心理科学进展 ›› 2018, Vol. 26 ›› Issue (11): 1992-2002.doi: 10.3724/SP.J.1042.2018.01992
收稿日期:
2017-12-04
出版日期:
2018-11-15
发布日期:
2018-09-26
通讯作者:
郭建友
E-mail:guojy@psych.ac.cn
基金资助:
DENG Xiaofei1,2, GUO Jianyou1()
Received:
2017-12-04
Online:
2018-11-15
Published:
2018-09-26
Contact:
GUO Jianyou
E-mail:guojy@psych.ac.cn
摘要:
精神分裂症是一种多发于青壮年的重性精神病, 其原因尚不明确。经典的多巴胺缺陷理论假说在某些方面欠缺解释力; 与此同时, 关于Parvalbumin阳性的中间神经元(后简称PV+神经元)缺陷在精神分裂症病理机制中的作用逐渐明晰, 并引起了越来越多的关注。PV+神经元在绝大部分脑区中是一种快速放电的抑制性神经元, 参与了突触可塑性的调节, 兴奋/抑制平衡的维持和神经发生等。而在精神分裂症中, PV+神经元的异常在患者和动物研究中都被普遍证实, 并发现与 NMDA受体缺陷、gamma波异常和氧化应激存在某些关联。
中图分类号:
邓潇斐, 郭建友. (2018). Parvalbumin阳性中间神经元缺陷在精神分裂症病理机制中的作用. 心理科学进展 , 26(11), 1992-2002.
DENG Xiaofei, GUO Jianyou. (2018). Roles of impaired parvalbumin positive interneurons in schizophrenic pathology. Advances in Psychological Science, 26(11), 1992-2002.
[1] |
Abekawa, T., Ito, K., Nakagawa, S., & Koyama, T. ( 2007). Prenatal exposure to an NMDA receptor antagonist, MK-801 reduces density of parvalbumin-immunoreactive GABAergic neurons in the medial prefrontal cortex and enhances phencyclidine-induced hyperlocomotion but not behavioral sensitization to methamphetamine in postpubertal rats. Psychopharmacology, 192( 3), 303-316.
doi: 10.1007/s00213-007-0729-8 URL |
[2] |
Abi-Dargham, A., Laruelle, M., Aghajanian, G. K., Charney, D., & Krystal, J. ( 1997). The role of serotonin in the pathophysiology and treatment of schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 9( 1), 1-17.
doi: 10.1176/jnp.9.1.1 URL |
[3] | Aika, Y., Ren, J. Q., Kosaka, K., & Kosaka, T. ( 1994). Quantitative analysis of GABA-like-immunoreactive and parvalbumin-containing neurons in the CA1 region of the rat hippocampus using a stereological method, the disector. Experimental Brain Research, 99( 2), 267-276. |
[4] |
Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. P.( 2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of Neurophysiology, 109( 11), 2827-2841.
doi: 10.1152/jn.00375.2012 URL |
[5] | Ali, A.B., & Thomson, A.M . ( 2007). Synaptic α5 subunit- containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. Cerebral Cortex, 18( 6), 1260-1271. |
[6] |
Barr, M. S., Farzan, F., Tran, L. C., Chen, R., Fitzgerald, P. B., & Daskalakis, Z. J. ( 2010). Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory. Schizophrenia Research, 121( 1-3), 146-152.
doi: 10.1016/j.schres.2010.05.023 URL |
[7] |
Bartos, M., Vida, I., & Jonas, P. ( 2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8( 1), 45-56.
doi: 10.1038/nrn2044 URL pmid: 17180162 |
[8] |
Beasley, C.L., & Reynolds, G.P . ( 1997). Parvalbumin- immunoreactive neurons are reduced in the prefrontal cortex of schizophrenics. Schizophrenia Research, 24( 3), 349-355.
doi: 10.1016/S0920-9964(96)00122-3 URL pmid: 9134596 |
[9] |
Belforte, J. E., Zsiros, V., Sklar, E. R., Jiang, Z., Yu, G., Li, Y., ... Nakazawa, K. ( 2010). Postnatal NMDA receptor ablation in corticolimbic interneurons confers schizophrenia- like phenotypes. Nature Neuroscience, 13( 1), 76-83.
doi: 10.1038/nn.2447 URL |
[10] |
Behrens, M. M., Ali, S. S., Dao, D. N., Lucero, J., Shekhtman, G., Quick, K. L., & Dugan, L. L. ( 2007). Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science, 318( 5856), 1645-1647.
doi: 10.1126/science.1148045 URL pmid: 18063801 |
[11] |
Behrens, M.M., & Sejnowski, T.J . ( 2009). Does schizophrenia arise from oxidative dysregulation of parvalbumin-interneurons in the developing cortex?. Neuropharmacology, 57( 3), 193-200.
doi: 10.1016/j.neuropharm.2009.06.002 URL |
[12] |
Bezaire, M.J., & Soltesz, I.( 2013). Quantitative assessment of CA1 local circuits: Knowledge base for interneuron‐ pyramidal cell connectivity. Hippocampus, 23( 9), 751-785.
doi: 10.1002/hipo.22141 URL |
[13] |
Billingslea, E. N., Tatard-Leitman, V. M., Anguiano, J., Jutzeler, C. R., Suh, J., Saunders, J. A., ... Siegel, S. J. ( 2014). Parvalbumin cell ablation of NMDA-R1 causes increased resting network excitability with associated social and self-care deficits. Neuropsychopharmacology, 39( 7), 1603-1613.
doi: 10.1038/npp.2014.7 URL |
[14] |
Bitanihirwe, B. K. Y., Lim, M. P., Kelley, J. F., Kaneko, T., & Woo, T. ( 2009). Glutamatergic deficits and parvalbumin- containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry, 9( 71), 1.
doi: 10.1186/1471-244X-9-1 URL pmid: 19133132 |
[15] |
Breier, A.( 1995). Serotonin, schizophrenia and antipsychotic drug action. Schizophrenia Research, 14( 3), 187-202.
doi: 10.1016/0920-9964(94)00043-8 URL pmid: 7539288 |
[16] |
Brenhouse, H.C., & Andersen, S.L . ( 2011). Nonsteroidal anti-inflammatory treatment prevents delayed effects of early life stress in rats. Biological Psychiatry, 70( 5), 434-440.
doi: 10.1016/j.biopsych.2011.05.006 URL |
[17] |
Burguière, E., Monteiro, P., Feng, G., & Graybiel, A. M. ( 2013). Optogenetic stimulation of lateral orbitofronto- striatal pathway suppresses compulsive behaviors. Science, 340( 6137), 1243-1246.
doi: 10.1126/science.1232380 URL |
[18] |
Buzsàki, G., & Eidelberg, E.( 1981). Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Research, 230( 1-2), 346-350.
doi: 10.1016/0006-8993(81)90413-3 URL |
[19] |
Cabungcal, J. H., Counotte, D. S., Lewis, E. M., Tejeda, H. A., Piantadosi, P., Pollock, C., ... O’Donnell, P. ( 2014). Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron, 83( 5), 1073-1084.
doi: 10.1016/j.neuron.2014.07.028 URL |
[20] |
Cabungcal, J. H., Steullet, P., Kraftsik, R., Cuenod, M., & Do, K. Q. ( 2013). Early-life insults impair parvalbumin interneurons via oxidative stress: reversal by N-acetylcysteine. Biological Psychiatry, 73( 6), 574-582.
doi: 10.1016/j.biopsych.2012.09.020 URL |
[21] |
Cabungcal, J. H., Steullet, P., Morishita, H., Kraftsik, R., Cuenod, M., Hensch, T. K., & Do, K. Q. ( 2013). Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proceedings of the National Academy of Sciences, 110( 22), 9130-9135.
doi: 10.1073/pnas.1300454110 URL |
[22] |
Caillard, O., Moreno, H., Schwaller, B., Llano, I., Celio, M. R., & Marty, A. ( 2000). Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proceedings of the National Academy of Sciences, 97( 24), 13372-13377.
doi: 10.1073/pnas.230362997 URL |
[23] |
Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., ... Moore, C. I. ( 2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459( 7247), 663-667.
doi: 10.1038/nature08002 URL pmid: 19396156 |
[24] |
Carlen, M., Meletis, K., Siegle, J. H., Cardin, J. A., Futai, K., Vierling-Claassen, D., ... Tsai, L. H. ( 2012). A critical role for NMDA receptors in parvalbumin interneurons for gamma rhythm induction and behavior. Molecular Psychiatry, 17( 5), 537-548.
doi: 10.1038/mp.2011.31 URL |
[25] |
Celio, M.R., & Heizmann, C.W . ( 1981). Calcium-binding protein parvalbumin as a neuronal marker. Nature, 293( 5830), 300-302.
doi: 10.1038/293300a0 URL |
[26] |
Cohen, S. M., Tsien, R. W., Goff, D. C., & Halassa, M. M. ( 2015). The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophrenia Research, 167( 1-3), 98-107.
doi: 10.1016/j.schres.2014.12.026 URL |
[27] |
Cunningham, M. O., Hunt, J., Middleton, S., LeBeau, F. E., Gillies, M. G., Davies, C. H., ... Racca, C. ( 2006). Region-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness. Journal of Neuroscience, 26( 10), 2767-2776.
doi: 10.1523/JNEUROSCI.5054-05.2006 URL |
[28] |
Davis, K.L., & Kahn, R.S . ( 1991). Dopamine in schizophrenia: a review and reconceptualization. The American Journal of Psychiatry, 148( 11), 1474-1486.
doi: 10.1176/ajp.148.11.1474 URL |
[29] |
Del Pino, I., García-Frigola, C., Dehorter, N., Brotons-Mas, J. R., Alvarez-Salvado, E., de Lagrán, M. M., ... Rico, B. ( 2013). Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron, 79( 6), 1152-1168.
doi: 10.1016/j.neuron.2013.07.010 URL |
[30] | Dell'Anna, E., Geloso, M. C., Magarelli, M., & Molinari, M. ( 1996). Development of GABA and calcium binding proteins immunoreactivity in the rat hippocampus following neonatal anoxia. Neuroscience Letters, 211( 2), 93-96. |
[31] | Demiralp, T., Herrmann, C. S., Erdal, M. E., Ergenoglu, T., Keskin, Y. H., Ergen, M., & Beydagi, H. ( 2006). DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cerebral Cortex, 17( 5), 1007-1019. |
[32] | Do, K. Q., Cabungcal, J. H., Frank, A., Steullet, P., & Cuenod, M. ( 2009). Redox dysregulation, neurodevelopment, and schizophrenia. Current Opinion in Neurobiology, 19( 2), 220-230. |
[33] |
Donato, F., Rompani, S. B., & Caroni, P. ( 2013). Parvalbumin- expressing basket-cell network plasticity induced by experience regulates adult learning. Nature, 504( 7479), 272-276.
doi: 10.1038/nature12866 URL |
[34] |
Fagiolini, M., Fritschy, J. M., Löw, K., Möhler, H., Rudolph, U., & Hensch, T. K. ( 2004). Specific GABAA circuits for visual cortical plasticity. Science, 303( 5664), 1681-1683.
doi: 10.1126/science.1091032 URL pmid: 15017002 |
[35] |
Featherstone, R. E., Rizos, Z., Nobrega, J. N., Kapur, S., & Fletcher, P. J. ( 2007). Gestational methylazoxymethanol acetate treatment impairs select cognitive functions: parallels to schizophrenia. Neuropsychopharmacology, 32( 2), 483-492.
doi: 10.1038/sj.npp.1301223 URL |
[36] | Fisahn, A., Neddens, J., Yan, L., & Buonanno, A. ( 2008). Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cerebral Cortex, 19( 3), 612-618. |
[37] |
Flatow, J., Buckley, P., & Miller, B. J. ( 2013). Meta-analysis of oxidative stress in schizophrenia. Biological Psychiatry, 74( 6), 400-409.
doi: 10.1016/j.biopsych.2013.03.018 URL pmid: 23683390 |
[38] |
Flynn, G., Alexander, D., Harris, A., Whitford, T., Wong, W., Galletly, C., ... Williams, L. M. ( 2008). Increased absolute magnitude of gamma synchrony in first-episode psychosis. Schizophrenia Research, 105( 1-3), 262-271.
doi: 10.1016/j.schres.2008.05.029 URL pmid: 18603413 |
[39] | Freund, T.F., & Buzsáki, G.( 1996). Interneurons of the hippocampus. Hippocampus, 6( 4), 347-470. |
[40] |
Gárate, I., Garcia-Bueno, B., Madrigal, J. L. M., Caso, J. R., Alou, L., Gomez-Lus, M. L., ... Leza, J. C. ( 2013). Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biological Psychiatry, 73( 1), 32-43.
doi: 10.1016/j.biopsych.2012.07.005 URL |
[41] | Ge, S., Goh, E. L. K., Sailor, K. A., Kitabatake, Y., Ming, G. L., & Song, H. ( 2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439( 7076), 589-593. |
[42] |
Gill, K.M., & Grace, A.A . ( 2014). The role of α5 GABAA receptor agonists in the treatment of cognitive deficits in schizophrenia. Current Pharmaceutical Design, 20( 31), 5069-5076.
doi: 10.2174/1381612819666131216114612 URL |
[43] |
Gill, K. M., Lodge, D. J., Cook, J. M., Aras, S., & Grace, A. A. ( 2011). A novel α5GABAAR-positive allosteric modulator reverses hyperactivation of the dopamine system in the MAM model of schizophrenia. Neuropsychopharmacology, 36( 9), 1903-1911.
doi: 10.1038/npp.2011.76 URL |
[44] |
Gogolla, N., LeBlanc, J. J., Quast, K. B., Südhof, T. C., Fagiolini, M., & Hensch, T. K. ( 2009). Common circuit defect of excitatory-inhibitory balance in mouse models of autism. Journal of Neurodevelopmental Disorders, 1( 2), 172-181.
doi: 10.1007/s11689-009-9023-x URL pmid: 2906812 |
[45] |
Gonzalez-Burgos, G., & Lewis, D.A. ( 2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophrenia Bulletin, 34( 5), 944-961.
doi: 10.1093/schbul/sbn070 URL |
[46] |
Gonzalez-Burgos, G., & Lewis, D.A. ( 2012). NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophrenia Bulletin, 38( 5), 950-957.
doi: 10.1093/schbul/sbs010 URL |
[47] |
Grace, A.A. ( 2012). Dopamine system dysregulation by the hippocampus: implications for the pathophysiology and treatment of schizophrenia. Neuropharmacology, 62( 3), 1342-1348.
doi: 10.1016/j.neuropharm.2011.05.011 URL |
[48] |
Gu, Y., Tran, T., Murase, S., Borrell, A., Kirkwood, A., & Quinlan, E. M. ( 2016). Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability Controls the Timing of the Critical Period. Journal of Neuroscience, 36( 40), 10285-10295.
doi: 10.1523/JNEUROSCI.4242-15.2016 URL |
[49] |
Haig, A. R., Gordon, E., De Pascalis, V., Meares, R. A., Bahramali, H., & Harris, A. ( 2000). Gamma activity in schizophrenia: evidence of impaired network binding? Clinical Neurophysiology, 111( 8), 1461-1468.
doi: 10.1016/S1388-2457(00)00347-3 URL |
[50] | Halasy, K., & Somogyi, P.( 1993). Distribution of GABAergic Synapses and Their Targets in the Dentate Gyrus of Rat: A quantitative Immunoelectron Microscopic Analysis. Journal für Hirnforschung, 34( 3), 299-308. |
[51] | Harte, M. K., Powell, S. B., Swerdlow, N. R., Geyer, M. A., & Reynolds, G. P. ( 2007). Deficits in parvalbumin and calbindin immunoreactive cells in the hippocampus of isolation reared rats. Journal of neural transmission, 114( 7), 893-898. |
[52] |
Hashimoto, T., Volk, D. W., Eggan, S. M., Mirnics, K., Pierri, J. N., Sun, Z., ... Lewis, D. A. ( 2003). Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. Journal of Neuroscience, 23( 15), 6315-6326.
doi: 10.1523/JNEUROSCI.23-15-06315.2003 URL |
[53] | He, L. J., Liu, N., Cheng, T. L., Chen, X. J., Li, Y. D., Shu, Y. S., ... Zhang, X. H. ( 2014). Conditional deletion of Mecp2 in parvalbumin-expressing GABAergic cells results in the absence of critical period plasticity. Nature Communications, 5( 5036). |
[54] |
Heckers, S., 2004. The hippocampus in schizophrenia. The American Journal of Psychiatry, 161( 11), 2138-2139.
doi: 10.1176/appi.ajp.161.11.2138 URL |
[55] |
Howes, O.D., & Kapur, S.( 2009). The dopamine hypothesis of schizophrenia: version III-the final common pathway. Schizophrenia Bulletin, 35( 3), 549-562.
doi: 10.1093/schbul/sbp006 URL |
[56] |
Hu, H., Gan, J., & Jonas, P. ( 2014). Fast-spiking, parvalbumin+ GABAergic interneurons: From cellular design to microcircuit function. Science, 345( 6196), 1255263.
doi: 10.1126/science.1255263 URL |
[57] | Hunt, M. J., Kopell, N. J., Traub, R. D., & Whittington, M. A. ( 2017). Aberrant network activity in schizophrenia. Trends in Neurosciences, 40( 6), 371-382. |
[58] |
Javitt, D.C., & Zukin, S.R . ( 1991). Recent advances in the phencyclidine model of schizophrenia. The American Journal of Psychiatry, 148( 10), 1301-1308.
doi: 10.1176/ajp.148.10.1301 URL pmid: 1654746 |
[59] |
Jentsch, J.D., & Roth, R.H . ( 1999). The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology, 20( 3), 201-225.
doi: 10.1016/S0893-133X(98)00060-8 URL |
[60] |
Jiang, Z., Rompala, G. R., Zhang, S., Cowell, R. M., & Nakazawa, K. ( 2013). Social isolation exacerbates schizophrenia-like phenotypes via oxidative stress in cortical interneurons. Biological psychiatry, 73( 10), 1024-1034.
doi: 10.1016/j.biopsych.2012.12.004 URL |
[61] |
Katagiri, H., Fagiolini, M., & Hensch, T. K. ( 2007). Optimization of somatic inhibition at critical period onset in mouse visual cortex. Neuron, 53( 6), 805-812.
doi: 10.1016/j.neuron.2007.02.026 URL |
[62] |
Kaur, C., Rathnasamy, G., & Ling, E. A. ( 2013). Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. Journal of Neuroimmune Pharmacology, 8( 1), 66-78.
doi: 10.1007/s11481-012-9347-2 URL |
[63] |
Kim, H., Ährlund-Richter, S., Wang, X., Deisseroth, K., & Carlén, M. ( 2016). Prefrontal parvalbumin neurons in control of attention. Cell, 164( 1-2), 208-218.
doi: 10.1016/j.cell.2015.11.038 URL |
[64] | Kim, S. Y., Cohen, B. M., Chen, X., Lukas, S. E., Shinn, A. K., Yuksel, A. C., ... Öngür, D. ( 2016). Redox dysregulation in schizophrenia revealed by in vivo NAD+/NADH measurement. Schizophrenia Bulletin, 43( 1), 197-204. |
[65] |
Kinney, J. W., Davis, C. N., Tabarean, I., Conti, B., Bartfai, T., & Behrens, M. M. ( 2006). A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons. Journal of Neuroscience, 26( 5), 1604-1615.
doi: 10.1523/JNEUROSCI.4722-05.2006 URL |
[66] |
Klausberger, T., & Somogyi, P.( 2008). Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science, 321( 5885), 53-57.
doi: 10.1126/science.1149381 URL |
[67] | Kobayashi, M., & Buckmaster, P.S. ( 2003). Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. The Journal of Neuroscience, 23( 6), 2440-2452. |
[68] |
Kocsis, B.( 2012). Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biological Psychiatry, 71( 11), 987-995.
doi: 10.1016/j.biopsych.2011.10.002 URL |
[69] |
Komitova, M., Xenos, D., Salmaso, N., Tran, K. M., Brand, T., Schwartz, M. L., ... Vaccarino, F. M. ( 2013). Hypoxia-induced developmental delays of inhibitory interneurons are reversed by environmental enrichment in the postnatal mouse forebrain. Journal of Neuroscience, 33( 33), 13375-13387.
doi: 10.1523/JNEUROSCI.5286-12.2013 URL |
[70] |
Konradi, C., Yang, C. K., Zimmerman, E. I., Lohmann, K. M., Gresch, P., Pantazopoulos, H., ... Heckers, S. ( 2011). Hippocampal interneurons are abnormal in schizophrenia. Schizophrenia Research, 131( 1-3), 165-173.
doi: 10.1016/j.schres.2011.06.007 URL |
[71] |
Korotkova, T., Fuchs, E. C., Ponomarenko, A., von Engelhardt, J., & Monyer, H. ( 2010). NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron, 68( 3), 557-569.
doi: 10.1016/j.neuron.2010.09.017 URL |
[72] | Kraguljac, N.V., White, D.M., Reid, M.A., Lahti, A.C. ( 2013). Increased hippocampal glutamate and volumetric deficits in unmedicated patients with schizophrenia. JAMA Psychiatry 70( 12), 1294-1302. |
[73] |
Krystal, J. H., Karper, L. P., Seibyl, J. P., Freeman, G. K., Delaney, R., Bremner, J. D., ... Charney, D. S. ( 1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans: psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51( 3), 199-214.
doi: 10.1001/archpsyc.1994.03950030035004 URL |
[74] |
Kuhlman, S. J., Olivas, N. D., Tring, E., Ikrar, T., Xu, X., & Trachtenberg, J. T. ( 2013). A disinhibitory microcircuit initiates critical-period plasticity in the visual cortex. Nature, 501( 7468), 543-546.
doi: 10.1038/nature12485 URL |
[75] |
Kwon, J. S., O'donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., ... McCarley, R. W. ( 1999). Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Archives of General Psychiatry, 56( 11), 1001-1005.
doi: 10.1001/archpsyc.56.11.1001 URL |
[76] |
Lewis, D. A., Curley, A. A., Glausier, J. R., & Volk, D. W. ( 2012). Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends in Neurosciences, 35( 1), 57-67.
doi: 10.1016/j.tins.2011.10.004 URL |
[77] |
Lewis, D. A., Hashimoto, T., & Volk, D. W. ( 2005). Cortical inhibitory neurons and schizophrenia. Nature Reviews Neuroscience, 6( 4), 312-324.
doi: 10.1038/nrn1648 URL |
[78] |
Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A. ( 2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 31( 5), 234-242.
doi: 10.1016/j.tins.2008.02.005 URL |
[79] |
Lodge, D. J., Behrens, M. M., & Grace, A. A. ( 2009). A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. Journal of Neuroscience, 29( 8), 2344-2354.
doi: 10.1523/JNEUROSCI.5419-08.2009 URL |
[80] | Luby, E. D., Cohen, B. D., Rosenbaum, G., Gottlieb, J. S., & Kelley, R. ( 1959). Study of a new schizophrenomimetic drug-Sernyl. AMA Archives of Neurology & Psychiatry, 81( 3), 363-369. |
[81] |
Malaspina, D., Storer, S., Furman, V., Esser, P., Printz, D., Berman, A., ... Van Heertum, R. ( 1999). SPECT study of visual fixation in schizophrenia and comparison subjects. Biol. Psychiatry, 46( 1), 89-93.
doi: 10.1016/S0006-3223(98)00306-0 URL |
[82] |
Marín, O.( 2012). Interneuron dysfunction in psychiatric disorders. Nature Reviews Neuroscience, 13( 2), 107-120.
doi: 10.1038/nrn3155 URL |
[83] |
Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. ( 2004). Interneurons of the neocortical inhibitory system. Nature reviews. Neuroscience, 5( 10), 793-807.
doi: 10.1038/nrn1519 URL |
[84] |
Mauney, S. A., Athanas, K. M., Pantazopoulos, H., Shaskan, N., Passeri, E., Berretta, S., & Woo, T. U. W.( 2013). Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia. Biological Psychiatry, 74( 6), 427-435.
doi: 10.1016/j.biopsych.2013.05.007 URL |
[85] |
Medoff, D.R., Holcomb, H.H., Lahti, A.C., Tamminga, C.A. ( 2001). Probing the human hippocampus using rCBF: Contrasts in schizophrenia. Hippocampus, 11( 5), 543-550
doi: 10.1002/(ISSN)1098-1063 URL |
[86] | Meyer, U., Nyffeler, M., Yee, B. K., Knuesel, I., & Feldon, J. ( 2008). Adult brain and behavioral pathological markers of prenatal immune challenge during early/middle and late fetal development in mice. Brain, Behavior, and Immunity, 22( 4), 469-486. |
[87] | Miles, R.( 1990). Synaptic excitation of inhibitory cells by single CA3 hippocampal pyramidal cells of the guinea-pig in vitro. The Journal of Physiology, 428( 1), 61-77. |
[88] |
Morris, H. M., Hashimoto, T., & Lewis, D. A. ( 2008). Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder. Cerebral Cortex, 18( 7), 1575-1587.
doi: 10.1093/cercor/bhm186 URL |
[89] |
Olney, J.W., & Farber, N.B . ( 1995). NMDA antagonists as neurotherapeutic drugs, psychotogens, neurotoxins, and research tools for studying schizophrenia. Neuropsychopharmacology, 13( 4), 335-345.
doi: 10.1016/0893-133X(95)00079-S URL |
[90] |
Pantazopoulos, H., Lange, N., Baldessarini, R. J., & Berretta, S. ( 2007). Parvalbumin neurons in the entorhinal cortex of subjects diagnosed with bipolar disorder or schizophrenia. Biological Psychiatry, 61( 5), 640-652.
doi: 10.1016/j.biopsych.2006.04.026 URL |
[91] |
Pantazopoulos, H., Woo, T. U. W., Lim, M. P., Lange, N., & Berretta, S. ( 2010). Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia. Archives of General Psychiatry, 67( 2), 155-166.
doi: 10.1001/archgenpsychiatry.2009.196 URL |
[92] |
Pouille, F., & Scanziani, M.( 2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293( 5532), 1159-1163.
doi: 10.1126/science.1060342 URL |
[93] |
Pouille, F., & Scanziani, M.( 2004). Routing of spike series by dynamic circuits in the hippocampus. Nature, 429( 6993), 717-723.
doi: 10.1038/nature02615 URL |
[94] |
Romón, T., Mengod, G., & Adell, A. ( 2011). Expression of parvalbumin and glutamic acid decarboxylase-67 after acute administration of MK-801. Implications for the NMDA hypofunction model of schizophrenia. Psychopharmacology, 217( 2), 231-238.
doi: 10.1007/s00213-011-2268-6 URL |
[95] |
Rossier, J., Bernard, A., Cabungcal, J. H., Perrenoud, Q., Savoye, A., Gallopin, T., ... Lein, S. ( 2015). Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Molecular Psychiatry, 20( 2), 154-161.
doi: 10.1038/mp.2014.162 URL |
[96] |
Saunders, J. A., Tatard‐Leitman, V. M., Suh, J., Billingslea, E. N., Roberts, T. P., & Siegel, S. J. ( 2013). Knockout of NMDA Receptors in Parvalbumin Interneurons Recreates Autism‐Like Phenotypes. Autism Research, 6( 2), 69-77.
doi: 10.1002/aur.1264 URL pmid: 4064157 |
[97] |
Schiavone, S., Sorce, S., Dubois-Dauphin, M., Jaquet, V., Colaianna, M., Zotti, M., ... Krause, K. H. ( 2009). Involvement of NOX2 in the development of behavioral and pathologic alterations in isolated rats. Biological Psychiatry, 66( 4), 384-392.
doi: 10.1016/j.biopsych.2009.04.033 URL |
[98] |
Schobel, S. A., Lewandowski, N. M., Corcoran, C. M., Moore, H., Brown, T., Malaspina, D., Small, S. A. ( 2009). Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders. Arch. Gen. Psychiatry, 66( 9), 938-946
doi: 10.1001/archgenpsychiatry.2009.115 URL |
[99] |
Shang, C., Liu, Z., Chen, Z., Shi, Y., Wang, Q., Liu, S., ... Cao, P. ( 2015). A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science, 348( 6242), 1472-1477.
doi: 10.1126/science.aaa8694 URL |
[100] |
Spencer, K. M., Nestor, P. G., Niznikiewicz, M. A., Salisbury, D. F., Shenton, M. E., & McCarley, R. W. ( 2003). Abnormal neural synchrony in schizophrenia. Journal of Neuroscience, 23( 19), 7407-7411.
doi: 10.1523/JNEUROSCI.23-19-07407.2003 URL |
[101] |
Spencer, K. M., Niznikiewicz, M. A., Shenton, M. E., & McCarley, R. W. ( 2008). Sensory-evoked gamma oscillations in chronic schizophrenia. Biological Psychiatry, 63( 8), 744-747.
doi: 10.1016/j.biopsych.2007.10.017 URL pmid: 2330275 |
[102] |
Sohal, V. S., Zhang, F., Yizhar, O., & Deisseroth, K. ( 2009). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459( 7247), 698-702.
doi: 10.1038/nature07991 URL |
[103] | Song, J., Sun, J., Moss, J., Wen, Z., Sun, G. J., Hsu, D., ... Song, H. ( 2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nature Neuroscience, 16( 12), 1728-1730. |
[104] |
Stark, E., Eichler, R., Roux, L., Fujisawa, S., Rotstein, H. G., & Buzsáki, G. ( 2013). Inhibition-induced theta resonance in cortical circuits. Neuron, 80( 5), 1263-1276.
doi: 10.1016/j.neuron.2013.09.033 URL |
[105] |
Steullet, P., Cabungcal, J. H., Coyle, J., Didriksen, M., Gill, K., Grace, A. A., ... Do, K. ( 2017). Oxidative stress- driven parvalbumin interneuron impairment as a common mechanism in models of schizophrenia. Molecular Psychiatry, 22( 7), 936-943.
doi: 10.1038/mp.2017.47 URL |
[106] | Steullet, P., Cabungcal, J. H., Kulak, A., Kraftsik, R., Chen, Y., Dalton, T. P., ... Do, K. Q. ( 2010). Redox dysregulation affects the ventral but not dorsal hippocampus: impairment of parvalbumin neurons, gamma oscillations, and related behaviors. The Journal of Neuroscience, 30( 7), 2547-2558. |
[107] |
Suh, J., Foster, D. J., Davoudi, H., Wilson, M. A., & Tonegawa, S. ( 2013). Impaired hippocampal ripple-associated replay in a mouse model of schizophrenia. Neuron, 80( 2), 484-493.
doi: 10.1016/j.neuron.2013.09.014 URL pmid: 3871857 |
[108] |
Todtenkopf, M.S., & Benes, F.M . ( 1998). Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse, 29( 4), 323-332.
doi: 10.1002/(ISSN)1098-2396 URL |
[109] |
Tremblay, R., Lee, S., & Rudy, B. ( 2016). GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91( 2), 260-292.
doi: 10.1016/j.neuron.2016.06.033 URL pmid: 27477017 |
[110] |
Tsai, G., & Coyle, J.T. ( 2002). Glutamatergic mechanisms in schizophrenia. Annual Review of Pharmacology and Toxicology, 42( 1), 165-179.
doi: 10.1146/annurev.pharmtox.42.082701.160735 URL |
[111] | Uhlhaas, P. J., Linden, D. E. J., Singer, W., Haenschel, C., Lindner, M., Maurer, K., & Rodriguez, E. ( 2006). Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. Journal of Neuroscience, 26(#31), 8168-8175. |
[112] |
Uhlhaas, P.J., & Singer, W.( 2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews. Neuroscience, 11( 2), 100-113.
doi: 10.1038/nrn2774 URL |
[113] |
Volk, D. W., Gonzalez-Burgos, G., & Lewis, D. A. ( 2016). l-Proline, GABA synthesis and gamma oscillations in schizophrenia. Trends in Neurosciences, 39( 12), 797-798.
doi: 10.1016/j.tins.2016.10.009 URL |
[114] | Wang, B., Wang, Z., Sun, L., Yang, L., Li, H., Cole, A. L., ... Zheng, H. ( 2014). The amyloid precursor protein controls adult hippocampal neurogenesis through GABAergic interneurons. The Journal of Neuroscience, 34( 40), 13314-13325. |
[115] |
Wolff, S. B. E., Gründemann, J., Tovote, P., Krabbe, S., Jacobson, G. A., Müller, C., ... Lüthi, A. ( 2014). Amygdala interneuron subtypes control fear learning through disinhibition. Nature, 509( 7501), 453-458.
doi: 10.1038/nature13258 URL |
[116] |
Yao, J.K., & Keshavan, M.S . ( 2011). Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxidants & Redox Signaling, 15( 7), 2011-2035.
doi: 10.1089/ars.2010.3603 URL pmid: 3159108 |
[117] |
Zhang, Y., Behrens, M. M., & Lisman, J. E. ( 2008). Prolonged exposure to NMDAR antagonist suppresses inhibitory synaptic transmission in prefrontal cortex. Journal of Neurophysiology, 100( 2), 959-965.
doi: 10.1152/jn.00079.2008 URL |
[118] |
Zhang, Z.J., & Reynolds, G.P . ( 2002). A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schizophrenia. Schizophrenia research, 55( 1-2), 1-10.
doi: 10.1016/S0920-9964(01)00188-8 URL |
[1] | 周振友, 孔丽, 陈楚侨. 精神分裂症肠道微生物与脑影像和临床表征的关系[J]. 心理科学进展, 2022, 30(8): 1856-1869. |
[2] | 李谷静, 张丽蓉, 米莉, 贺辉, 卢竞, 罗程, 尧德中. 舞动治疗:一种自下而上的精神分裂症干预探索[J]. 心理科学进展, 2021, 29(8): 1371-1380. |
[3] | 欧华星, 陈伟海. 多巴胺D2受体参与调节感觉门控的机制[J]. 心理科学进展, 2021, 29(6): 1030-1041. |
[4] | 郑泓, 蒲城城, 王毅, 陈楚侨. 基于脑结构像的精神分裂症机器学习分类[J]. 心理科学进展, 2020, 28(2): 252-265. |
[5] | 王盛, 陈雅弘, 王锦琰. 动物前注意加工模型的建立及评价: 基于精神类疾病损伤[J]. 心理科学进展, 2020, 28(12): 2027-2039. |
[6] | 曹艺, 杨小虎. 精神分裂症患者的语音感知[J]. 心理科学进展, 2019, 27(6): 1025-1035. |
[7] | 李每易, 王春莲, 王子卿, 陈焕新. 应激对兴奋性突触传递的影响及其分子机制[J]. 心理科学进展, 2017, 25(12): 2021-2029. |
[8] | 朱传林;李萍;罗文波;齐正阳;何蔚祺. 精神分裂症患者的情绪调节[J]. 心理科学进展, 2016, 24(4): 556-572. |
[9] | 郭亚飞;金盛华;王建平;吴林桦;艾迪玛. DSM-5精神分裂症谱系的新变化:类别与维度之争[J]. 心理科学进展, 2015, 23(8): 1428-1436. |
[10] | 吴超;吴玺宏;李量. 精神分裂症患者在听觉掩蔽环境下的言语识别[J]. 心理科学进展, 2013, 21(6): 958-964. |
[11] | 薛晓芳;李曼;王玮文;邵枫. 母婴分离的动物模型及其神经生物学机制[J]. 心理科学进展, 2013, 21(6): 990-998. |
[12] | 杜忆;李量. 对听感觉运动门控自上而下调节的动物模型和神经机制[J]. 心理科学进展, 2011, 19(7): 944-958. |
[13] | 史艳芳;陈楚侨. 精神分裂症谱系中的快感缺乏[J]. 心理科学进展, 2010, 18(9): 1430-1439. |
[14] | 王玉娜;陈楚侨. 自我缺损与精神分裂症[J]. 心理科学进展, 2010, 18(12): 1882-1891. |
[15] | 李量;李楠欣. 建立新一代的精神分裂症动物模型[J]. 心理科学进展, 2008, 16(3): 399-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||