00357 |
[7] |
Aalling, N., Hageman, I., Miskowiak, K., Orlowski, D., Wegener, G., & Wortwein, G. (2018). Erythropoietin prevents the effect of chronic restraint stress on the number of hippocampal CA3c dendritic terminals-relation to expression of genes involved in synaptic plasticity, angiogenesis, inflammation, and oxidative stress in male rats. Journal of Neuroscience Research, 96(1), 103-116. doi: 10.1002/jnr.24107
URL pmid: 28752903 |
[8] |
Anacker, C., Cattaneo, A., Luoni, A., Musaelyan, K., Zunszain, P. A., Milanesi, E., ... Pariante, C. M. (2013). Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology, 38(5), 872-883. doi: 10.1038/npp.2012.253
doi: 10.1038/npp.2012.253 URL pmid: 23303060 |
[9] |
Anacker, C., Luna, V. M., Stevens, G. S., Millette, A., Shores, R., Jimenez, J. C., ... Hen, R. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 559(7712), 98-102. doi: 10.1038/s41586-018-0262-4
URL pmid: 29950730 |
[10] |
Bagot, R. C., Parise, E. M., Peña, C. J., Zhang, H. X., Maze, I., Chaudhury, D., ... Nestler, E. J. (2015). Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nature Communications, 6, 7062. doi: 10.1038/ncomms8062
doi: 10.1038/ncomms8062 URL pmid: 25952660 |
[11] |
Bakker, A., Kirwan, C. B., Miller, M., & Stark, C. E. L. (2008). Pattern separation in the human hippocampal CA3 and dentate gyrus. Science, 319(5870), 1640-1642. doi: 10.1126/science.1152882
URL pmid: 18356518 |
[12] | Barrett, C. E., Arambula, S. E., & Young, L. J. (2015). The oxytocin system promotes resilience to the effects of neonatal isolation on adult social attachment in female prairie voles. Translational Psychiatry, 5(7), e606. doi: 10.1038/tp.2015.73 |
[13] |
Bernier, B. E., Lacagnina, A. F., Ayoub, A., Shue, F., Zemelman, B. V., Krasne, F. B., & Drew, M. R. (2017). Dentate Gyrus Contributes to Retrieval as well as Encoding: Evidence from context fear conditioning, recall, and extinction. The Journal of Neuroscience, 37(26), 6359-6371. doi: 10.1523/jneurosci.3029-16.2017
URL pmid: 28546308 |
[14] |
Besnard, A., & Sahay, A. (2016). Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology, 41(1), 24-44. doi: 10.1038/npp.2015.167
URL pmid: 26068726 |
[15] |
Bhagya, V. R., Srikumar, B. N., Veena, J., & Shankaranarayana Rao, B. S. (2017). Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits. Journal of Neuroscience Research, 95(8), 1602-1610. doi: 10.1002/jnr.23992
URL pmid: 27862185 |
[16] | Bradley, B., Davis, T. A., Wingo, A. P., Mercer, K. B., & Ressler, K. J. (2013). Family environment and adult resilience: Contributions of positive parenting and the oxytocin receptor gene. European Journal of Psychotraumatology, 4(1). doi: 10.3402/ejpt.v4i0.21659 |
[17] |
Brydges, N. M., Jin, R., Seckl, J., Holmes, M. C., Drake, A. J., & Hall, J. (2014). Juvenile stress enhances anxiety and alters corticosteroid receptor expression in adulthood. Brain and Behavior, 4(1), 4-13. doi: 10.1002/brb3.182
URL pmid: 24653949 |
[18] |
Cardoso, C., Ellenbogen, M. A., Orlando, M. A., Bacon, S. L., & Joober, R. (2013). Intranasal oxytocin attenuates the cortisol response to physical stress: A dose-response study. Psychoneuroendocrinology, 38(3), 399-407. doi: 10.1016/j.psyneuen.2012.07.013
URL pmid: 22889586 |
[19] |
Cardoso, C., Kingdon, D., & Ellenbogen, M. A. (2014). A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: Moderation by method and mental health. Psychoneuroendocrinology, 49, 161-170. doi: 10.1016/j.psyneuen.2014.07.014
URL pmid: 25086828 |
[20] |
Chan, S. W., Harmer, C. J., Norbury, R., O'Sullivan, U., Goodwin, G. M., & Portella, M. J. (2016). Hippocampal volume in vulnerability and resilience to depression. Journal of Affective Disorders, 189, 199-202. doi: 10.1016/j.jad.2015.09.021
doi: 10.1016/j.jad.2015.09.021 URL pmid: 26451503 |
[21] |
Chetty, S., Friedman, A. R., Taravosh-Lahn, K., Kirby, E. D., Mirescu, C., Guo, F., ... Kaufer, D. (2014). Stress and glucocorticoids promote oligodendrogenesis in the adult hippocampus. Molecular Psychiatry, 19(12), 1275-1283. doi: 10.1038/mp.2013.190
doi: 10.1038/mp.2013.190 URL pmid: 24514565 |
[22] |
Christian, K. M., Song, H., & Ming, G. L. (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annual Review of Neuroscience, 37, 243-262. doi: 10.1146/annurev-neuro-071013-014134
doi: 10.1146/annurev-neuro-071013-014134 URL pmid: 24905596 |
[23] |
Cilz, N. I., Cymerblit-Sabba, A., & Young, W. S. (2019). Oxytocin and vasopressin in the rodent hippocampus. Genes, Brain, and Behavior, 18(1), e12535. doi: 10.1111/gbb.12535
doi: 10.1111/gbb.12535 URL pmid: 30378258 |
[24] |
Citri, A., & Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1), 18-41. doi: 10.1038/sj.npp.1301559
doi: 10.1038/sj.npp.1301559 URL pmid: 17728696 |
[25] |
Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Fragniere, A., Tyers, P., ... Bussey, T. J. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325(5937), 210-213. doi: 10.1126/science.1173215
URL pmid: 19590004 |
[26] |
Cohen, H., Kaplan, Z., Kozlovsky, N., Gidron, Y., Matar, M. A., & Zohar, J. (2010). Hippocampal microinfusion of oxytocin attenuates the behavioural response to stress by means of dynamic interplay with the glucocorticoid- catecholamine responses. Journal of Neuroendocrinology, 22(8), 889-904. doi: 10.1111/j.1365-2826.2010.02003.x
URL pmid: 20403087 |
[27] |
Duarte-Guterman, P., Lieblich, S. E., Qiu, W., Splinter, J. E. J., Go, K. A., Casanueva-Reimon, L., & Galea, L. A. M. (2020). Oxytocin has sex-specific effects on social behaviour and hypothalamic oxytocin immunoreactive cells but not hippocampal neurogenesis in adult rats. Hormones and Behavior, 122, 104734. doi: 10.1016/j.yhbeh.2020.104734
URL pmid: 32169583 |
[28] |
Engelmann, M., Landgraf, R., & Wotjak, C. T. (2019). The hypothalamic-neurohypophysial system regulates the hypothalamic-pituitary-adrenal axis under stress: An old concept revisited. Frontiers in Neuroendocrinology, 25(3-4), 132-149. doi: 10.1016/j.yfrne.2004.09.001
doi: 10.1016/j.yfrne.2004.09.001 URL pmid: 15589266 |
[29] |
Fa, M., Xia, L., Anunu, R., Kehat, O., Kriebel, M., Volkmer, H., & Richter-Levin, G. (2014). Stress modulation of hippocampal activity-spotlight on the dentate gyrus. Neurobiology of Learning and Memory, 112, 53-60. doi: 10.1016/j.nlm.2014.04.008
doi: 10.1016/j.nlm.2014.04.008 URL pmid: 24747273 |
[30] |
França, T. F. A., Bitencourt, A. M., Maximilla, N. R., Barros, D. M., & Monserrat, J. M. (2017). Hippocampal neurogenesis and pattern separation: A meta-analysis of behavioral data. Hippocampus, 27(9), 937-950. doi: 10.1002/hipo.22746
URL pmid: 28597491 |
[31] |
Grimm, S., Pestke, K., Feeser, M., Aust, S., Weigand, A., Wang, J., ... Bajbouj, M. (2014). Early life stress modulates oxytocin effects on limbic system during acute psychosocial stress. Social Cognitive and Affective Neuroscience, 9(11), 1828-1835. doi: 10.1093/scan/nsu020
doi: 10.1093/scan/nsu020 URL pmid: 24478326 |
[32] |
Gunn, B. G., & Baram, T. Z. (2017). Stress and Seizures: Space, time and hippocampal circuits. Trends in Neurosciences, 40(11), 667-679. doi: 10.1016/j.tins.2017.08.004
doi: 10.1016/j.tins.2017.08.004 URL pmid: 28916130 |
[33] |
Hill, A. S., Sahay, A., & Hen, R. (2015). Increasing Adult Hippocampal Neurogenesis is Sufficient to Reduce Anxiety and Depression-Like Behaviors. Neuropsychopharmacology, 40(10), 2368-2378. doi: 10.1038/npp.2015.85
doi: 10.1038/npp.2015.85 URL pmid: 25833129 |
[34] |
Hirata, R., Togashi, H., Matsumoto, M., Yamaguchi, T., Izumi, T., & Yoshioka, M. (2008). Characterization of stress-induced suppression of long-term potentiation in the hippocampal CA1 field of freely moving rats. Brain Research, 1226, 27-32. doi: 10.1016/j.brainres.2008.06.004
URL pmid: 18582439 |
[35] |
Horn, S. R., Charney, D. S., & Feder, A. (2016). Understanding resilience: New approaches for preventing and treating PTSD. Experimental Neurology, 284(Pt B), 119-132. doi: 10.1016/j.expneurol.2016.07.002
URL pmid: 27417856 |
[36] |
Horn, S. R., & Feder, A. (2018). Understanding Resilience and Preventing and Treating PTSD. Harvard Review of Psychiatry, 26(3), 158-174. doi: 10.1097/HRP.0000000000000194
doi: 10.1097/HRP.0000000000000194 URL pmid: 29734229 |
[37] |
Hornor, G. (2017). Resilience. Journal of Pediatric Health Care, 31(3), 384-390. doi: 10.1016/j.pedhc.2016.09.005
URL pmid: 28433064 |
[38] |
Hueston, C. M., Cryan, J. F., & Nolan, Y. M. (2017). Stress and adolescent hippocampal neurogenesis: Diet and exercise as cognitive modulators. Translational Psychiatry, 7(4), e1081. doi: 10.1038/tp.2017.48
doi: 10.1038/tp.2017.48 URL pmid: 28375209 |
[39] |
Ji, H., Su, W., Zhou, R., Feng, J., Lin, Y., Zhang, Y., ... Li, J. (2016). Intranasal oxytocin administration improves depression-like behaviors in adult rats that experienced neonatal maternal deprivation. Behavioural Pharmacology, 27(8), 689-696. doi: 10.1097/fbp.0000000000000248
doi: 10.1097/FBP.0000000000000248 URL pmid: 27644094 |
[40] |
Jurek, B., & Neumann, I. D. (2018). The Oxytocin Receptor: From intracellular signaling to behavior. Physiological Reviews, 98(3), 1805-1908. doi: 10.1152/physrev.00031.2017
doi: 10.1152/physrev.00031.2017 URL pmid: 29897293 |
[41] |
Kim, E. J., Pellman, B., & Kim, J. J. (2015). Stress effects on the hippocampus: A critical review. Learning & Memory, 22(9), 411-416. doi: 10.1101/lm.037291.114
doi: 10.1101/lm.037291.114 URL pmid: 26286651 |
[42] |
Kim, H. W., Kang, J. I., An, S. K., & Kim, S. J. (2019). Oxytocin receptor gene variants are associated with emotion recognition and resilience, but not with false-belief reasoning performance in healthy young Korean volunteers. CNS Neuroscience & Therapeutics, 25(4), 519-526. doi: 10.1111/cns.13075
doi: 10.1111/cns.13075 URL pmid: 30311451 |
[43] |
King, C. E., Griffin, W. C., Luderman, L. N., Kates, M. M., McGinty, J. F., & Becker, H. C. (2017). Oxytocin Reduces Ethanol Self-Administration in Mice. Alcoholism, Clinical and Experimental Research, 41(5), 955-964. doi: 10.1111/acer.13359
doi: 10.1111/acer.13359 URL pmid: 28212464 |
[44] |
Lange, I., Goossens, L., Michielse, S., Bakker, J., Lissek, S., Papalini, S., ... Schruers, K. (2017). Behavioral pattern separation and its link to the neural mechanisms of fear generalization. Social Cognitive and Affective Neuroscience, 12(11), 1720-1729. doi: 10.1093/scan/nsx104
doi: 10.1093/scan/nsx104 URL pmid: 29036532 |
[45] |
Latt, H. M., Matsushita, H., Morino, M., Koga, Y., Michiue, H., Nishiki, T., ... Matsui, H. (2018). Oxytocin inhibits corticosterone-induced apoptosis in primary hippocampal neurons. Neuroscience, 379, 383-389. doi: 10.1016/j.neuroscience.2018.03.025
doi: 10.1016/j.neuroscience.2018.03.025 URL pmid: 29596965 |
[46] |
Leal, S. L., Tighe, S. K., Jones, C. K., & Yassa, M. A. (2014). Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus, 24(9), 1146-1155. doi: 10.1002/hipo.22298
URL pmid: 24796287 |
[47] |
Lee, A. L., Ogle, W. O., & Sapolsky, R. M. (2002). Stress and depression: Possible links to neuron death in the hippocampus. Bipolar Disorders, 4(2), 117-128. doi: 10.1034/j.1399-5618.2002.01144.x
doi: 10.1034/j.1399-5618.2002.01144.x URL pmid: 12071509 |
[48] |
Lee, M. R., Rohn, M. C., Tanda, G., & Leggio, L. (2016). Targeting the Oxytocin System to Treat Addictive Disorders: Rationale and Progress to Date. CNS Drugs, 30(2), 109-123. doi: 10.1007/s40263-016-0313-z
doi: 10.1007/s40263-016-0313-z URL pmid: 26932552 |
[49] |
Lee, S. Y., Park, S. H., Chung, C., Kim, J. J., Choi, S. Y., & Han, J. S. (2015). Oxytocin protects hippocampal memory and plasticity from uncontrollable stress. Scientific Reports, 5, 18540. doi: 10.1038/srep18540
doi: 10.1038/srep18540 URL pmid: 26688325 |
[50] |
Leuner, B., Caponiti, J. M., & Gould, E. (2012). Oxytocin stimulates adult neurogenesis even under conditions of stress and elevated glucocorticoids. Hippocampus, 22(4), 861-868. doi: 10.1002/hipo.20947
URL pmid: 21692136 |
[51] |
Levone, B. R., Cryan, J. F., & O'Leary, O. F. (2015). Role of adult hippocampal neurogenesis in stress resilience. Neurobiology of Stress, 1, 147-155. doi: 10.1016/j.ynstr.2014.11.003
doi: 10.1016/j.ynstr.2014.11.003 URL pmid: 27589664 |
[52] |
Li, C., Huang, P., Lu, Q., Zhou, M., Guo, L., & Xu, X. (2014). KCNQ/Kv7 channel activator flupirtine protects against acute stress-induced impairments of spatial memory retrieval and hippocampal LTP in rats. Neuroscience, 280, 19-30. doi: 10.1016/j.neuroscience.2014.09.009
doi: 10.1016/j.neuroscience.2014.09.009 URL pmid: 25234320 |
[53] |
Liberzon, I., Chalmers, D. T., Mansour, A., Lopez, J. F., Watson, S. J., & Young, E. A. (1994). Glucocorticoid regulation of hippocampal oxytocin receptor binding. Brain Research, 650(2), 317-322. doi: 10.1016/0006-8993(94)91798-1
doi: 10.1016/0006-8993(94)91798-1 URL pmid: 7953698 |
[54] |
Lin, Y. T., Chen, C. C., Huang, C. C., Nishimori, K., & Hsu, K. S. (2017). Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nature Communications, 8(1), 537. doi: 10.1038/s41467-017-00675-5
URL pmid: 28912554 |
[55] |
Lin, Y. T., Hsieh, T. Y., Tsai, T. C., Chen, C. C., Huang, C. C., & Hsu, K. S. (2018). Conditional deletion of hippocampal CA2/CA3a oxytocin receptors impairs the persistence of long-term social recognition memory in mice. The Journal of Neuroscience, 38(5), 1218-1231. doi: 10.1523/jneurosci.1896-17.2017
doi: 10.1523/JNEUROSCI.1896-17.2017 URL pmid: 29279308 |
[56] |
Lin, Y. T., & Hsu, K. S. (2018). Oxytocin receptor signaling in the hippocampus: Role in regulating neuronal excitability, network oscillatory activity, synaptic plasticity and social memory. Progress in Neurobiology, 171, 1-14 doi: 10.1016/j.pneurobio.2018.10.003
doi: 10.1016/j.pneurobio.2018.10.003 URL pmid: 30359747 |
[57] |
Lipski, W. J., Dibble, S. M., Rinaman, L., & Grace, A. A. (2017). Psychogenic stress activates c-fos in nucleus accumbens-projecting neurons of the hippocampal ventral subiculum. The International Journal of Neuropsychopharmacology, 20(10), 855-860. doi: 10.1093/ijnp/pyx054
doi: 10.1093/ijnp/pyx054 URL pmid: 28977522 |
[58] |
Malhi, G. S., Das, P., Outhred, T., Dobson-Stone, C., Bell, E., Gessler, D., ... Mannie, Z. (2020). Interactions of OXTR rs53576 and emotional trauma on hippocampal volumes and perceived social support in adolescent girls. Psychoneuroendocrinology, 115, 104635. doi: 10.1016/j.psyneuen.2020.104635
doi: 10.1016/j.psyneuen.2020.104635 URL pmid: 32199286 |
[59] |
Maniezzi, C., Talpo, F., Spaiardi, P., Toselli, M., & Biella, G. (2019). Oxytocin increases phasic and tonic GABAergic transmission in CA1 region of mouse hippocampus. Frontiers in Cellular Neuroscience, 13, 178. doi: 10.3389/fncel.2019.00178
doi: 10.3389/fncel.2019.00178 URL pmid: 31133808 |
[60] |
Matsushita, H., Latt, H. M., Koga, Y., Nishiki, T., & Matsui, H. (2019). Oxytocin and Stress: Neural mechanisms, stress-related disorders, and therapeutic approaches. Neuroscience, 417, 1-10. doi: 10.1016/j.neuroscience.2019.07.046
URL pmid: 31400490 |
[61] |
McEwen, B. S. (1999). Stress and hippocampal plasticity. Annual Review of Neuroscience, 22, 105-122. doi: 10.1146/annurev.neuro.22.1.105
doi: 10.1146/annurev.neuro.22.1.105 URL pmid: 10202533 |
[62] |
Murthy, S., & Gould, E. (2018). Early life stress in rodents: Animal models of illness or resilience? Frontiers in Behavioral Neuroscience, 12, 157. doi: 10.3389/fnbeh.2018.00157
doi: 10.3389/fnbeh.2018.00157 URL pmid: 30108490 |
[63] |
Owen, S. F., Tuncdemir, S. N., Bader, P. L., Tirko, N. N., Fishell, G., & Tsien, R. W. (2013). Oxytocin enhances hippocampal spike transmission by modulating fast-spiking interneurons. Nature, 500(7463), 458-462. doi: 10.1038/nature12330
doi: 10.1038/nature12330 URL pmid: 23913275 |
[64] |
Park, H. J., Lee, S., Jung, J. W., Kim, B. C., Ryu, J. H., & Kim, D. H. (2015). Glucocorticoid- and long-term stress-induced aberrant synaptic plasticity are mediated by activation of the glucocorticoid receptor. Archives of Pharmacal Research, 38(6), 1204-1212. doi: 10.1007/s12272-015-0548-0
doi: 10.1007/s12272-015-0548-0 URL pmid: 25564339 |
[65] |
Park, S. H., Kim, Y. J., Park, J. C., Han, J. S., & Choi, S. Y. (2017). Intranasal oxytocin following uncontrollable stress blocks impairments in hippocampal plasticity and recognition memory in stressed rats. The International Journal of Neuropsychopharmacology, 20(10), 861-866. doi: 10.1093/ijnp/pyx061
doi: 10.1093/ijnp/pyx061 URL pmid: 28977526 |
[66] |
Pavlides, C., Nivón, L. G., & McEwen, B. S. (2002). Effects of chronic stress on hippocampal long-term potentiation. Hippocampus, 12(2), 245-257. doi: 10.1002/hipo.1116
URL pmid: 12000121 |
[67] |
Pawluski, J. L., Császár, E., Savage, E., Martinez-Claros, M., Steinbusch, H. W., & van den Hove, D. (2015). Effects of stress early in gestation on hippocampal neurogenesis and glucocorticoid receptor density in pregnant rats. Neuroscience, 290, 379-388. doi: 10.1016/j.neuroscience.2015.01.048
doi: 10.1016/j.neuroscience.2015.01.048 URL pmid: 25655215 |
[68] |
Petersson, M., & Uvnäs-Moberg, K. (2003). Systemic oxytocin treatment modulates glucocorticoid and mineralocorticoid receptor mRNA in the rat hippocampus. Neuroscience Letters, 343(2), 97-100. doi: 10.1016/s0304-3940(03)00334-3
doi: 10.1016/s0304-3940(03)00334-3 URL pmid: 12759173 |
[69] |
Raam, T., McAvoy, K. M., Besnard, A., Veenema, A. H., & Sahay, A. (2017). Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nature Communications, 8(1), 2001. doi: 10.1038/s41467-017-02173-0
URL pmid: 29222469 |
[70] |
Rakesh, G., Morey, R. A., Zannas, A. S., Malik, Z., Marx, C. E., Clausen, A. N., ... Szabo, S. T. (2019). Resilience as a translational endpoint in the treatment of PTSD. Molecular Psychiatry, 24(9), 1268-1283. doi: 10.1038/s41380-019-0383-7
doi: 10.1038/s41380-019-0383-7 URL pmid: 30867558 |
[71] |
Ramirez, S., Liu, X., MacDonald, C. J., Moffa, A., Zhou, J., Redondo, R. L., & Tonegawa, S. (2015). Activating positive memory engrams suppresses depression-like behaviour. Nature, 522(7556), 335-339. doi: 10.1038/nature14514
doi: 10.1038/nature14514 URL pmid: 26085274 |
[72] |
Revest, J. M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P. V., & Abrous, D. N. (2009). Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Molecular Psychiatry, 14(10), 959-967. doi: 10.1038/mp.2009.15
doi: 10.1038/mp.2009.15 URL pmid: 19255582 |
[73] |
Riem, M. M. E., van Ijzendoorn, M. H., & Bakermans-Kranenburg, M. J. (2019). Hippocampal volume modulates salivary oxytocin level increases after intranasal oxytocin administration. Psychoneuroendocrinology, 101, 182-185. doi: 10.1016/j.psyneuen.2018.11.015
doi: 10.1016/j.psyneuen.2018.11.015 URL pmid: 30469085 |
[74] |
Ripamonti, S., Ambrozkiewicz, M. C., Guzzi, F., Gravati, M., Biella, G., Bormuth, I., ... Rhee, J. (2017). Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. Elife, 6, e22466. doi: 10.7554/eLife.22466
doi: 10.7554/eLife.22466 URL pmid: 28231043 |
[75] | Robinson, D. A., Wei, F., Wang, G. D., Li, P., Kim, S. J., Vogt, S. K., ... Zhuo, M. (2002). Oxytocin mediates stress-induced analgesia in adult mice. The Journal of Physiology, 540(2), 593-606. doi: 10.1113/jphysiol.2001.013492 |
[76] |
Russo, S. J., Murrough, J. W., Han, M.-H., Charney, D. S., & Nestler, E. J. (2012). Neurobiology of resilience. Nature Neuroscience, 15(11), 1475-1484. doi: 10.1038/nn.3234
doi: 10.1038/nn.3234 URL pmid: 23064380 |
[77] |
Sack, M., Spieler, D., Wizelman, L., Epple, G., Stich, J., Zaba, M., & Schmidt, U. (2017). Intranasal oxytocin reduces provoked symptoms in female patients with posttraumatic stress disorder despite exerting sympathomimetic and positive chronotropic effects in a randomized controlled trial. BMC Medicine, 15(1), 40. doi: 10.1186/s12916-017-0801-0
URL pmid: 28209155 |
[78] |
Saha, R., Kriebel, M., Volkmer, H., Richter-Levin, G., & Albrecht, A. (2018). Neurofascin knock down in the basolateral amygdala mediates resilience of memory and plasticity in the dorsal dentate gyrus under stress. Molecular Neurobiology, 55(9), 7317-7326. doi: 10.1007/s12035-018-0930-2
doi: 10.1007/s12035-018-0930-2 URL pmid: 29404957 |
[79] |
Sahay, A., Scobie, K. N., Hill, A. S., O'Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., ... Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472(7344), 466-470. doi: 10.1038/nature09817
URL pmid: 21460835 |
[80] |
Sánchez-Vidaña, D. I., Chan, N. M., Chan, A. H., Hui, K. K., Lee, S., Chan, H. Y., ... Lai, C. Y. (2016). Repeated treatment with oxytocin promotes hippocampal cell proliferation, dendritic maturation and affects socio-emotional behavior. Neuroscience, 333, 65-77. doi: 10.1016/j.neuroscience.2016.07.005
doi: 10.1016/j.neuroscience.2016.07.005 URL pmid: 27418343 |
[81] |
Schultz, C., & Engelhardt, M. (2014). Anatomy of the hippocampal formation. Frontiers of Neurology and Neuroscience, 34, 6-17. doi: 10.1159/000360925
URL pmid: 24777126 |
[82] |
Segev, A., & Akirav, I. (2016). Cannabinoids and glucocorticoids in the basolateral amygdala modulate hippocampal-accumbens plasticity after stress. Neuropsychopharmacology, 41(4), 1066-1079. doi: 10.1038/npp.2015.238
URL pmid: 26289146 |
[83] |
Smith, A. S., & Wang, Z. (2014). Hypothalamic oxytocin mediates social buffering of the stress response. Biological Psychiatry, 76(4), 281-288. doi: 10.1016/j.biopsych.2013.09.017
doi: 10.1016/j.biopsych.2013.09.017 URL pmid: 24183103 |
[84] |
Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., & Cameron, H. A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 476(7361), 458-461. doi: 10.1038/nature10287
doi: 10.1038/nature10287 URL pmid: 21814201 |
[85] |
Sousa, V. C., Vital, J., Costenla, A. R., Batalha, V. L., Sebastião, A. M., Ribeiro, J. A., & Lopes, L. V. (2014). Maternal separation impairs long term-potentiation in CA1-CA3 synapses and hippocampal-dependent memory in old rats. Neurobiology of Aging, 35(7), 1680-1685. doi: 10.1016/j.neurobiolaging.2014.01.024
URL pmid: 24559649 |
[86] |
Stuber, G. D., Sparta, D. R., Stamatakis, A. M., van Leeuwen, W. A., Hardjoprajitno, J. E., Cho, S., ... Bonci, A. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature, 475(7356), 377-380. doi: 10.1038/nature10194
doi: 10.1038/nature10194 URL pmid: 21716290 |
[87] |
Takeda, A., Suzuki, M., Tamano, H., Takada, S., Ide, K., & Oku, N. (2012). Involvement of glucocorticoid-mediated Zn2+ signaling in attenuation of hippocampal CA1 LTP by acute stress. Neurochemistry International, 60(4), 394-399. doi: 10.1016/j.neuint.2012.01.021
URL pmid: 22306774 |
[88] |
Toda, T., & Gage, F. H. (2018). Review: Adult neurogenesis contributes to hippocampal plasticity. Cell and Tissue Research, 373(3), 693-709. doi: 10.1007/s00441-017-2735-4
URL pmid: 29185071 |
[89] |
Tomizawa, K., Iga, N., Lu, Y. F., Moriwaki, A., Matsushita, M., Li, S. T., ... Matsui, H. (2003). Oxytocin improves long-lasting spatial memory during motherhood through MAP kinase cascade. Nature Neuroscience, 6(4), 384-390. doi: 10.1038/nn1023
URL pmid: 12598900 |
[90] |
van Eekelen, J. A. M., Jiang, W., de Kloet, E. R., & Bohn, M. C. (1988). Distribution of the mineralocorticoid and the glucocorticoid receptor mRNAs in the rat hippocampus. Journal of Neuroscience Research, 21(1), 88-94. doi: 10.1002/jnr.490210113
URL pmid: 2851057 |
[91] |
van Zuiden, M., Frijling, J. L., Nawijn, L., Koch, S. B. J., Goslings, J. C., Luitse, J. S., ... Olff, M. (2017). Intranasal oxytocin to prevent posttraumatic stress disorder symptoms: A randomized controlled trial in emergency department patients. Biological Psychiatry, 81(12), 1030-1040. doi: 10.1016/j.biopsych.2016.11.012
doi: 10.1016/j.biopsych.2016.11.012 URL pmid: 28087128 |
[92] | Wang, S. C., Lin, C. C., Chen, C. C., Tzeng, N. S., & Liu, Y. P. (2018). Effects of oxytocin on fear memory and neuroinflammation in a rodent model of posttraumatic stress disorder. International Journal of Molecular Sciences, 19(12), 3848. doi: 10.3390/ijms19123848 |
[93] |
Wiegert, O., Pu, Z., Shor, S., Joëls, M., & Krugers, H. (2005). Glucocorticoid receptor activation selectively hampers N-methyl-D-aspartate receptor dependent hippocampal synaptic plasticity in vitro. Neuroscience, 135(2), 403-411. doi: 10.1016/j.neuroscience.2005.05.039
doi: 10.1016/j.neuroscience.2005.05.039 URL pmid: 16125856 |
[94] |
Winter, J., & Jurek, B. (2019). The interplay between oxytocin and the CRF system: Regulation of the stress response. Cell and Tissue Research, 375(1), 85-91. doi: 10.1007/s00441-018-2866-2
URL pmid: 29911261 |
[95] | Womersley, J. S., Hemmings, S. M. J., Ziegler, C., Gutridge, A., Ahmed-Leitao, F., Rosenstein, D., ... Seedat, S. (2019). Childhood emotional neglect and oxytocin receptor variants: Association with limbic brain volumes. The World Journal of Biological Psychiatry, 21(7), 1-16. doi: 10.1080/15622975.2019.1584331 |
[96] |
Zaninetti, M., & Raggenbass, M. (2000). Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. The European Journal of Neuroscience, 12(11), 3975-3984. doi: 10.1046/j.1460-9568.2000.00290.x
doi: 10.1046/j.1460-9568.2000.00290.x URL pmid: 11069593 |
[1] | 黄钰杰, 赵荣, 克丽比努尔·艾尔肯, 李晶晶, 王俊琪, 潘海萍, 高军. 自闭症谱系障碍的社会功能障碍:触觉与催产素[J]. 心理科学进展, 2023, 31(5): 800-814. |
[2] | 马原啸, 陈旭. 焦虑易感群体焦虑识别与消退中催产素的作用[J]. 心理科学进展, 2023, 31(1): 10-19. |
[3] | 刘笑晗, 陈明隆, 郭静. 机器学习在儿童创伤后应激障碍识别及转归预测中的应用[J]. 心理科学进展, 2022, 30(4): 851-862. |
[4] | 冯攀, 杨可, 冯廷勇. 催产素影响恐惧习得和消退的认知神经机制[J]. 心理科学进展, 2022, 30(2): 365-374. |
[5] | 杨群, 朱兵, 俞奕铭, 张敬敏, 薛孟孟. 应激环境下亲社会性的增加:来自不同类型的亲社会偏好的研究证据[J]. 心理科学进展, 2022, 30(12): 2809-2824. |
[6] | 郭静, 刘笑晗, 黄宁. 基于长尾效应的儿童创伤后应激障碍转归机制及干预策略[J]. 心理科学进展, 2022, 30(10): 2154-2163. |
[7] | 张霞, 雷怡, 王福顺. 催产素、孕激素和雌激素对厌恶的影响及其神经生理机制[J]. 心理科学进展, 2022, 30(1): 85-97. |
[8] | 张萦倩, 赵光义, 韩雨薇, 张静怡, 曹成琦, 王力, 张昆林. 创伤后应激障碍的组蛋白修饰机制[J]. 心理科学进展, 2022, 30(1): 98-114. |
[9] | 武丽丽, 程刚, 张大均. 重复性急性应激对攻击行为的影响及调控机制[J]. 心理科学进展, 2021, 29(8): 1358-1370. |
[10] | 白玉, 杨海波. 创伤后应激障碍个体对威胁刺激的注意偏向:眼动研究的证据[J]. 心理科学进展, 2021, 29(4): 737-746. |
[11] | 孙俊芳, 辛自强, 包呼格吉乐图, 刘敏, 岳衡. 幸福感的稳态与跃迁:一个新的整合视角[J]. 心理科学进展, 2021, 29(3): 481-491. |
[12] | 叶静, 张戌凡. 老年人心理韧性与幸福感的关系:一项元分析[J]. 心理科学进展, 2021, 29(2): 202-217. |
[13] | 周梦晗, 张源, 高山, Keith M. Kendrick, 姚树霞. 催产素对学习和记忆的调节效应:来自动物与人类的研究证据[J]. 心理科学进展, 2021, 29(12): 2195-2208. |
[14] | 王红波, 关旭旭, 李梓萌. 即刻消退缺损的原因分析及其神经生物学机制[J]. 心理科学进展, 2021, 29(1): 150-159. |
[15] | 李婉如, 库逸轩. 急性应激影响工作记忆的生理心理机制[J]. 心理科学进展, 2020, 28(9): 1508-1524. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||