心理科学进展 ›› 2021, Vol. 29 ›› Issue (11): 1979-1992.doi: 10.3724/SP.J.1042.2021.01979
收稿日期:
2020-12-04
出版日期:
2021-11-15
发布日期:
2021-09-23
通讯作者:
庄想灵
E-mail:zhuangxl@snnu.edu.cn
基金资助:
JIANG Qianni, ZHUANG Xiangling(), MA Guojie
Received:
2020-12-04
Online:
2021-11-15
Published:
2021-09-23
Contact:
ZHUANG Xiangling
E-mail:zhuangxl@snnu.edu.cn
摘要:
自动驾驶汽车要进入人车混行的普通道路, 需确保与过街行人之间的交互安全和效率。为解决这一问题, 高等级自动驾驶汽车往往在车辆外部装置显示设备, 即外部人机界面(eHMIs)以和行人沟通信息。在具体设计上, 已有研究主要采用文字、图形、投影等视觉沟通形式, 传达车辆状态(是否在自动驾驶模式)、意图和对行人的过街建议等沟通信息, 并在真实路段实验、虚拟场景及实验室实验等情境中评估了界面的使用对行人过街意向、速度和准确性等指标的影响。然而, 以行人为中心的外部界面设计需系统地支持行人过街决策前各阶段的信息加工需求。因此, 我们结合行人过街决策过程和情境意识理论, 提出行人与自动驾驶汽车交互中的动态过街决策模型, 从行人认知加工视角评估各种界面的沟通效果。评估的结果启示, eHMIs应促进行人对车辆信息的感知、理解和预测。在感知阶段, 应采用多种类型界面、多呈现载体相结合, 增强信息的可识别性。在理解阶段, 需结合文字说明、合理选择沟通视角、信号标准化和培训提高可理解性。在预测阶段, 应结合车辆内隐运动信息, 帮助行人快速准确获取车辆未来行动意图。更重要的是, 未来研究应关注在多行人、多车辆混行情境下的信息沟通设计及其对行人的影响。理论方面, 未来研究也需要关注外部界面如何通过自下而上的通路影响情境意识和心智模型的形成。
中图分类号:
蒋倩妮, 庄想灵, 马国杰. (2021). 自动驾驶汽车与行人交互中的沟通界面设计:基于行人过街决策模型的评估. 心理科学进展 , 29(11), 1979-1992.
JIANG Qianni, ZHUANG Xiangling, MA Guojie. (2021). Evaluation of external HMI in autonomous vehicles based on pedestrian road crossing decision-making model. Advances in Psychological Science, 29(11), 1979-1992.
[1] |
Ackermann, C., Beggiato, M., Bluhm, L.-F., Löw, A., & Krems, J. F. (2019). Deceleration parameters and their applicability as informal communication signal between pedestrians and automated vehicles. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 757-768.
doi: 10.1016/j.trf.2019.03.006 URL |
[2] |
Ackermann, C., Beggiato, M., Schubert, S., & Krems, J. F. (2019). An experimental study to investigate design and assessment criteria: What is important for communication between pedestrians and automated vehicles? Applied Ergonomics, 75, 272-282.
doi: S0003-6870(18)30612-4 pmid: 30509537 |
[3] | Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., ... de Souza, A. F. (2019). Self-driving cars: A survey. Expert Systems with Applications, 165(3). |
[4] |
Bazilinskyy, P., Dodou, D., & de Winter, J. (2019). Survey on eHMI concepts: The effect of text, color, and perspective. Transportation Research Part F: Traffic Psychology and Behaviour, 67, 175-194.
doi: 10.1016/j.trf.2019.10.013 URL |
[5] |
Björklund, G. M., & Åberg, L. (2005). Driver behaviour in intersections: Formal and informal traffic rules. Transportation Research Part F: Traffic Psychology and Behaviour, 8(3), 239-253.
doi: 10.1016/j.trf.2005.04.006 URL |
[6] | Burns, C. G., Oliveira, L., Thomas, P., Iyer, S., & Birrell, S. (2019, June). Pedestrian decision-making responses to external human-machine interface designs for autonomous vehicles. Paper presented at the meeting of 2019 IEEE Intelligent Vehicles Symposium, Paris, France. |
[7] | Chang, C.-M., Toda, K., Sakamoto, D., & Igarashi, T. (2017). Eyes on a car:An interface design for communication between an autonomous car and a pedestrian. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 65-73). New York, NY, United States: Association for Computing Machinery. |
[8] | Chen, W., Jiang, Q., Zhuang, X., & Ma, G. (2020). Comparison of pedestrians' gap acceptance behavior towards automated and human-driven vehicles. In D. Harris, W.-C. Li (Eds), Engineering Psychology and Cognitive Ergonomics. Cognition and Design (pp.253-261). Cham, Switzerland: Springer. |
[9] | Clamann, M., Aubert, M., & Cummings, M. L. (2017, January). Evaluation of vehicle-to-pedestrian communication displays for autonomous vehicles. Paper presented at the Transportation Research Board 96th Annual Meeting, Washington DC, United States. |
[10] |
Cœugnet, S., Cahour, B., & Kraiem, S. (2019). Risk-taking, emotions and socio-cognitive dynamics of pedestrian street-crossing decision-making in the city. Transportation Research Part F: Traffic Psychology and Behaviour, 65, 141-157.
doi: 10.1016/j.trf.2019.07.011 URL |
[11] |
de Clercq, K., Dietrich, A., Velasco, J. P. N., de Winter, J., & Happee, R., (2019). External human-machine interfaces on automated vehicles: Effects on pedestrian crossing decisions. Human Factors, 61(8), 1353-1370.
doi: 10.1177/0018720819836343 pmid: 30912985 |
[12] |
Deb, S., Strawderman, L., Carruth, D. W., DuBien, J., Smith, B., & Garrison, T. M. (2017). Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles. Transportation Research Part C: Emerging Technologies, 84, 178-195.
doi: 10.1016/j.trc.2017.08.029 URL |
[13] |
Deb, S., Strawderman, L. J., & Carruth, D. W. (2018). Investigating pedestrian suggestions for external features on fully autonomous vehicles: A virtual reality experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 59, 135-149.
doi: 10.1016/j.trf.2018.08.016 URL |
[14] | Dey, D., Habibovic, A., Locken, A., Wintersberger, P., Pfleging, B., Riener, A., ... Terken, J. (2020). Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces. Transportation Research Interdisciplinary Perspectives, 7. |
[15] | Dey, D., Martens, M., Eggen, B., & Terken, J. (2017). The impact of vehicle appearance and vehicle behavior on pedestrian interaction with autonomous vehicles. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct (pp.158-162). New York, NY, United States: Association for Computing Machinery. |
[16] | Dey, D., & Terken, J. (2017). Pedestrian interaction with vehicles:Roles of explicit and implicit communication. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 109-113). New York, NY, United States: Association for Computing Machinery. |
[17] |
Eisma, Y. B., van Bergen, S., ter Brake, S. M., Hensen, M. T. T., Tempelaar, W. J., & de Winter, J. C. F. (2019). External human-machine interfaces: The effect of display location on crossing intentions and eye movements. Information, 11(1), 13.
doi: 10.3390/info11010013 URL |
[18] | Endsley, M. R. (1990). Situation awareness in dynamic human decision making: Theory and measurement (Unpublished doctoral dissertation). University of Southern California, Los Angeles, CA. |
[19] |
Endsley, M. R. (1995). Toward a Theory of Situation Awareness in Dynamic Systems. Human Factors, 37(1), 32-64.
doi: 10.1518/001872095779049543 URL |
[20] | Endsley, M. R. (2000). Theoretical underpinnings of situation awareness:A critical review. In M. R. Endsley, & D. J. Garland (Eds.), Situation awareness analysis and measurement (pp.3-6). Mahwah, NJ, USA: Lawrence Erlbaum Associates. |
[21] | Faas, S. M., & Baumann, M. (2019). Light-based external human machine interface:Color evaluation for self-driving vehicle and pedestrian interaction. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 1232-1236. |
[22] |
Faas, S. M., Mathis, L.-A., & Baumann, M. (2020). External HMI for self-driving vehicles: Which information shall be displayed? Transportation Research Part F: Traffic Psychology and Behaviour, 68, 171-186.
doi: 10.1016/j.trf.2019.12.009 URL |
[23] | Fridman, L., Mehler, B., Xia, L., Yang, Y., Facusse, L. Y., & Reimer, B. (2017, January). To walk or not to walk: Crowdsourced assessment of external vehicle-to-pedestrian displays. Paper presented at the meeting of Transportation Research Board Annual Meeting, Washington, DC. |
[24] | Fuest, T., Sorokin, L., Bellem, H., & Bengler, K. (2018). Taxonomy of traffic situations for the interaction between automated vehicles and human road users. In Advances in Intelligent Systems and Computing:Vol. 597. Advances in Human Aspects of Transportation (pp.708-719). Cham, Switzerland: Springer. |
[25] |
Grahn, H., Kujala, T., Silvennoinen, J., Leppanen, A., & Saariluoma, P. (2020). Expert drivers' prospective thinking-aloud to enhance automated driving technologies - Investigating uncertainty and anticipation in traffic. Accident Analysis & Prevention, 146, 105717.
doi: 10.1016/j.aap.2020.105717 URL |
[26] |
Habibovic, A., Lundgren, V. M., Andersson, J., Klingegard, M., Lagstrom, T., Sirkka, A., ... Larsson, P. (2018). Communicating intent of automated vehicles to pedestrians. Frontiers in Psychology, 9, 1336.
doi: 10.3389/fpsyg.2018.01336 pmid: 30131737 |
[27] | Hagenzieker, M. P., van der Kint, S., Vissers, L., van Schagen, I. N. L. G., de Bruin, J., van Gent, P., & Commandeur, J. J. F. (2019). Interactions between cyclists and automated vehicles: Results of a photo experiment. Journal of Transportation Safety & Security, 12(1), 94-115. |
[28] | Houtenbos, M., Hagenzieker, M., Wieringa, P., & Hale, A. (2005). The role of expectations in interaction behaviour between car drivers. In G. Underwood (Ed.), Traffic and Transport Psychology: Theory and Application (pp.303-314). Kidlington, Oxford: Elsevier. |
[29] | Hudson, C. R., Deb, S., Carruth, D. W., McGinley, J., & Frey, D. (2018). Pedestrian perception of autonomous vehicles with external interacting features. In Advances in intelligent systems and computing:Vol. 781. Advances in human factors and systems interaction (pp.33-39). Cham, Switzerland: Springer. |
[30] |
Jones, D. G., & Endsley, M. R. (1996). Sources of situation awareness errors in aviation. Aviation Space and Environmental Medicine, 67(6), 507-512.
pmid: 8827130 |
[31] | Kooijman, L., Happee, R., & de Winter, J. C. F. (2019). How do eHMIs affect pedestrians’ crossing behavior? A study using a head-mounted display combined with a motion suit. Information (Switzerland), 10(12), 386. |
[32] | Lagstrom, T., & Lundgren, V. (2015). AVIP-Autonomous vehicles’ interactions with pedestrians. An investigation of pedestrian-driver communication and development of a vehicle external interface. (Unpublished doctoral dissertation). Chalmers University Technology, Sweden. |
[33] | Lee, Y. M., Madigan, R., Garcia, J., Tomlinson, A., Solernou, A., Romano, R., ... Uttley, J. (2019). Understanding the messages conveyed by automated vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp.134-143). New York, NY, United States: Association for Computing Machinery. |
[34] | Li, Y., Dikmen, M., Hussein, T. G., Wang, Y., & Burns, C. (2018). To cross or not to cross:Urgency-based external warning displays on autonomous vehicles to improve pedestrian crossing safety. In Proceedings of the 10th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp. 188-197). New York, NY, United States: Association for Computing Machinery. |
[35] | Löcken, A., Golling, C., & Riener, A. (2019). How should automated vehicles interact with pedestrians? A comparative analysis of interaction concepts in virtual reality. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp.262-274). New York, NY, United States: Association for Computing Machinery. |
[36] | Lundgren, V. M., Habibovic, A., Andersson, J., Lagström, T., Nilsson, M., Sirkka, A., ... Saluäär, D. (2017). Will there be new communication needs when introducing automated vehicles to the urban context? In Advances in Intelligent Systems and Computing:Vol. 484. Advances in Human Aspects of Transportation (pp.485-497). Cham, Switzerland: Springer. |
[37] |
Madigan, R., Nordhoff, S., Fox, C., Ezzati Amini, R., Louw, T., Wilbrink, M., ... Merat, N. (2019). Understanding interactions between automated road transport systems and other road users: A video analysis. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 196-213.
doi: 10.1016/j.trf.2019.09.006 URL |
[38] | Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating awareness and intent in autonomous vehicle-pedestrian interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp.1-12). New York, NY, United States: Association for Computing Machinery. |
[39] | Matthews, M., Chowdhary, G. V., & Kieson, E. (2017). Intent communication between autonomous vehicles and pedestrians. ArXiv Preprint: 1708.07123. |
[40] | Moore, D., Currano, R., Strack, G. E., & Sirkin, D. (2019). The case for implicit external human-machine interfaces for autonomous vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications (pp.295-307). New York, NY, United States: Association for Computing Machinery. |
[41] | Othersen, I., Conti-Kufner, A. S., Dietrich, A., Maruhn, P., & Bengler, K. (2018). Designing for automated vehicle and pedestrian communication:Perspectives on eHMIs from older and younger persons. In D. de Waard, K. Brookhuis, D. Coelho, S. Fairclough, D. Manzey, A. Naumann, L.... R.Wiczorek (Eds.), Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2018 Annual Conference (pp.135-148). HFES. |
[42] |
Rodríguez Palmeiro, A., van der Kint, S., Vissers, L., Farah, H., de Winter, J. C. F., & Hagenzieker, M. (2018). Interaction between pedestrians and automated vehicles: A Wizard of Oz experiment. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 1005-1020.
doi: 10.1016/j.trf.2018.07.020 URL |
[43] | Rothenbücher, D., Li, J., Sirkin, D., Mok, B., & Ju, W. (2016, November). Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. In 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (pp. 795-802). IEEE. |
[44] |
Rouchitsas, A., & Alm, H. (2019). External human-machine interfaces for autonomous vehicle-to-pedestrian communication: A review of empirical work. Frontiers in Psychology, 10, 2757.
doi: 10.3389/fpsyg.2019.02757 URL |
[45] | SAE International.(2016). Surface vehicle recommended practice J3016-taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE International. |
[46] | Schieben, A., Wilbrink, M., Kettwich, C., Madigan, R., Louw, T., & Merat, N. (2018). Designing the interaction of automated vehicles with other traffic participants: Design considerations based on human needs and expectations. Cognition, Technology & Work, 21(1), 69-85. |
[47] | Schneemann, F., & Gohl, I. (2016). Analyzing driver- pedestrian interaction at crosswalks: A contribution to autonomous driving in urban environments. In 2016 IEEE Intelligent Vehicles Symposium (IV) (pp. 38-43). IEEE. |
[48] | Song, Y. E., Lehsing, C., Fuest, T., & Bengler, K. (2018). External HMIs and their effect on the interaction between pedestrians and automated vehicles. In Advances in Intelligent Systems and Computing:Vol. 722. Intelligent Human Systems Integration (pp.13-18). Cham, Switzerland: Springer. |
[49] |
Sucha, M., Dostal, D., & Risser, R. (2017). Pedestrian-driver communication and decision strategies at marked crossings. Accident Analysis and Prevention, 102, 41-50.
doi: 10.1016/j.aap.2017.02.018 URL |
[50] |
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection: Reply to commentaries. Acta Psychologica, 135(2), 133-139.
doi: 10.1016/j.actpsy.2010.07.006 URL |
[51] |
Treue, S. (2003). Visual attention: The where, what, how and why of saliency. Current Opinion in Neurobiology, 13(4), 428-432.
doi: 10.1016/S0959-4388(03)00105-3 URL |
[52] |
Velasco, J. P. N., Farah, H., van Arem, B., & Hagenzieker, M. P. (2019). Studying pedestrians’ crossing behavior when interacting with automated vehicles using virtual reality. Transportation Research Part F: Traffic Psychology and Behaviour, 66, 1-14.
doi: 10.1016/j.trf.2019.08.015 URL |
[53] | Vissers, L., van der Kint, S., van Schagen, I., & Hagenzieker, M. (2016). Safe interaction between cyclists, pedestrians and automated vehicles. What do we know and what do we need to know? In SWOV Institute for Road Safety Research. |
[54] |
Woodman, R., Lu, K., Higgins, M. D., Brewerton, S., Jennings, P. A., & Birrell, S. (2019). Gap acceptance study of pedestrians crossing between platooning autonomous vehicles in a virtual environment. Transportation Research Part F: Traffic Psychology and Behaviour, 67, 1-14.
doi: 10.1016/j.trf.2019.09.017 URL |
[55] | Zhang, J., Vinkhuyzen, E., & Cefkin, M. (2017). Evaluation of an autonomous vehicle external communication system concept:A survey study. In Advances in Intelligent Systems and Computing:Vol. 597. Advances in Human Aspects of Transportation (pp.650-661). Cham, Switzerland: Springer. |
[1] | 肖素芳, 徐正丽. 领导纳谏内涵及其对工作行为的影响:基于调节焦点理论的视角[J]. 心理科学进展, 2023, 31(5): 697-708. |
[2] | 王新刚, 李祖兰, 张婷. 社交媒体环境下被伤害品牌双面效价应对策略:群体极化理论视角[J]. 心理科学进展, 2023, 31(5): 709-720. |
[3] | 吴秀英, 李菲菲, 刘宝根. 词典互动对儿童电子图画书阅读的影响[J]. 心理科学进展, 2023, 31(5): 759-768. |
[4] | 成美霞, 匡子翌, 冷晓雪, 张洋, 王福兴. 以教促学:学习者自我生成教学对学习的影响[J]. 心理科学进展, 2023, 31(5): 769-782. |
[5] | 杨超, 董之婕, 闻浩言, 周一舟, 王艳丽, 袁方舟. 积极身体意象的前因后果及其提升策略[J]. 心理科学进展, 2023, 31(5): 815-826. |
[6] | 邹艳春, 章惠敏, 彭坚, 田一雯. 环保服务型领导:效果与机制[J]. 心理科学进展, 2023, 31(5): 827-839. |
[7] | 王颂, 张了丹, 栾琨. 员工网络建构行为的概念内涵及作用机制[J]. 心理科学进展, 2023, 31(5): 840-853. |
[8] | 张莹, 张剑, 张静雅, 巩振兴. 职业冲击的新分类及不同理论视角下的影响效应[J]. 心理科学进展, 2023, 31(5): 854-865. |
[9] | 杨蕾, 陈维扬, 白宝玉, 钟年. 累积文化演化的内在机制:实验证据[J]. 心理科学进展, 2023, 31(5): 866-886. |
[10] | 曾润喜, 李游. 自我效能感与网络健康信息搜寻关系的元分析[J]. 心理科学进展, 2023, 31(4): 535-551. |
[11] | 吴佳桧, 傅海伦, 张玉环. 感知社会支持与学生学业成就关系的元分析:学习投入的中介作用[J]. 心理科学进展, 2023, 31(4): 552-569. |
[12] | 李洁, 张真真, 梁巧转, 李根强. “真伪性”视角下的谦逊领导行为: 双刃剑效应和转化机制[J]. 心理科学进展, 2023, 31(4): 570-581. |
[13] | 郭理, 加锁锁, 李圭泉, 李蔓林. 高处不胜寒?领导工作场所孤独感的多层次双刃剑效应[J]. 心理科学进展, 2023, 31(4): 582-596. |
[14] | 磨然, 方作之, 方建东. 如何建立聊天机器人与用户间的数字治疗联盟:关系线索的作用[J]. 心理科学进展, 2023, 31(4): 669-683. |
[15] | 张宁, 王安然. 助推戒烟的行为干预策略[J]. 心理科学进展, 2023, 31(4): 684-696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||