心理科学进展 ›› 2019, Vol. 27 ›› Issue (1): 51-59.doi: 10.3724/SP.J.1042.2019.00051
收稿日期:
2017-12-22
出版日期:
2019-01-15
发布日期:
2018-11-23
基金资助:
YIN Shufei1(), LI Tian1, ZHU Xinyi2,3
Received:
2017-12-22
Online:
2019-01-15
Published:
2018-11-23
摘要:
情节记忆是个体对特定时间,特定地点所经历的特定事件的记忆.主观报告情节记忆下降是主观记忆减退老年人最典型的表现.与健康对照组老年人相比, 主观记忆减退老年人情节记忆下降的速率更快, 罹患老年性痴呆的风险更高, 但其情节记忆加工的脑机制尚不明确.前人研究提示, 主观记忆减退老年人在外在记忆行为尚未出现损伤的情况下, 其大脑情节记忆相关脑区的神经活动已经出现异常.探究主观记忆减退的记忆神经环路关键节点和路径的异常, 揭示神经环路在老年痴呆发生发展中的变化规律, 对深入理解老年痴呆的发病机制有重要的科学意义.同时, 主观记忆减退老年人作为特殊的记忆损伤群体, 对其神经环路的深入探究, 也必将为揭示人类记忆的神经机制做出独特的贡献.
中图分类号:
尹述飞, 李添, 朱心怡. (2019). 主观记忆减退老年人情节记忆的行为表现及其脑机制. 心理科学进展 , 27(1), 51-59.
YIN Shufei, LI Tian, ZHU Xinyi. (2019). Episodic memory performance and underlying brain mechanisms in elderly with subjective memory decline. Advances in Psychological Science, 27(1), 51-59.
1 |
韩璎, 左西年, 李会杰, 李淑宇, 卢洁, 夏明睿 , , et al. 王晓妮. (2015). 主观认知下降多模态脑影像研究进展. 医学研究杂志,44(6), 1-2.
doi: 10.11969/j.issn.1673-548X.2015.06.001 URL |
2 |
尹述飞, 朱心怡, 李娟 . (2016). 主观记忆减退老年人认知功能的可塑性(综述). 中国心理卫生杂志,30(8), 600-606.
doi: 10.3969/j.issn.1000-6729.2016.08.008 URL |
3 |
Amariglio R. E., Becker J. A., Carmasin J., Wadsworth L. P., Lorius N., Sullivan C ., et al. Rentz, D. M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50(12), 2880-2886.
doi: 10.1016/j.neuropsychologia.2012.08.011 URL pmid: 22940426 |
4 | Amariglio R. E., Mormino E. C., Pietras A. C., Marshall G. A., Vannini P., Johnson K. A ., et al. Rentz, D. M. (2015). Subjective cognitive concerns, amyloid-β, and neurodegeneration in clinically normal elderly. Neurology, 85(1), 56-62. |
5 |
Amariglio R. E., Townsend M. K., Grodstein F., Sperling R. A., & Rentz D. M . (2011). Specific subjective memory complaints in older persons may indicate poor cognitive function. Journal of the American Geriatrics Society, 59(9), 1612-1617.
doi: 10.1111/j.1532-5415.2011.03543.x URL pmid: 3315361 |
6 |
Bai F., Zhang Z. J., Watson D. R., Yu H., Shi Y. M., Yuan Y. G ., et al. Qian, Y. (2009). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological Psychiatry, 65(11), 951-958.
doi: 10.1016/j.biopsych.2008.10.017 URL pmid: 19028382 |
7 |
Boa S. S. N., Gill D. P., Owen A. M., Liu-ambrose T., Hachinski V., Shigematsu R., & Petrella R. J . (2018). Cognitive changes following multiple-modality exercise and mind-motor training in older adults with subjective cognitive complaints: The M4 study. Plos One, 13(4), e0196356.
doi: 10.1371/journal.pone.0196356 URL pmid: 29698440 |
8 |
Buckley R. F., Hanseeuw B., Schultz A. P., Vannini P., Aghjayan S. L., Properzi M. J ., et al. Amariglio, R. E. (2017). Region-specific association of subjective cognitive decline with tauopathy independent of global β-amyloid burden. Jama Neurology, 74(12), 1455-1463.
doi: 10.1001/jamaneurol.2017.2216 URL pmid: 28973551 |
9 |
Buckley R. F., Maruff P., Ames D., Bourgeat P., Martins R. N., Masters C. L ., et al. Study, A. (2016). Subjective memory decline predicts greater rates of clinical progression in preclinical Alzheimer's disease. Alzheimer’s & Dementia, 12(7), 796-804.
doi: 10.1016/j.jalz.2015.12.013 URL pmid: 26852195 |
10 | Burns A., & Iliffe S. (2009). Alzheimer's disease. British Medical Journal, 338(7692), 158. |
11 |
Carrasco P. M., Montenegro-Peña M., López-Higes R., Estrada E., Crespo D. P., & Rubio C. M ., et al. Azorín, D. G. (2017). Subjective memory complaints in healthy older adults: Fewer complaints associated with depression and perceived health, more complaints also associated with lower memory performance. Archives of Gerontology and Geriatrics, 70, 28-37.
doi: 10.1016/j.archger.2016.12.007 URL pmid: 28039781 |
12 |
Cohen-Mansfield J., Cohen R., Buettner L., Eyal N., Jakobovits H., Rebok G ., et al. Sternberg, S. (2015). Interventions for older persons reporting memory difficulties: A randomized controlled pilot study. International Journal of Geriatric Psychiatry, 30(5), 478-486.
doi: 10.1002/gps.4164 URL pmid: 25043482 |
13 |
Colijn M.A., &Grossberg G.T . (2015). Amyloid and tau biomarkers in subjective cognitive impairment. Journal of Alzheimer’s Disease, 47(1), 1-8.
doi: 10.3233/JAD-150180 URL |
14 |
Contreras J. A., Goñi J., Risacher S. L., Amico E., Yoder K., Dzemidzic M ., et al. Saykin, A. J. (2017). Cognitive complaints in older adults at risk for Alzheimer's disease are associated with altered resting-state networks. Alzheimers & Dementia: Diagnosis, Assessment & Disease Monitoring, 6, 40-49.
doi: 10.1016/j.jalz.2016.06.073 URL pmid: 5266473 |
15 |
Cosentino S., Devanand D., & Gurland B . (2018). A link between subjective perceptions of memory and physical function: Implications for subjective cognitive decline. Journal of Alzheimer’s Disease, 61(4), 1387-1398.
doi: 10.3233/JAD-170495 URL pmid: 29376850 |
16 |
Eichenbaum H., & Fortin N. (2003). Episodic memory and the hippocampus. Current Directions in Psychological Science, 12(2), 53-57.
doi: 10.1002/9780470479216.corpsy0316 URL |
17 |
Engvig A., Fjell A. M., Westlye L. T., Skaane N. V., Dale A. M., Holland D ., et al. Kristine, W. (2014). Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment. Journal of Alzheimer’s Disease, 41(3), 779-791.
doi: 10.3233/JAD-131889 URL pmid: 24685630 |
18 |
Erk S., Spottke A., Meisen A., Wagner M., Walter H., & Jessen F . (2011). Evidence of neuronal compensation during episodic memory in subjective memory impairment. Archives of General Psychiatry, 68(8), 845-852.
doi: 10.1001/archgenpsychiatry.2011.80 URL pmid: 21810648 |
19 |
Ferreira D., Falahati F., Linden C., Buckley R. F., Ellis K. A., Savage G ., et al. Westman, E. (2017). A 'disease severity index' to identify individuals with subjective memory decline who will progress to mild cognitive impairment or dementia. Scientific Reports, 7, 44368.
doi: 10.1038/srep44368 URL pmid: 5347012 |
20 |
Fletcher P. C., Shallice T., & Dolan R. J . (1998). The functional roles of prefrontal cortex in episodic memory. Brain, 121(7), 1239-1248.
doi: 10.1093/brain/121.7.1239 URL pmid: 9679776 |
21 |
Fonseca J. A. S., Ducksbury R., Rodda J., Whitfield T., Nagaraj C., Suresh K ., et al. Walker, Z. (2015). Factors that predict cognitive decline in patients with subjective cognitive impairment. International Psychogeriatrics, 27(10), 1671-1677.
doi: 10.1017/S1041610215000356 URL pmid: 25812703 |
22 |
Friston K. J., Frith C. D ., & Frackowiak, R. S. J. (1993). Time-dependent changes in effective connectivity measured with PET. Human Brain Mapping, 1(1), 69-79.
doi: 10.1002/hbm.460010108 URL |
23 |
Garcia-Ptacek S., Eriksdotter M., Jelic V., Porta-Etessam J., Kåreholt I., & Manzano Palomo S . (2016). Subjective cognitive impairment: Towards early identification of Alzheimer disease. Neurología (English Edition), 31(8), 562-571.
doi: 10.1016/j.nrleng.2013.02.011 URL pmid: 23601758 |
24 | Gauthier S., Reisberg B., Zaudig M., Petersen R. C., Ritchie K., Broich K ., et al. Winblad, B. (2006). Mild cognitive impairment. The Lancet, 367(9518), 1262-1270. |
25 |
Grady C. L., Bernstein L. J., Beig S., & Siegenthaler A. L . (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging, 17(1), 7-23.
doi: 10.1037//0882-7974.17.1.7 URL pmid: 11931288 |
26 |
Greg A., Holly B., Roderick M. C., Hester A. L., Fields J. A., Weiner M. F ., et al. Cullum, C. M. (2007). Reduced hippocampal functional connectivity in Alzheimer disease. Archives of Neurology, 64(10), 1482-1487.
doi: 10.1001/archneur.64.10.1482 URL pmid: 17923631 |
27 | Hafkemeijer A., Altmann-schneider I., Oleksik A. M., van de Wiel L., Middelkoop H. A. M ., & van Buchem, M. A., , et al. Rombouts, S. A. R. B. (2013). Increased functional connectivity and brain atrophy in elderly with subjective memory complaints. Brain Connectivity, 3(4), 353-362. |
28 |
Hampstead B. M., Khoshnoodi M., Yan W., Deshpande G., & Sathian K . (2016). Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults. NeuroImage, 124(Pt A), 997-1008.
doi: 10.1016/j.neuroimage.2015.10.002 URL pmid: 26458520 |
29 | Hashimoto M., Rockenstein E., Crews L., & Masliah E . (2003). Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Medicine, 4(1-2), 21-35. |
30 |
Hayes J. M., Tang L., Viviano R. P., van Rooden S., Ofen N., & Damoiseaux J. S . (2017). Subjective memory complaints are associated with brain activation supporting successful memory encoding. Neurobiology of Aging, 60(7), 71-80.
doi: 10.1016/j.jalz.2016.06.175 URL pmid: 28923533 |
31 | Hernández F., & Avila J. (2007). Tauopathies. Cellular and Molecular Life Sciences, 64(17), 2219-2233. |
32 |
Horn M. M., Kennedy K. M., & Rodrigue K. M . (2018). Association between subjective memory assessment and associative memory performance: Role of AD risk factors. Psychology and Aging, 33(1), 109-118.
doi: 10.1037/pag0000217 URL pmid: 29494182 |
33 |
Hu X., Harzem J., Huang B., Weber B., & Jessen F . (2016). Abnormal functional connectivity within default mode network in persons with subjective cognitive decline: Self-reflection of own memory deficits? Alzheimers & Dementia, 12(7), 39.
doi: 10.1016/j.jalz.2016.06.1469 URL |
34 |
Hueluer G., Hertzog C., Pearman A. M., & Gerstorf D . (2015). Correlates and moderators of change in subjective memory and memory performance: Findings from the health and retirement study. Gerontology, 61(3), 232-240.
doi: 10.1159/000369010 URL pmid: 25790970 |
35 |
Hülür G., Willis S. L., Hertzog C., Schaie K. W., & Gerstorf D . (2018). Is subjective memory specific for memory performance or general across cognitive domains? Findings from the Seattle longitudinal study. Psychology and Aging, 33(3), 448-460.
doi: 10.1037/pag0000243 URL pmid: 29756802 |
36 |
Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., & Chételat G ., et al. Wagner, M. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease. Alzheimers & Dementia, 10(6), 844-852.
doi: 10.1016/j.jalz.2014.01.001 URL pmid: 4317324 |
37 |
Jessen F., Feyen L., Freymann K., Tepest R., Maier W., & Heun R ., et al. Scheef, L. (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiology of Aging, 27(12), 1751-1756.
doi: 10.1016/j.neurobiolaging.2005.10.010 URL pmid: 16309795 |
38 |
Jessen F., Wiese B., Bachmann C., Eifflaender-Gorfer S., Haller F., Kölsch H ., et al. Rickel, H. (2010). Prediction of dementia by subjective memory impairment: Effects of severity and temporal association with cognitive impairment. Archives of General Psychiatry, 67(4), 414-422.
doi: 10.1001/archgenpsychiatry.2010.30 URL pmid: 20368517 |
39 |
Kielb S., Rogalski E., Weintraub S., & Rademaker A . (2017). Objective features of subjective cognitive decline in a United States national database. Alzheimer’s & Dementia, 13(12), 1337-1344.
doi: 10.1016/j.jalz.2017.04.008 URL pmid: 28586648 |
40 |
Koppara A., Wagner M., Lange C., Ernst A., Wiese B., & König H-H ., et al. Jessen, F. (2015). Cognitive performance before and after the onset of subjective cognitive decline in old age. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1(2), 194-205.
doi: 10.1016/j.dadm.2015.02.005 URL pmid: 27239504 |
41 |
Lam L. C. W., Lui V. W. C., Tam C. W. C ., & Chiu, H. F. K. (2010). Subjective memory complaints in Chinese subjects with mild cognitive impairment and early Alzheimer's disease. International Journal of Geriatric Psychiatry, 20(9), 876-882.
doi: 10.1002/gps.1370 URL pmid: 16116581 |
42 |
Lepage M., Ghaffar O., Nyberg L., & Tulving E . (2000). Prefrontal cortex and episodic memory retrieval mode. Proceedings of the National Academy of Sciences of the United States of America, 97(1), 506-511.
doi: 10.1073/pnas.97.1.506 URL pmid: 10618448 |
43 |
Meiberth D., Scheef L., Wolfsgruber S., Boecker H., Block W., Träber F ., et al. Jessen, F. (2015). Cortical thinning in individuals with subjective memory impairment. Journal of Alzheimer’s Disease, 45(1), 139-146.
doi: 10.3233/JAD-142322 URL pmid: 25471190 |
44 |
Mitchell K. J., Johnson M. K., Raye C. L., & D’Esposito M . (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10(1-2), 197-206.
doi: 10.1016/S0926-6410(00)00029-X URL pmid: 10978709 |
45 | Moscovitch M., Cabeza R., Winocur G., & Nadel L . (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67(1), 105-134. |
46 |
Naveh-Benjamin M. . (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology Learning Memory and Cognition, 26(5), 1170-1187.
doi: 10.1037//0278-7393.26.5.1170 URL pmid: 11009251 |
47 |
Old S.R., & Naveh-Benjamin M. (2008). Memory for people and their actions: Further evidence for an age-related associative deficit. Psychology and Aging, 23(2), 467-472.
doi: 10.1037/0882-7974.23.2.467 URL pmid: 18573021 |
48 |
Park S., Ryu S. H., Yoo Y., Yang J. J., Kwon H., & Youn J. H ., et al. (2018). Neural predictors of cognitive improvement by multi-strategic memory training based on metamemory in older adults with subjective memory complaints. Scientific Reports, 8(1), 1095.
doi: 10.1038/s41598-018-19390-2 URL pmid: 29348440 |
49 |
Perrotin A., La Joie R., de La Sayette V., Barré L., Mézenge F., Mutlu J ., et al. Chételat, G. (2017). Subjective cognitive decline in cognitively normal elders from the community or from a memory clinic: Differential affective and imaging correlates. Alzheimer’s & Dementia, 13(5), 550-560.
doi: 10.1016/j.jalz.2016.08.011 URL pmid: 27693187 |
50 |
Perrotin A., Mormino E. C., Madison C. M., Hayenga A. O., & Jagust W. J . (2012). Subjective cognition and amyloid deposition imaging: A pittsburgh compound b positron emission tomography study in normal elderly individuals. Archives of Neurology, 69(2), 223-229.
doi: 10.1001/archneurol.2011.666 URL pmid: 22332189 |
51 |
Pike K. E., Amina Z., Ben O., Sarah P., & Kinsella G. J . (2015). Reduced benefit of memory elaboration in older adults with subjective memory decline. Journal of Alzheimer’s Disease, 47(3), 705-713.
doi: 10.3233/JAD-150062 URL pmid: 26401705 |
52 |
Rabin L. A., Smart C. M., Crane P. K., Amariglio R. E., Berman L. M., & Boada M ., et al. Sikkes, S. A. M. (2015). Subjective cognitive decline in older adults: An overview of self-report measures used across 19 international research studies. Journal of Alzheimer’s Disease, 48(s1), 63-86.
doi: 10.3233/JAD-150154 URL pmid: 26402085 |
53 |
Rami L., Sala-llonch R., Solé-padullés C., Fortea J., Olives J., Lladó A ., et al. Molinuevo, J. L. (2012). Distinct functional activity of the precuneus and posterior cingulate cortex during encoding in the preclinical stage of Alzheimer's disease. Journal of Alzheimers Disease, 31(3), 517-526.
doi: 10.3233/JAD-2012-120223 |
54 |
Reisberg B., & Gauthier S. (2008). Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer's disease. International Psychogeriatrics, 20(1), 1-16.
doi: 10.1017/S1041610207006412 URL pmid: 18072981 |
55 |
Reisberg B., Shulman M. B., Torossian C., Leng L., & Zhu W . (2010). Outcome over seven years of healthy adults with and without subjective cognitive impairment. Alzheimer’s & Dementia, 6(1), 11-24.
doi: 10.1016/j.jalz.2009.10.002 URL pmid: 3873197 |
56 |
Rodda J. E., Dannhauser T. M., Cutinha D. J., Shergill S. S., & Walker Z . (2009). Subjective cognitive impairment: Increased prefrontal cortex activation compared to controls during an encoding task. International Journal of Geriatric Psychiatry, 24(8), 865-874.
doi: 10.1002/gps.2207 URL pmid: 19259973 |
57 |
Rönnlund M., Sundström A., Adolfsson R., & Nilsson L.-G . (2015). Subjective memory impairment in older adults predicts future dementia independent of baseline memory performance: Evidence from the Betula prospective cohort study. Alzheimer’s & Dementia, 11(11), 1385-1392.
doi: 10.1016/j.jalz.2014.11.006 URL pmid: 25667997 |
58 |
Rowe C. C., Ellis K. A., Rimajova M., Bourgeat P., Pike K. E., Jones G ., et al. Villemagne, V. L. (2010). Amyloid imaging results from the Australian imaging, biomarkers and lifestyle (AIBL) study of aging. Neurobiology of Aging, 31(8), 1275-1283.
doi: 10.1016/j.neurobiolaging.2010.04.007 |
59 |
Ryu S. Y., Lim E. Y., Na S., Shim Y. S., Cho J. H., Yoon B ., et al. Yang, D. W. (2017). Hippocampal and entorhinal structures in subjective memory impairment: A combined MRI volumetric and DTI study. International Psychogeriatrics, 29(5), 785-792.
doi: 10.1017/S1041610216002349 URL pmid: 28067183 |
60 |
Scheef L., Spottke A., Daerr M., Joe A., Striepens N., Kölsch H ., et al. Jessen, F. (2012). Glucose metabolism, gray matter structure, and memory decline in subjective memory impairment. Neurology, 79(13), 1332-1339.
doi: 10.1016/j.jalz.2012.05.689 URL pmid: 22914828 |
61 |
Seo E. H., Kim H., Choi K. Y., Lee K. H., & Choo I. H . (2017). Association of subjective memory complaint and depressive symptoms with objective cognitive functions in prodromal Alzheimer's disease including pre-mild cognitive impairment. Journal of Affective Disorders, 217, 24-28.
doi: 10.1016/j.jad.2017.03.062 URL pmid: 28380342 |
62 | Sherry D.F., &Schacter D.L . (1987). The evolution of multiple memory systems. Psychological Review, 94(4), 439-454. |
63 | Sierra-rio A., Balasa M., Olives J., Antonell A., Iranzo A., Castellví M ., et al. Molinuevo, J. L. (2015). Cerebrospinal fluid biomarkers predict clinical evolution in patients with subjective cognitive decline and mild cognitive impairment. Neurodegenerative Diseases, 16(1-2), 69-76. |
64 |
Simons J.S., &Spiers H.J . (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neuroscience, 4(8), 637-648.
doi: 10.1016/j.ejcts.2004.05.031 URL pmid: 12894239 |
65 |
Sluimer J. D., van der Flier, W. m., Karas G. B., Fox N. C., Scheltens P., & Barkhof F., & Vrenken H . (2008). Whole-brain atrophy rate and cognitive decline: Longitudinal MR study of memory clinic patients. Radiology, 248(2), 590-598.
doi: 10.1148/radiol.2482070938 URL pmid: 18574133 |
66 |
Smart C. M., Karr J. E., Areshenkoff C. N., Rabin L. A., Hudon C., Gates N ., et al. Wesselman, L. (2017). Non-pharmacologic interventions for older adults with subjective cognitive decline: Systematic review, meta- analysis, and preliminary recommendations. Neuropsychology Review, 27(3), 245-257.
doi: 10.1007/s11065-017-9342-8 URL pmid: 28271346 |
67 |
Snitz B. E., Lopez O. L., McDade E., Becker J. T., Cohen A. D., Price J. C ., et al. Klunk, W. E. (2015 a). Amyloid-β imaging in older adults presenting to a memory clinic with subjective cognitive decline: A pilot study. Journal of Alzheimer’s Disease, 48(1), 151-159.
doi: 10.3233/JAD-150113 URL pmid: 26402082 |
68 |
Snitz B. E., Weissfeld L. A., Cohen A. D., Lopez O. L., Nebes R. D., Aizenstein H. J ., et al. Klunk, W. E. (2015 b). Subjective cognitive complaints, personality and brain amyloid-beta in cognitively normal older adults. American Journal of Geriatric Psychiatry, 23(9), 985-993.
doi: 10.1016/j.jagp.2015.01.008 URL pmid: 25746485 |
69 |
Stewart R., Godin O., Crivello F., Maillard P., Mazoyer B., Tzourio C., & Dufouil C . (2011). Longitudinal neuroimaging correlates of subjective memory impairment: 4-year prospective community study. British Journal of Psychiatry, 198(3), 199-205.
doi: 10.1192/bjp.bp.110.078683 URL pmid: 21357878 |
70 |
Striepens N., Scheef L., Wind A., Popp J., Spottke A., Cooper-Mahkorn D ., et al. Jessen, F. (2010). Volume loss of the medial temporal lobe structures in subjective memory impairment. Dementia and Geriatric Cognitive Disorders, 29(1), 75-81.
doi: 10.1159/000264630 URL pmid: 20110703 |
71 |
Swinford C. G., Risacher S. L., Charil A., Schwarz A. J., & Saykin A. J . (2018). Memory concerns in the early Alzheimer's disease prodrome: Regional association with tau deposition. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 322-331.
doi: 10.1016/j.dadm.2018.03.001 URL pmid: 29780876 |
72 | Tepest R., Wang L., Csernansky J. G., Neubert P., Heun R., Scheef L., & Jessen F . (2008). Hippocampal surface analysis in subjective memory impairment, mild cognitive impairment and Alzheimer's dementia. Dementia and Geriatric Cognitive Disorders, 26(4), 323-329. |
73 | Tulving E. . (1995). Organization of memory: Quo vadis? Journal of Cognitive Neuroscience, 8(3), 839-853. |
74 |
Umeda S., Akine Y., Kato M., Muramatsu T., Mimura M., Kandatsu S ., et al. Suhara, T. (2005). Functional network in the prefrontal cortex during episodic memory retrieval. NeuroImage, 26(3), 932-940.
doi: 10.1016/j.neuroimage.2005.03.004 URL pmid: 15955503 |
75 |
Vannini P., Hanseeuw B., Munro C. E., Amariglio R. E., Marshall G. A., Rentz D. M ., et al. Sperling, R. A. (2017). Hippocampal hypometabolism in older adults with memory complaints and increased amyloid burden. Neurology, 88(18), 1759-1767.
doi: 10.1212/WNL.0000000000003889 URL pmid: 28381517 |
76 |
Wang L., Zang Y. F., He Y., Liang M., Zhang X. Q., Tian L. X ., et al. Li, K. C. (2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. NeuroImage, 31(2), 496-504.
doi: 10.1016/j.neuroimage.2005.12.033 URL pmid: 16473024 |
[1] | 杜宇飞, 欧阳辉月, 余林. 隔代抚养与老年人抑郁水平:一项基于东西方文化背景的元分析[J]. 心理科学进展, 2022, 30(9): 1981-1992. |
[2] | 徐潞杰, 张镇. 老年人的消极交往与心理健康[J]. 心理科学进展, 2021, 29(8): 1472-1483. |
[3] | 陈浩彬, 汪凤炎. 老年人的智慧[J]. 心理科学进展, 2021, 29(5): 885-893. |
[4] | 程羽慧, 袁祥勇, 蒋毅. 社会互动加工的认知特性及脑机制——第三人称的视角[J]. 心理科学进展, 2021, 29(3): 472-480. |
[5] | 叶静, 张戌凡. 老年人心理韧性与幸福感的关系:一项元分析[J]. 心理科学进展, 2021, 29(2): 202-217. |
[6] | 杨伟平, 李胜楠, 李子默, 郭敖, 任艳娜. 老年人视听觉整合的影响因素及其神经机制[J]. 心理科学进展, 2020, 28(5): 790-799. |
[7] | 卫垌圻, 曹慧, 毕鸿燕, 杨炀. 发展性阅读障碍书写加工缺陷及其神经机制[J]. 心理科学进展, 2020, 28(1): 75-84. |
[8] | 何丽萍, 申寻兵, 陈振彩, 卓芮芮, 李科定, 刘振南. 老年人的微表情识别与欺骗检测[J]. 心理科学进展, 2019, 27(suppl.): 155-155. |
[9] | 刘迪迪, 王美萍, 陈翩, 张文新. COMT基因Val158Met多态性与抑郁的关系[J]. 心理科学进展, 2018, 26(8): 1429-1437. |
[10] | 孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464. |
[11] | 刘立敏, 田相娟, 张文新, 王美萍. MAOA基因与环境对反社会行为的交互作用 及其可能的脑机制[J]. 心理科学进展, 2017, 25(6): 970-979. |
[12] | 钱浩悦;朱敏;高湘萍. 老年人面孔构形加工特点[J]. 心理科学进展, 2017, 25(2): 230-236. |
[13] | 岳童;黄希庭. 共情特质的神经生物学基础[J]. 心理科学进展, 2016, 24(9): 1368-1376. |
[14] | 韩笑; 石岱青; 周晓文; 杨颖华; 朱祖德. 认知训练对健康老年人认知能力的影响[J]. 心理科学进展, 2016, 24(6): 909-922. |
[15] | 王惠芳;蒋京川. 老年人的框架效应[J]. 心理科学进展, 2016, 24(4): 612-621. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||