心理学报 ›› 2020, Vol. 52 ›› Issue (5): 597-608.doi: 10.3724/SP.J.1041.2020.00597
曹娜1, 孟海江1, 王艳秋1, 邱方晖1, 谭晓缨2, 吴殷3, 张剑1()
收稿日期:
2019-05-29
发布日期:
2020-03-26
出版日期:
2020-05-25
通讯作者:
张剑
E-mail:zhangjian@sus.edu.cn
基金资助:
CAO Na1, MENG Haijiang1, WANG Yanqiu1, QIU Fanghui1, TAN Xiaoying2, WU Yin3, ZHANG Jian1()
Received:
2019-05-29
Online:
2020-03-26
Published:
2020-05-25
Contact:
ZHANG Jian
E-mail:zhangjian@sus.edu.cn
摘要:
程序性运动学习包括序列学习和随机学习。神经影像学研究表明背外侧前额叶皮层(DLPFC)和初级运动皮层(M1)在程序性运动学习中发挥重要作用, 但DLPFC和M1之间的联通性及其与不同程序性运动学习的关系尚不明确。本研究采用连续反应时间任务, 结合经颅磁刺激(TMS)方法, 探讨左侧DLPFC到M1的联通性在不同程序性运动学习中的差异。实验1采用两连发TMS探测DLPFC到M1的最佳投射时间点; 实验2, 被试分为2组, 分别进行序列学习和随机学习, 在学习前、后采集行为学数据, 以及M1的运动诱发电位和DLPFC-M1联通性的电生理学数据。行为学结果发现序列学习组的学习效果更佳; 电生理学结果发现, 两组被试学习前、后M1的运动诱发电位均未发生改变; 在最佳时间投射点、适当刺激强度下, 序列学习组DLPFC-M1联通性发生改变, 且与学习成绩相关, 而随机学习组没有改变。结果说明DLPFC到M1的联通性增强可能是序列学习成绩更佳的重要原因, 这一结果从电生理角度为DLPFC在运动学习中的作用提供了重要证据。
中图分类号:
曹娜, 孟海江, 王艳秋, 邱方晖, 谭晓缨, 吴殷, 张剑. (2020). 左侧背外侧前额叶在程序性运动学习中的作用. 心理学报, 52(5), 597-608.
CAO Na, MENG Haijiang, WANG Yanqiu, QIU Fanghui, TAN Xiaoying, WU Yin, ZHANG Jian. (2020). Functional role of the left dorsolateral prefrontal cortex in procedural motor learning. Acta Psychologica Sinica, 52(5), 597-608.
变量 | 序列学习组 | 随机学习组 | p |
---|---|---|---|
年龄(岁) | 21.55 ± 1.57 | 21.95 ± 1.88 | 0.469 |
身高(cm) | 172.95 ± 9.77 | 171.80 ± 10.35 | 0.720 |
体重(kg) | 67.35 ± 13.33 | 66.70 ± 14.81 | 0.885 |
受教育年限(年) | 15.90 ± 1.71 | 15.65 ± 1.90 | 0.665 |
RMT (%) | 43.75 ± 4.72 | 43.80 ± 4.29 | 0.972 |
表1 实验2两组被试人口学变量描述统计值和差异检验(M ± SD)
变量 | 序列学习组 | 随机学习组 | p |
---|---|---|---|
年龄(岁) | 21.55 ± 1.57 | 21.95 ± 1.88 | 0.469 |
身高(cm) | 172.95 ± 9.77 | 171.80 ± 10.35 | 0.720 |
体重(kg) | 67.35 ± 13.33 | 66.70 ± 14.81 | 0.885 |
受教育年限(年) | 15.90 ± 1.71 | 15.65 ± 1.90 | 0.665 |
RMT (%) | 43.75 ± 4.72 | 43.80 ± 4.29 | 0.972 |
[1] |
Cao N., Pi Y. L., Liu K., Meng H., Wang J., Zhang J., … Tan X . (2018). Inhibitory and facilitatory connections from dorsolateral prefrontal to primary motor cortex in healthy humans at rest-an rTMS study. Neuroscience Letters, 687, 82-87.
doi: 10.1016/j.neulet.2018.09.032 URL pmid: 30243883 |
[2] |
Civardi C., Cantello R., Asselman P., & Rothwell J. C . (2001). Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage, 14(6), 1444-1453.
doi: 10.1006/nimg.2001.0918 URL pmid: 11707100 |
[3] |
Clegg B. A., Digirolamo G. J., & Keele S. W . (1998). Sequence learning. Trends in Cognitive Sciences, 2(8), 275-281.
doi: 10.1016/s1364-6613(98)01202-9 URL pmid: 21227209 |
[4] |
Fatma I., Thorsten K., Christof K., & John-Dylan H . (2012). Changes in functional connectivity support conscious object recognition. Neuroimage, 63(4), 1909-1917.
doi: 10.1016/j.neuroimage.2012.07.056 URL pmid: 22877578 |
[5] |
Friston K. J . (2011). Functional and effective connectivity: A review. Brain Connectivity, 1(1), 13-36.
doi: 10.1089/brain.2011.0008 URL pmid: 22432952 |
[6] |
Fuster J. M., & Alexander G. E . (1971). Neuron activity related to short-term memory. Science, 173(3997), 652-654.
doi: 10.1126/science.173.3997.652 URL pmid: 4998337 |
[7] |
Gordon B . (1988). Preserved learning of novel information in amnesia: Evidence for multiple memory systems. Brain & Cognition, 7(3), 257-282.
doi: 10.1016/0278-2626(88)90002-4 URL pmid: 3401382 |
[8] |
Grafman J., Weingartner H., Newhouse P. A., Thompson K., Lalonde F., Litvan I., .. Sunderland T . (1990). Implicit learning in patients with Alzheimer's disease. Pharmacopsychiatry, 23(2), 94-101.
doi: 10.1055/s-2007-1014490 URL pmid: 2339182 |
[9] | Grafton S. T., Hazeltine E., & Ivry R . (1995). Functional mapping of sequence learning in normal humans. MIT Press. |
[10] |
Grafton S. T., Woods R. P., & Tyszka M . (1994). Functional imaging of procedural motor learning: Relating cerebral blood flow with individual subject performance. Human Brain Mapping, 1(3), 221-234.
doi: 10.1002/hbm.460010307 URL pmid: 24578042 |
[11] |
Hallett M . (2000). Transcranial magnetic stimulation and the human brain. Nature, 406(6792), 147-150.
doi: 10.1038/35018000 URL pmid: 10910346 |
[12] |
Hanajima R., Ugawa Y., Machii K., Mochizuki H., Terao Y., Enomoto H., .. Kanazawa I . (2001). Interhemispheric facilitation of the hand motor area in humans. Journal of Physiology, 531(3), 849-859.
doi: 10.1111/j.1469-7793.2001.0849h.x URL pmid: 11251064 |
[13] |
Hasan A., Galea J. M., Casula E. P., Falkai P., Bestmann S., & Rothwell J. C . (2013). Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. Journal of Cognitive Neuroscience, 25(4), 558-570.
doi: 10.1162/jocn_a_00338 URL pmid: 23249357 |
[14] |
Hikosaka O., Nakamura K., Sakai K., & Nakahara H . (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217-222.
doi: 10.1016/s0959-4388(02)00307-0 URL pmid: 12015240 |
[15] |
Jacinta O. S., Catherine S., Boorman E. D., Heidi J. B., & Rushworth M. F. S . (2010). Functional specificity of human premotor-motor cortical interactions during action selection. European Journal of Neuroscience, 26(7), 2085-2095.
doi: 10.1111/j.1460-9568.2007.05795.x URL pmid: 17868374 |
[16] |
Jenkins I. H., Brooks D. J., Nixon P. D., Frackowiak R. S., & Passingham R. E . (1994). Motor sequence learning: A study with positron emission tomography. Journal of Neuroscience, 14(6), 3775-3790.
URL pmid: 8207487 |
[17] |
Jueptner M., Stephan K. M., Frith C. D., Brooks D. J., Frackowiak R. S. J., & Passingham R. E . (1997). Anatomy of motor learning. I. Frontal cortex and attention to action. Journal of Neurophysiology, 77(3), 1313-1324.
doi: 10.1152/jn.1997.77.3.1313 URL pmid: 9084599 |
[18] |
Kielan Y., Peter B., & Krakauer J. W . (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10(8), 585-596.
doi: 10.1038/nrn2672 URL pmid: 19571792 |
[19] |
Koch G., Fernandez Del Olmo M., Cheeran B., Ruge D., Schippling S., Caltagirone C., & Rothwell J. C . (2007). Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. Journal of Neuroscience, 27(25), 6815-6822.
doi: 10.1523/JNEUROSCI.0598-07.2007 URL pmid: 17581969 |
[20] |
Koch G., & Rothwell J. C . (2009). TMS investigations into the task-dependent functional interplay between human posterior parietal and motor cortex. Behavioural Brain Research, 202(2), 147-152.
doi: 10.1016/j.bbr.2009.03.023 URL pmid: 19463695 |
[21] |
Krebs H., Hogan N., Hening W., Adamovich S., & Poizner H . (2001). Procedural motor learning in Parkinson’s disease. Experimental Brain Research, 141(4), 425-437.
doi: 10.1007/s002210100871 URL pmid: 11810137 |
[22] |
Lafleur L.-P., Tremblay S., Whittingstall K., & Lepage J.-F . (2016). Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation. Brain Stimulation, 9(3), 347-355.
doi: 10.1016/j.brs.2016.02.010 URL pmid: 27207765 |
[23] | Lam S., Gunraj C., Vesia M., Jegatheeswaran G., Hui J., & Chen R . (2015). Effects of age on motor learning and prefrontal-motorcortical excitability. Brain Stimulation, 8(2), 313. |
[24] |
Lazzaro V. D., Oliviero A., Profice P., Insola A., Mazzone P., Tonali P., & Rothwell J. C . (1999). Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental Brain Research, 124(4), 520-524.
doi: 10.1007/s002210050648 URL pmid: 10090664 |
[25] |
Leonora W., Teo J. T., Ignacio O., Rothwell J. C., & Marjan J . (2010). The contribution of primary motor cortex is essential for probabilistic implicit sequence learning: Evidence from theta burst magnetic stimulation. Journal of Cognitive Neuroscience, 22(3), 427-436.
doi: 10.1162/jocn.2009.21208 URL pmid: 19301999 |
[26] |
Marco S., Carlo U., & Elena R . (2011). The use of transcranial magnetic stimulation in cognitive neuroscience: A new synthesis of methodological issues. Neuroscience & Biobehavioral Reviews, 35(3), 516-536.
doi: 10.1016/j.neubiorev.2010.06.005 URL pmid: 20599555 |
[27] |
Mayor-Dubois C., Zesiger P., van der Linden M., & Roulet- Perez E . (2016). Procedural learning: a developmental study of motor sequence learning and probabilistic classification learning in school-aged children. Child Neuropsychology, 22(6), 718-734.
doi: 10.1080/09297049.2015.1058347 URL pmid: 26144545 |
[28] |
Miller E. K . (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59-65.
doi: 10.1038/35036228 URL pmid: 11252769 |
[29] | Ni Z., & Chen R . (2012). Intracortical circuits and their interactions in human primary motor cortex. Cortical Connectivity. Springer Berlin Heidelberg. |
[30] |
Ni Z., Florian M. D., Chen R., & Ziemann U . (2011). Triple-pulse TMS to study interactions between neural circuits in human cortex. Brain Stimulation, 4(4), 281-293.
doi: 10.1016/j.brs.2011.01.002 URL pmid: 22032744 |
[31] |
Ni Z., Gunraj C., Kailey P., Cash R. F. H., & Chen R . (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21), 7314-7321.
doi: 10.1523/JNEUROSCI.4714-13.2014 URL pmid: 24849363 |
[32] |
Ni Z., Gunraj C., Nelson A. J., Yeh I. J., Castillo G., Hoque T., & Chen R . (2009). Two phases of interhemispheric inhibition between motor related cortical areas and the primary motor cortex in human. Cerebral Cortex, 19(7), 1654-1665.
doi: 10.1093/cercor/bhn201 URL pmid: 19015374 |
[33] |
Noguchi T., Demura S., Nagasawa Y., & Uchiyama M . (2009). Influence of measurement order by dominant and nondominant hands on performance of a pursuit-rotor task. Perceptual & Motor Skills, 108(3), 905-914.
doi: 10.2466/PMS.108.3.905-914 URL pmid: 19725325 |
[34] | Oh S. W., Harris J. A., Ng L., Winslow B., Cain N., Mihalas S., .. Zeng H . (2014). A mesoscale connectome of the mouse brain. Nature, 508(7495), 207-214. |
[35] |
Oldfield R. C . (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113.
doi: 10.1016/0028-3932(71)90067-4 URL pmid: 5146491 |
[36] |
Pascual-Leone A., Wassermann E. M., Grafman J., & Hallett M . (1996). The role of the dorsolateral prefrontal cortex in implicit procedural learning. Experimental Brain Research, 107(3), 479-485.
doi: 10.1007/bf00230427 URL pmid: 8821387 |
[37] |
Poldrack R. A., Sabb F. W., Karin F., Tom S. M., Asarnow R. F., Bookheimer S. Y., & Knowlton B. J . (2005). The neural correlates of motor skill automaticity. Journal of Neuroscience, 25(22), 5356-5364.
doi: 10.1523/JNEUROSCI.3880-04.2005 URL pmid: 15930384 |
[38] |
Ridding M. C., & Rothwell J. C . (2007). Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience, 8(7), 559-567.
doi: 10.1038/nrn2169 URL pmid: 17565358 |
[39] |
Robertson E. M., Tormos J. M., Maeda F., & Pascual-Leone A . (2001). The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cerebral Cortex, 11(7), 628-635.
doi: 10.1093/cercor/11.7.628 URL pmid: 11415965 |
[40] |
Rothwell J. C . (2011). Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Human Movement Science, 30(5), 906-915.
doi: 10.1016/j.humov.2010.07.007 URL pmid: 21056490 |
[41] |
Rowe J. B., Stephan K. E., Friston K., Frackowiak R. S., & Passingham R. E . (2005). The prefrontal cortex shows context-specific changes in effective connectivity to motor or visual cortex during the selection of action or colour. Cerebral Cortex, 15(1), 85-95.
doi: 10.1093/cercor/bhh111 URL pmid: 15238443 |
[42] |
Sakai K., Hikosaka O., Miyauchi S., Takino R., Sasaki Y., & Pütz B . (1998). Transition of brain activation from frontal to parietal areas in visuomotor sequence learning. Modern Law Review, 18(5), 1827-1840.
URL pmid: 9465007 |
[43] |
Schendan H. E., Searl M. M., Melrose R. J., & Stern C. E . (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37(6), 1013-1025.
doi: 10.1016/s0896-6273(03)00123-5 URL pmid: 12670429 |
[44] |
Seidler R. D., Purushotham A., Kim S.-G., Ugurbil K., Willingham D., & Ashe J . (2005). Neural correlates of encoding and expression in implicit sequence learning. Experimental Brain Research, 165(1), 114-124.
doi: 10.1007/s00221-005-2284-z URL pmid: 15965762 |
[45] |
Shadmehr R., & Holcomb H. H . (1997). Neural correlates of motor memory consolidation. Science, 277(5327), 821-825.
doi: 10.1126/science.277.5327.821 URL pmid: 9242612 |
[46] |
Squire L. R . (1992). Declarative and nondeclarative memory: multiple brain systems supporting learning and memory. Journal of Cognitive Neuroscience, 4(3), 232-243.
doi: 10.1162/jocn.1992.4.3.232 URL pmid: 23964880 |
[47] |
Steel A., Song S. B., Bageac D., Knutson K. M., Keisler A., Saad Z. S., .. Wilkinson L . (2016). Shifts in connectivity during procedural learning after motor cortex stimulation: A combined transcranial magnetic stimulation/functional magnetic resonance imaging study. Cortex, 74, 134-148.
doi: 10.1016/j.cortex.2015.10.004 URL pmid: 26673946 |
[48] |
Stefan K., Wycislo M., Gentner R., Schramm A., Naumann M., Reiners K., & Classen J . (2006). Temporary occlusion of associative motor cortical plasticity by prior dynamic motor training. Cerebral Cortex, 16(3), 376-385.
doi: 10.1093/cercor/bhi116 URL pmid: 15930370 |
[49] |
Toni I., Krams M., Turner R., & Passingham R. E . (1998). The time course of changes during motor sequence learning: A whole-brain fMRI study. Neuroimage, 8(1), 50-61.
doi: 10.1006/nimg.1998.0349 URL pmid: 9698575 |
[50] |
Uehara K., Morishita T., Kubota S., & Funase K . (2013). Neural mechanisms underlying the changes in ipsilateral primary motor cortex excitability during unilateral rhythmic muscle contraction. Behavioural Brain Research, 240(2), 33-45.
doi: 10.1016/j.bbr.2012.10.053 URL pmid: 23174210 |
[51] |
Ugawa Y., Day B. L., Rothwell J. C., Thompson P. D., Merton P. A., & Marsden C. D . (1991). Modulation of motor cortical excitability by electrical stimulation over the cerebellum in man. Journal of Physiology, 441(1), 57-72.
doi: 10.1007/s004240000402 URL pmid: 11205062 |
[52] |
Wedeen V. J., Rosene D. L., Wang R. P., Dai G. P., Mortazavi F., Hagmann P., .. Tseng W. Y . (2012). The geometric structure of the brain fiber pathways. Science, 335(6076), 1628-1634.
doi: 10.1126/science.1215280 URL pmid: 22461612 |
[53] |
Willingham D. B . (1998). A neuropsychological theory of motor skill learning. Psychological Review, 105(3), 558-584.
doi: 10.1037/0033-295x.105.3.558 URL pmid: 9697430 |
[54] |
Willingham D. B., Joanna S., & Gabrieli J. D. E . (2002). Direct comparison of neural systems mediating conscious and unconscious skill learning. Journal of Neurophysiology, 88(3), 1451-1460.
doi: 10.1152/jn.2002.88.3.1451 URL pmid: 12205165 |
[55] | Yang G . (2014). Implicit sequence learning of emotional stimulation and semantic stimulation (Unpublished master dissertation). Shenyang Normal University. |
[ 杨光 . (2014). 情绪刺激和语义刺激的内隐序列学习研究(硕士学位论文). 沈阳师范大学.] | |
[56] | Yang Y. H., & Wang S. M . (2018). Neurophysiological mechanisms of motor learning. Journal of Wuhan Institute of Physical Education, 52(8), 86-90. |
[ 杨叶红, 王树明 . (2018). 动作技能学习神经生理机制研究. 武汉体育学院学报, 52(8), 86-90.] | |
[57] |
Zhang J. X., Tang D., Cha D. H., Huang J. P., & Liu D. Z . (2016). Embodied mechanisms of implicit sequence learning consciousness. Advances in Psychological Science, 24(2), 203-216.
doi: 10.3724/SP.J.1042.2016.00203 URL |
[ 张剑心, 汤旦, 查德华, 黄建平, 刘电芝 . (2016). 内隐序列学习意识的具身机制. 心理科学进展, 24(2), 203-216.] | |
[58] |
Zhang L. L., Shen C., Zhu H., Li X. P., Dai W., Wu Y., & Zhang J . (2017). The effects of motor skill level and somatosensory input on motor imagery: An fMRI study on basketball free shot. Acta Psychologica Sinica, 49(3), 307-316.
doi: 10.3724/SP.J.1041.2017.00307 URL |
[ 张兰兰, 沈诚, 朱桦, 李雪佩, 戴雯, 吴殷, 张剑 . (2017). 运动技能水平与躯体感觉输入对运动表象的影响. 心理学报, 49(3), 307-316.] | |
[59] |
Ziemann U . (2004). TMS and drugs. Clinical Neurophysiology, 115(8), 1717-1729.
doi: 10.1016/j.clinph.2004.03.006 URL pmid: 15261850 |
[60] |
Ziemann U., Reis J., Schwenkreis P., Rosanova M., Strafella A., Badawy R., & Müller-Dahlhaus F . (2015). TMS and drugs revisited 2014. Clinical Neurophysiology, 126(10), 1847-1868.
doi: 10.1016/j.clinph.2014.08.028 URL pmid: 25534482 |
[1] | 王妹, 程思, 李宜伟, 李红, 张丹丹. 背外侧前额叶在安慰剂效应中的作用:社会情绪调节研究[J]. 心理学报, 2023, 55(7): 1063-1073. |
[2] | 孟海江, 陈蕾, 王刚, 张剑. 不同形式运动锻炼老年人运动皮层突触可塑性的差异:来自TMS的研究证据[J]. 心理学报, 2023, 55(10): 1653-1661. |
[3] | 卢张龙, 刘梦娜, 刘玉洁, 马盼盼, 张瑞平. 内隐序列学习表征机制探究:眼动证据[J]. 心理学报, 2022, 54(7): 779-788. |
[4] | 莫李澄, 郭田友, 张岳瑶, 徐锋, 张丹丹. 激活右腹外侧前额叶提高抑郁症患者对社会疼痛的情绪调节能力:一项TMS研究[J]. 心理学报, 2021, 53(5): 494-504. |
[5] | 陈玉明, 李思瑾, 郭田友, 谢慧, 徐锋, 张丹丹. 背外侧前额叶对主动遗忘负性社会反馈的作用:针对抑郁症的TMS研究[J]. 心理学报, 2021, 53(10): 1094-1104. |
[6] | 张丹丹, 王驹, 赵君, 陈淑美, 黄琰淋, 高秋凤. 抑郁倾向对合作的影响:双人同步近红外脑成像研究[J]. 心理学报, 2020, 52(5): 609-622. |
[7] | 殷西乐, 李建标, 陈思宇, 刘晓丽, 郝洁. 第三方惩罚的神经机制:来自经颅直流电刺激的证据[J]. 心理学报, 2019, 51(5): 571-583. |
[8] | 戴惠, 朱传林, 刘电芝. 内隐知识具有抽象性吗?——来自内隐序列学习迁移的证据 *[J]. 心理学报, 2018, 50(9): 965-974. |
[9] | 王思思, 库逸轩. 右侧背外侧前额叶在视觉工作记忆中的因果性作用[J]. 心理学报, 2018, 50(7): 727-738. |
[10] | 王慧慧, 罗玉丹, 石冰, 余凤琼, 汪凯. 经颅直流电刺激对健康大学生反应抑制的影响 *[J]. 心理学报, 2018, 50(6): 647-654. |
[11] | 杨海波;刘电芝. 片段再认任务在内隐序列学习研究中的有效性检验[J]. 心理学报, 2016, 48(3): 230-237. |
[12] | 窦伟伟;郑希付;杨慧芳;王俊芳;李悦;俄小天;陈倩倩. 认知分心的强度对创伤性信息加工的影响[J]. 心理学报, 2014, 46(5): 656-665. |
[13] | 张剑心;武燕;陈心韵;刘电芝. 高低情感开放性者概率内隐序列学习进程差异[J]. 心理学报, 2014, 46(12): 1793-1804 . |
[14] | 付秋芳, 刘永芳, 傅小兰. 知识类别和特点对内隐序列学习的影响[J]. 心理学报, 2004, 36(05): 525-533. |
[15] | 丁锦红,袁汝兵,郭春彦,田学红. 中小学生内隐序列学习的机制[J]. 心理学报, 2004, 36(04): 476-481. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||