心理科学进展 ›› 2018, Vol. 26 ›› Issue (11): 1976-1991.doi: 10.3724/SP.J.1042.2018.01976
收稿日期:
2018-01-17
出版日期:
2018-11-15
发布日期:
2018-09-26
通讯作者:
宣宾
E-mail:xuanbin@mail.ahnu.edu.cn
基金资助:
Received:
2018-01-17
Online:
2018-11-15
Published:
2018-09-26
Contact:
XUAN Bin
E-mail:xuanbin@mail.ahnu.edu.cn
摘要:
抑制控制是执行功能的重要组成部分之一, 研究表明抑制控制与额叶区域的活动有关。经颅直流电刺激(Transcranial Direct Current Stimulation, tDCS)是一种非侵入性的脑刺激技术, 可以调节脑区的激活程度。研究表明tDCS刺激额叶的部分区域可以有效干预参与者的抑制控制水平, 而这一干预作用会受到刺激位置、刺激类型以及实验任务等条件变化的影响。目前tDCS已应用于不同人群的抑制控制研究, 并能与其他研究技术较好的结合。
中图分类号:
周晶, 宣宾. (2018). 额叶区域的经颅直流电刺激对抑制控制的影响. 心理科学进展 , 26(11), 1976-1991.
ZHOU Jing, XUAN Bin. (2018). Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control. Advances in Psychological Science, 26(11), 1976-1991.
[1] | 郭恒, 何莉, 周仁来 . ( 2016). 经颅直流电刺激提高记忆功能. 心理科学进展, 24( 3), 356-366 |
[2] | 彭苏浩, 汤倩, 宣宾 . ( 2014). 基因-大脑-行为框架下的抑制控制与老化. 心理科学进展, 22( 8), 1236-1245 |
[3] | 吴慧中, 王明怡 . ( 2015). 抑制控制内部结构间的关联——基于认知神经学的视角. 中国临床心理学杂志, 3( 6), 991-995 |
[4] |
Agam, Y., Joseph, R. M., Barton, J. J. S., & Manoach, D. S. ( 2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52( 1), 336-347
doi: 10.1016/j.neuroimage.2010.04.010 URL |
[5] | Amatachaya, A., Auvichayapat, N., Patjanasoontorn, N., Suphakunpinyo, C., Ngernyam, N., Aree-uea, B., ... Auvichayapat, P. ( 2014). Effect of anodal transcranial direct current stimulation on autism: A randomized double-blind crossover trial. Behavioural Neurology, 2014( 2), 173073 |
[6] | Amatachaya, A., Jensen, M. P., Patjanasoontorn, N., Auvichayapat, N., Suphakunpinyo, C., Janjarasjitt, S., ... Auvichayapat, P. ( 2015). The short-term effects of transcranial direct current stimulation on electroencephalography in children with autism: A randomized crossover controlled trial. Behavioural Neurology, 2015, 928631 |
[7] | Antal, A., Bikson, M., Datta, A., Lafon, B., Dechent, P., Parra, L. C., & Paulus, W. ( 2014). Imaging artifacts induced by electrical stimulation during conventional fMRI of the brain. NeuroImage, 85 Pt 3, 1040-1047 |
[8] |
Aron, A.R. ( 2007). The neural basis of inhibition in cognitive control. The Neuroscientist, 13( 3), 214-228
doi: 10.1177/1073858407299288 URL |
[9] |
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. ( 2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. Journal of Neuroscience, 27( 14), 3743-3752
doi: 10.1523/JNEUROSCI.0519-07.2007 URL |
[10] |
Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., & Stuphorn, V. ( 2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27( 44), 11860-11864
doi: 10.1523/JNEUROSCI.3644-07.2007 URL |
[11] |
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. ( 2003). Erratum: Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6, 115-116
doi: 10.1038/nn1003 URL |
[12] |
Aron, A.R., & Poldrack, R.A . ( 2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. Journal of Neuroscience, 26( 9), 2424-2433
doi: 10.1523/JNEUROSCI.4682-05.2006 URL |
[13] |
Aron, A. R., Robbins, T. W., & Poldrack, R. A. ( 2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8( 4), 170-177
doi: 10.1016/j.tics.2004.02.010 URL |
[14] | Asahi, S., Okamoto, Y., Okada, G., Yamawaki, S., & Yokota, N. ( 2004). Negative correlation between right prefrontal activity during response inhibition and impulsiveness: A fMRI study. European Archives of Psychiatry and Clinical Neuroscience, 254( 4), 245-251 |
[15] |
Bandeira, I. D., Guimaraes, R. S. Q., Jagersbacher, J. G., Barretto, T. L., de Jesus-Silva, J. R., Santos, S. N., … Lucena, R. ( 2016). Transcranial direct current stimulation in children and adolescents with attention-deficit/ hyperactivity disorder (ADHD): A pilot study. Journal of Child Neurology, 31( 7), 918-924
doi: 10.1177/0883073816630083 URL |
[16] |
Bari, A., & Robbins, T.W. ( 2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79
doi: 10.1016/j.pneurobio.2013.06.005 URL |
[17] |
Barkley, R.A. ( 1997). Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychological Bulletin, 121( 1), 65-94
doi: 10.1037/0033-2909.121.1.65 URL |
[18] |
Bechara, A.( 2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8( 11), 1458-1463
doi: 10.1038/nn1584 URL |
[19] |
Beeli, G., Casutt, G., Baumgartner, T., & Jäncke, L. ( 2008). Modulating presence and impulsiveness by external stimulation of the brain. Behavioral and Brain Functions, 4( 33), 1-7
doi: 10.1186/1744-9081-4-1 URL |
[20] | Breitling, C., Zaehle, T., Dannhauer, M., Bonath, B., Tegelbeckers, J., Flechtner, H. H., & Krauel, K. ( 2016). Improving interference control in ADHD patients with transcranial direct current stimulation (tDCS). Frontiers in Cellular Neuroscience, 10, 72 |
[21] |
Brunoni, A. R., Ferrucci, R., Fregni, F., Boggio, P. S., & Priori, A.( 2012). Transcranial direct current stimulation for the treatment of major depressive disorder: A summary of preclinical, clinical and translational findings. Progress in Neuro-psychopharmacology and Biological Psychiatry, 39( 1), 9-16
doi: 10.1097/01.PSYPHR.0000441028.74299.63 URL |
[22] |
Brunoni, A. R., Moffa, A. H., Fregni, F., Palm, U., Padberg, F., Blumberger, D. M., ... Loo, C. K. ( 2016). Transcranial direct current stimulation for acute major depressive episodes: Meta-analysis of individual patient data. British Journal of Psychiatry the Journal of Mental Science, 208( 6), 522-531
doi: 10.1192/bjp.bp.115.164715 URL |
[23] |
Brunyé, T. T., Cantelon, J., Holmes, A., Taylor, H. A., & Mahoney, C. R. ( 2014). Mitigating cutaneous sensation differences during tDCS: Comparing sham versus low intensity control conditions. Brain Stimulation, 7( 6), 832-835
doi: 10.1016/j.brs.2014.09.015 URL |
[24] |
Bush, G., & Shin, L.M. ( 2006). The Multi-Source Interference Task: An fMRI task that reliably activates the cingulo-frontal-parietal cognitive/attention network. Nature Protocols, 1( 1), 308-313
doi: 10.1038/nprot.2006.48 URL |
[25] |
Cai, Y., Li, S., Liu, J., Li, D., Feng, Z., Wang, Q., ... Xue, G. ( 2016). The role of the frontal and parietal cortex in proactive and reactive inhibitory control: A transcranial direct current stimulation study. Journal of Cognitive Neuroscience, 28( 1), 177-186
doi: 10.1162/jocn_a_00888 URL |
[26] |
Campanella, S., Schroder, E., Monnart, A., Vanderhasselt, M. A., Duprat, R., Rabijns, M., ... Rabijns, C. ( 2017). Transcranial direct current stimulation over the right frontal inferior cortex decreases neural activity needed to achieve inhibition: A double-blind ERP study in a male population. Clinical EEG and Neuroscience, 48( 3), 176-188
doi: 10.1177/1550059416645977 URL |
[27] |
Castro-Meneses, L. J., Johnson, B. W., & Sowman, P. F. ( 2016). Vocal response inhibition is enhanced by anodal tDCS over the right prefrontal cortex. Experimental Brain Research, 234( 1), 185-195
doi: 10.1007/s00221-015-4452-0 URL |
[28] | Chambers, C. D., Garavan, H., & Bellgrove, M. A. ( 2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33( 5), 631-646 |
[29] |
Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y., & Konishi, S. ( 2009). Preparation to inhibit a response complements response inhibition during performance of a stop-signal task. The Journal of Neuroscience, 29( 50), 15870-15877
doi: 10.1523/JNEUROSCI.3645-09.2009 URL |
[30] |
Christ, S. E., Holt, D. D., White, D. A., & Green, L. ( 2007). Inhibitory control in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 37( 6), 1155-1165
doi: 10.1007/s10803-006-0259-y URL pmid: 17066307 |
[31] |
Cosmo, C., Baptista, A. F., de Araújo, A. N., do Rosário, R. S., Miranda, J. G. V., Montoya, P., ... de Sena, E. P.( 2015). A randomized, double-blind, sham-controlled trial of transcranial direct current stimulation in attention- deficit/hyperactivity disorder. PloS One, 10( 8), e0135371
doi: 10.1371/journal.pone.0135371 URL |
[32] |
Costanzo, F., Menghini, D., Casula, L., Amendola, A., Mazzone, L., Valeri, G., ... Vicari, S. ( 2015). Transcranial direct current stimulation treatment in an adolescent with autism and drug-resistant catatonia. Brain Stimulation, 8( 6), 1233-1235
doi: 10.1016/j.brs.2015.08.009 URL |
[33] |
Cubillo, A., Smith, A. B., Barrett, N., Giampietro, V., Brammer, M. J., Simmons, A., & Rubia, K. ( 2014). Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cerebral Cortex, 24( 1), 174-185
doi: 10.1093/cercor/bhs296 URL |
[34] |
Cunillera, T., Brignani, D., Cucurell, D., Fuentemilla, L., & Miniussi, C. ( 2016). The right inferior frontal cortex in response inhibition: A tDCS-ERP co-registration study. NeuroImage, 140, 66-75
doi: 10.1016/j.neuroimage.2015.11.044 URL pmid: 26619787 |
[35] |
Cunillera, T., Fuentemilla, L., Brignani, D., Cucurell, D., & Miniussi, C. ( 2014). A simultaneous modulation of reactive and proactive inhibition processes by anodal tDCS on the right inferior frontal cortex. PloS One, 9( 11), e113537
doi: 10.1371/journal.pone.0113537 URL |
[36] |
Dambacher, F., Schuhmann, T., Lobbestael, J., Arntz, A., Brugman, S., & Sack, A. T. ( 2015). No effects of bilateral tDCS over inferior frontal gyrus on response inhibition and aggression. PloS One, 10( 7), e0132170
doi: 10.1371/journal.pone.0132170 URL |
[37] |
Dimoska, A., Johnstone, S. J., Barry, R. J., & Clarke, A. R. ( 2003). Inhibitory motor control in children with attention- deficit/hyperactivity disorder: Event-related potentials in the stop-signal paradigm. Biological Psychiatry, 54( 12), 1345-1354
doi: 10.1016/S0006-3223(03)00703-0 URL |
[38] |
Ditye, T., Jacobson, L., Walsh, V., & Lavidor, M. ( 2012). Modulating behavioral inhibition by tDCS combined with cognitive training. Experimental brain research, 219( 3), 363-368
doi: 10.1007/s00221-012-3098-4 URL pmid: 22532165 |
[39] |
Donkers, F. C.L., & van Boxtel, G. J. M. ( 2004). The N2 in go/no-go tasks reflects conflict monitoring not response inhibition. Brain and Cognition, 56( 2), 165-176
doi: 10.1016/j.bandc.2004.04.005 URL pmid: 15518933 |
[40] |
Eapen, V., Baker, R., Walter, A., Raghupathy, V., Wehrman, J. J., & Sowman, P. F. ( 2017). The role of transcranial direct current Stimulation (tDCS) in Tourette syndrome: A review and preliminary findings. Brain Sciences, 7( 12), 161
doi: 10.3390/brainsci7120161 URL |
[41] |
Falkenstein, M., Hoormann, J., & Hohnsbein, J. ( 2002). Inhibition-related ERP components: Variation with modality, age, and time-on-task. Journal of Psychophysiology, 16( 3), 167-175
doi: 10.1027//0269-8803.16.3.167 URL |
[42] |
Floden, D., & Stuss, D.T. ( 2006). Inhibitory control is slowed in patients with right superior medial frontal damage. Journal of Cognitive Neuroscience, 18( 11), 1843-1849
doi: 10.1162/jocn.2006.18.11.1843 URL |
[43] |
Friese, M., Binder, J., Luechinger, R., Boesiger, P., & Rasch, B. ( 2013). Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation. PloS One, 8( 4), e60385
doi: 10.1371/journal.pone.0060385 URL |
[44] |
Ganos, C., Kuhn, S., Kahl, U., Schunke, O., Feldheim, J., Gerloff, C., ... Münchau, A. ( 2014). Action inhibition in Tourette syndrome. Movement Disorders, 29( 12), 1532-1538
doi: 10.1002/mds.25944 URL pmid: 24995958 |
[45] | Geusens, B., & Swinnen, N.( 2014. The effect of tDCS on inhibitory control in healthy older adults (Unpublished Master theses). Universiteit Hasselt Retrieved June 12, 2008, from |
[46] |
Greenhouse, I., & Wessel, J.R. ( 2013). EEG signatures associated with stopping are sensitive to preparation. Psychophysiology, 50( 9), 900-908
doi: 10.1111/psyp.12070 URL pmid: 23763667 |
[47] |
Hameed, M. Q., Dhamne, S. C., Gersner, R., Kaye, H. L., Oberman, L. M., Pascual-Leone, A., & Rotenberg, A. ( 2017). Transcranial magnetic and direct current stimulation in children. Current Neurology and Neuroscience Reports, 17( 2), 11-25
doi: 10.1007/s11910-017-0719-0 URL |
[48] |
Herrmann, M. J., Horst, A. K., Löble, S., Moll, M. T., Katzorke, A., & Polak, T. ( 2017). Relevance of dorsolateral and frontotemporal cortex on the phonemic verbal fluency - A fNIRS-study. Neuroscience, 367, 169-177
doi: 10.1016/j.neuroscience.2017.10.028 URL |
[49] |
Hogeveen, J., Grafman, J., Aboseria, M., David, A., Bikson, M., & Hauner, K. K. ( 2016). Effects of high-definition and conventional tDCS on response inhibition. Brain Stimulation, 9( 5), 720-729
doi: 10.1016/j.brs.2016.04.015 URL |
[50] |
Hsu, T. Y., Tseng, L. Y., Yu, J. X., Kuo, W. J., Hung, D. L., Tzeng, O. J., ... Juan, C. H. ( 2011). Modulating inhibitory control with direct current stimulation of the superior medial frontal cortex. NeuroImage, 56( 4), 2249-2257
doi: 10.1016/j.neuroimage.2011.03.059 URL |
[51] |
Huster, R. J., Enriquez-Geppert, S., Lavallee, C. F., Falkenstein, M., & Herrmann, C. S. ( 2013). Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. International Journal of Psychophysiology, 87( 3), 217-233
doi: 10.1016/j.ijpsycho.2012.08.001 URL |
[52] |
Jacobson, L., Ezra, A., Berger, U., & Lavidor, M. ( 2012). Modulating oscillatory brain activity correlates of behavioral inhibition using transcranial direct current stimulation. Clinical Neurophysiology, 123( 5), 979-984
doi: 10.1016/j.clinph.2011.09.016 URL |
[53] |
Jacobson, L., Javitt, D. C., & Lavidor, M. ( 2011). Activation of inhibition: Diminishing impulsive behavior by direct current stimulation over the inferior frontal gyrus. Journal of Cognitive Neuroscience, 23( 11), 3380-3387
doi: 10.1162/jocn_a_00020 URL |
[54] |
Jones, K. T., Gozenman, F., & Berryhill, M. E. ( 2015). The strategy and motivational influences on the beneficial effect of neurostimulation: A tDCS and fNIRS study. NeuroImage, 105, 238-247
doi: 10.1016/j.neuroimage.2014.11.012 URL |
[55] |
Juan, C.H., & Muggleton, N.G . ( 2012). Brain stimulation and inhibitory control. Brain Stimulation, 5( 2), 63-69
doi: 10.1016/j.brs.2012.03.012 URL |
[56] |
Kalu, U. G., Sexton, C. E., Loo, C. K., & Ebmeier, K. P. ( 2012). Transcranial direct current stimulation in the treatment of major depression: A meta-analysis. Psychological Medicine, 42( 9), 1791-1800
doi: 10.1017/S0033291711003059 URL |
[57] | Karuza, E. A., Balewski, Z. Z., Hamilton, R. H., Medaglia, J. D., Tardiff, N., & Thompson-Schill, S. L. ( 2016). Mapping the parameter space of tDCS and cognitive control via manipulation of current polarity and intensity. Frontiers in Human Neuroscience, 10, 665 |
[58] |
Knoch, D., Pascual-Leone, A., Meyer, K., Treyer, V., & Fehr, E. ( 2006). Diminishing reciprocal fairness by disrupting the right prefrontal cortex. Science, 314( 5800), 829-832
doi: 10.1126/science.1129156 URL pmid: 17023614 |
[59] | Kwon, Y.H., & Kwon, J.W . ( 2013a). Is transcranial direct current stimulation a potential method for improving response inhibition? Neural Regenration Research, 8( 11), 1048-1054 |
[60] | Kwon, Y.H., & Kwon, J.W . ( 2013b). Response inhibition induced in the stop-signal task by transcranial direct current stimulation of the pre-supplementary motor area and primary sensoriomotor cortex. Journal of Physical Therapy Science 25( 9), 1083-1086 |
[61] |
van de Laar, M. C.,van den Wildenberg, W. P. M.,van Boxtel, G. J. M.,Huizenga, H. M., & van der Molen, M. W。( 2012). Lifespan changes in motor activation and inhibition during choice reactions: A Laplacian ERP study. Biological Psychology, 89( 2), 323-334
doi: 10.1016/j.biopsycho.2011.11.005 URL |
[62] |
Langenecker, S. A., Bieliauskas, L. A., Rapport, L. J., Zubieta, J. K., Wilde, E. A., & Berent, S. ( 2005). Face emotion perception and executive functioning deficits in depression. Journal of Clinical and Experimental Neuropsychology, 27( 3), 320-333
doi: 10.1080/13803390490490515720 URL |
[63] |
Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T., ... Zubieta, J. K. ( 2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biological Psychiatry, 62( 11), 1272-1280
doi: 10.1016/j.biopsych.2007.02.019 URL |
[64] |
Lansbergen, M. M., Schutter, D. J. L. G., & Kenemans, J. L. ( 2007). Subjective impulsivity and baseline EEG in relation to stopping performance. Brain Research, 1148( 1), 161-169
doi: 10.1016/j.brainres.2007.02.034 URL pmid: 17362884 |
[65] |
Lapenta, O. M., Sierve, K. D., de Macedo, E. C., Fregni, F., & Boggio, P. S. ( 2014). Transcranial direct current stimulation modulates ERP-indexed inhibitory control and reduces food consumption. Appetite, 83, 42-48
doi: 10.1016/j.appet.2014.08.005 URL |
[66] |
Leite, J., Gonçalves, O. F., Pereira, P., Khadka, N., Bikson, M., Fregni, F., & Carvalho, S. ( 2018). The differential effects of unihemispheric and bihemispheric tDCS over the inferior frontal gyrus on proactive control. Neuroscience Research, 130, 39-46
doi: 10.1016/j.neures.2017.08.005 URL |
[67] |
Li, C. S. R., Huang, C., Constable, R. T., & Sinha, R. ( 2006). Imaging response inhibition in a stop-signal task: Neural correlates independent of signal monitoring and post-response processing. Journal of Neuroscience, 26( 1), 186-192
doi: 10.1523/JNEUROSCI.3741-05.2006 URL |
[68] |
Li, C. S. R., Huang, C., Yan, P., Paliwal, P., Constable, R. T., & Sinha, R. ( 2008). Neural correlates of post-error slowing during a stop signal task: A functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 20( 6), 1021-1029
doi: 10.1162/jocn.2008.20071 URL |
[69] |
Liang, W. K., Lo, M. T., Yang, A. C., Peng, C. K., Cheng, S. K., Tseng, P., & Juan, C.H. ( 2014). Revealing the brain's adaptability and the transcranial direct current stimulation facilitating effect in inhibitory control by multiscale entropy. NeuroImage, 90, 218-234
doi: 10.1016/j.neuroimage.2013.12.048 URL |
[70] |
Loftus, A. M., Yalcin, O., Baughman, F. D., Vanman, E. J., & Hagger, M. S. ( 2015). The impact of transcranial direct current stimulation on inhibitory control in young adults. Brain and Behavior, 5( 5), e00332
doi: 10.1002/brb3.332 URL pmid: 4389055 |
[71] | Logan, G.D., & Burkell, J.( 1986). Dependence and independence in responding to double stimulation: A comparison of stop, change, and dual-task paradigms. Journal of Experimental Psychology: Human Perception and Performance, 12( 4), 549-563 |
[72] |
Logan, G. D., Schachar, R. J., & Tannock, R. ( 1997). Impulsivity and inhibitory control. Psychological Science, 8( 1), 60-64
doi: 10.1111/j.1467-9280.1997.tb00545.x URL |
[73] |
MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. ( 2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288( 5472), 1835-1838
doi: 10.1126/science.288.5472.1835 URL |
[74] |
Mannuzza, S., Klein, R. G., & Moulton, J. L. ( 2003). Persistence of Attention-Deficit/Hyperactivity Disorder into adulthood: What have we learned from the prospective follow-up studies? Journal of Attention Disorders, 7( 2), 93-100
doi: 10.1177/108705470300700203 URL |
[75] |
Mayberg, H.S. ( 2007). Defining the neural circuitry of depression: Toward a new nosology with therapeutic implications. Biological Psychiatry, 61( 6), 729-730
doi: 10.1016/j.biopsych.2007.01.013 URL |
[76] |
Mcauley, T., Yap, M., Christ, S. E., & White, D. A. ( 2006). Revisiting inhibitory control across the life span: insights from the ex-Gaussian distribution. Developmental Neuropsychology, 29( 3), 447-458
doi: 10.1207/s15326942dn2903_4 URL |
[77] | McKendrick, R., Parasuraman, R., & Ayaz, H. ( 2015). Wearable functional near infrared spectroscopy (fNIRS) and transcranial direct current stimulation (tDCS): Expanding vistas for neurocognitive augmentation. Frontiers in Systems Neuroscience, 9, 27 |
[78] | Meinzer, M., Lindenberg, R., Darkow, R., Ulm, L., Copland, D., & Flöel, A. ( 2014). Transcranial direct current stimulation and simultaneous functional magnetic resonance imaging. Journal of Visualized Experiments,( 86), e51730 |
[79] |
Merzagora, A. C., Foffani, G., Panyavin, I., Mordillo-Mateos, L., Aguilar, J., Onaral, B., & Oliviero, O. ( 2010). Prefrontal hemodynamic changes produced by anodal direct current stimulation. NeuroImage, 49( 3), 2304-2310
doi: 10.1016/j.neuroimage.2009.10.044 URL |
[80] |
Miniussi, C., Brignani, D., & Pellicciari, M. C. ( 2012). Combining transcranial electrical stimulation with electroencephalography: A multimodal approach. Clinical EEG and Neuroscience, 43( 3), 184-191
doi: 10.1177/1550059412444976 URL |
[81] |
Morand-Beaulieu, S., Grot, S., Lavoie, J., Leclerc, J. B., Luck, D., & Lavoie, M. E. ( 2017). The puzzling question of inhibitory control in Tourette syndrome: A meta-analysis. Neuroscience & Biobehavioral Reviews, 80, 240-262
doi: 10.1016/j.neubiorev.2017.05.006 URL pmid: 28502600 |
[82] |
Mullane, J. C., Corkum, P. V., Klein, R. M., & Mclaughlin, E. ( 2009). Interference control in children with and without ADHD: A systematic review of Flanker and Simon task performance. Child Neuropsychology, 15( 4), 321-342
doi: 10.1080/09297040802348028 URL |
[83] |
Muszkat, D., Polanczyk, G. V., Dias, T. G., & Brunoni, A. R. ( 2016). Transcranial direct current stimulation in child and adolescent psychiatry. Journal of Child and Adolescent Psychopharmacology, 26( 7), 590-597
doi: 10.1089/cap.2015.0172 URL |
[84] |
Nachev, P., Wydell, H., O’Neill, K., Husain, M., & Kennard, C. ( 2007). The role of the pre-supplementary motor area in the control of action. NeuroImage, 36( Suppl. 2), T155-T163
doi: 10.1016/j.neuroimage.2007.03.034 URL pmid: 2648723 |
[1] | 郭志华, 卢宏亮, 黄鹏, 朱霞. 经颅直流电刺激对健康人群反应抑制的影响[J]. 心理科学进展, 2022, 30(9): 2034-2052. |
[2] | 王榕, 陈小异, 杜雪, 蒋军. 经皮迷走神经刺激对抑制控制的调节机制[J]. 心理科学进展, 2022, 30(10): 2269-2277. |
[3] | 陈钰, 莫李澄, 毕蓉, 张丹丹. 新生儿语音感知的神经基础:元分析[J]. 心理科学进展, 2020, 28(8): 1273-1281. |
[4] | 王协顺, 苏彦捷. 从动作模仿到社会认知:自我-他人控制的作用[J]. 心理科学进展, 2019, 27(4): 636-645. |
[5] | 王劭睿, 陈红. 为何越减越肥?——限制性饮食者过度进食的心理机制及影响因素[J]. 心理科学进展, 2019, 27(2): 322-328. |
[6] | 魏华, 周仁来. 焦虑个体抑制控制缺陷的研究现状和争议:基于注意控制理论视角[J]. 心理科学进展, 2019, 27(11): 1853-1862. |
[7] | 苏波波, 郑美红. 物质相关线索对成瘾者反应抑制的影响[J]. 心理科学进展, 2019, 27(11): 1863-1874. |
[8] | 孙岩, 房林, 王亭予, 崔丽. 自闭症谱系障碍者抑制控制的影响因素及神经机制[J]. 心理科学进展, 2018, 26(8): 1450-1464. |
[9] | 成梅, 杨燕, 尹华站. 经颅直流电刺激在注意缺陷多动障碍治疗中的应用[J]. 心理科学进展, 2018, 26(4): 657-666. |
[10] | Qing He, Bo-Rong Lin, Chang-Bing Huang. Two, but not one, sessions’ anodal tDCS improved contrast sensitivity[J]. 心理科学进展, 2017, 25(suppl.): 85-85. |
[11] | 常欣, 白鹤, 王沛. 双语者语言切换代价的影响因素[J]. 心理科学进展, 2017, 25(9): 1469-1478. |
[12] | 邓之君, 吴慧中, 陈英和. 数字空间联结的工作记忆机制[J]. 心理科学进展, 2017, 25(9): 1492-1502. |
[13] | 闫丁;汪婷;王程瑶;焦璨. 饮酒对反应抑制的影响及其神经机制[J]. 心理科学进展, 2017, 25(4): 586-598. |
[14] | 陈杰, 刘雷, 王蓉, 沈海洲. 音乐训练对执行功能的影响[J]. 心理科学进展, 2017, 25(11): 1854-1864. |
[15] | 杨 玲, 马雪, 曹华, 苏波波, 徐景, 蔡雨彤. 冰毒使用者抑制控制的损伤、可逆性及干预策略[J]. 心理科学进展, 2017, 25(10): 1769-1779. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||