Please wait a minute...
心理学报  2020, Vol. 52 Issue (1): 12-25    DOI: 10.3724/SP.J.1041.2020.00012
  研究报告 本期目录 | 过刊浏览 | 高级检索 |
认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据
孙岩(),薄思雨,吕娇娇
辽宁师范大学心理学院, 大连 116029
Brain network analysis of cognitive reappraisal and expressive inhibition strategies: Evidence from EEG and ERP
SUN Yan(),BO Siyu,LV Jiaojiao
School of Psychology, Liaoning Normal University, Dalian 116029, China
全文: PDF(2059 KB)   HTML 评审附件 (1 KB) 
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

本文旨在对认知重评和表达抑制两种常用情绪调节策略的自发脑网络特征及认知神经活动进行深入探讨。研究采集36名在校大学生的静息态和任务态脑电数据, 经过源定位和图论分析发现节点效率与两种情绪调节显著相关的脑区, 以及脑区之间的功能连接。研究结果表明, 在使用认知重评进行情绪调节时会激活前额叶皮质、前扣带回、顶叶、海马旁回和枕叶等多个脑区, 在使用表达抑制进行情绪调节时会激活前额叶皮质、顶叶、海马旁回、枕叶、颞叶和脑岛等多个脑区。因此, 这些脑区的节点效率或功能连接强度可能成为评估个体使用认知重评和表达抑制调节情绪效果的指标。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 情绪调节认知重评表达抑制功能连接图论    
Abstract

The ability to regulate emotions is related to psychological, social, and physical health. The two major emotion regulation strategies are cognitive reappraisal (CR) and expressive suppression (ES). Research suggests that CR produces affective, cognitive, and social consequences that are more beneficial to the individual, whereas ES has been consistently linked to more detrimental consequences. Although an increasing number of studies have begun to focus on the neural mechanisms of different types of emotion regulation, there has not yet been systematic research on the spontaneous brain activity associated with CR and ES. Resting activity has been shown to predict performance outcomes, highlight the functional relevance of the brain’s intrinsic fluctuations in response outputs. However, to date, there have been no studies to explore the relationship between the cognitive process of emotion regulation and the brain's resting EEG activity.
The current study explored the neural mechanisms of spontaneous brain activity during two emotion regulation strategies. Electroencephalography (EEG) enables direct measurement of neuronal activity, allowing characterization of the intrinsic neural cognitive network. Thirty-six college students (17 males and 19 females, aged 17~28 years old) participated in this study. For the first part of the study, EEG data was collected from participants with closed eyes; EEG collection occurred for a duration of 6 minutes. Neurological studies of resting state EEG have identified the predominant role of theta waves in determining cognitive control effort and behavioral performance. In the current study, source localization and graph theory analysis revealed that node efficiency was significantly correlated with the two major emotion regulation strategies, and there were functional connections between brain regions in the theta band.
Then, in order to improve the reliability of the resting result obtained above, a within subjects experiment was carried out. This experiment required subjects to watch emotional pictures under four emotion regulation conditions (watching neutral, watching negative, reappraisal negative, suppressing negative). The Late-positive potential (LPP) amplitude was obtained when viewing the emotional pictures under the four conditions. LPP is an effective physiological indicator of the emotion regulation effect. It allowed us to explore the emotion regulation effect under different emotion regulation strategies, and the intrinsic functional connections and node efficiency of the brain.
The results showed that the habitual use of CR was significantly correlated with several brain regions. Specifically, the prefrontal cortex, anterior cingulate, and parietal cortex. Moreover, the brain regions significantly correlated with the LPP amplitude under CR were the parietal cortex, prefrontal cortex, parahippocampal gyrus, and occipital cortex. The brain regions that were significantly correlated with habitual use of ES included the prefrontal cortex, parietal cortex, insula, and parahippocampal gyrus. Finally, the brain regions that were significantly associated with LPP amplitude under ES included the prefrontal cortex, parietal cortex, parahippocampal gyrus, temporal cortex, and occipital cortex. Thus, these findings reveal that many brain regions are involved in these two mood regulation strategies, including the prefrontal cortex, parahippocampal gyrus, parietal cortex, and occipital cortex. In addition, the brain regions related to the different emotion regulation strategies differed slightly; specifically, CR was significantly associated with the anterior cingulate cortex while ES was related to temporal lobe and insula activation.
In conclusion, the results of this study indicate that use of CR for emotion regulation is associated with activation of multiple brain regions including the prefrontal cortex, anterior cingulate cortex, parietal cortex, parahippocampal gyrus and occipital cortex. On the other hand, the use of ES for emotional regulation was associated with activation of various brain regions including the prefrontal cortex, parietal cortex, parahippocampal gyrus, occipital cortex, temporal cortex and insula. Node efficiency or functional connectivity of these brain regions appears to be a suitable indicator for assessing the effects of the ES and CR emotion regulation strategies.

Key wordsemotion regulation    cognitive reappraisal    expressive suppression    functional connection    graph theory
收稿日期: 2018-09-21      出版日期: 2019-11-21
中图分类号:  B842  
  B845  
基金资助:* 教育部人文社会科学规划基金项目(17YJA190011);辽宁省教育厅项目(WJ2019015)
通讯作者: 孙岩     E-mail: sunyan@lnnu.edu.cn
引用本文:   
孙岩,薄思雨,吕娇娇. (2020). 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据. 心理学报, 52(1): 12-25.
SUN Yan,BO Siyu,LV Jiaojiao. (2020). Brain network analysis of cognitive reappraisal and expressive inhibition strategies: Evidence from EEG and ERP. Acta Psychologica Sinica, 52(1), 12-25.
链接本文:  
http://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2020.00012      或      http://journal.psych.ac.cn/xlxb/CN/Y2020/V52/I1/12
[1] Alizadeh A., Fatemizadeh E., & Deevband M. R . ( 2014, November) Investigation of Brain Default Network's activation in autism spectrum disorders Using Group Independent Component Analysis. 21st Iranian Conference on Biomedical Engineering (ICBME 2014), Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
[2] Amrhein C., Mühlberger A., Pauli P., & Wiedemann G . ( 2004). Modulation of event-related brain potentials during affective picture processing: A complement to startle reflex and skin conductance response? International Journal of Psychophysiology, 54( 3), 231-240.
[3] Arnold A. E. G. F., Protzner A. B., Bray S., Levy R. M., & Iaria G . ( 2014). Neural network configuration and efficiency underlies individual differences in spatial orientation ability. Journal of Cognitive Neuroscience, 26( 2), 380-394.
[4] Badre D., & Wagner A. D . ( 2004). Selection, integration, and conflict monitoring: Assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41( 3), 473-487.
[5] Balconi M., Grippa E., & Vanutelli M. E . ( 2015). What hemodynamic (FNIRs), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing. Brain and Cognition, 95, 67-76.
[6] Barch D., Braver T., Akbudak E., & Ollinger J . ( 2000). Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Neuroimage, 11( 5), S104-S104.
[7] Batut A. C., Gounot D., Namer I. J., Hirsch E., Kehrli P., & Metz-Lutz M. N . ( 2006). Neural responses associated with positive and negative emotion processing in patients with left versus right temporal lobe epilepsy. Epilepsy & Behavior, 9( 3), 415-423.
[8] Bradley M. M., & Lang P. J . ( 1994). Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25( 1), 49-59.
[9] Braver T. S., Barch D. M., Gray J. R., Molfese D. L., & Snyder A . ( 2001). Anterior cingulate cortex and response conflict: Effects of frequency, inhibition and errors. Cerebral Cortex, 11( 9), 825-836.
[10] Buchanan T. W., Tranel D., & Adolphs R . ( 2006). Memories for emotional autobiographical events following unilateral damage to medial temporal lobe. Brain, 129( 1), 115-127.
[11] Buhle J. T., Silvers J. A., Wager T. D., Lopez R., Onyemekwu C., Kober H., … Ochsner. K. N . ( 2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24( 11), 2981-2990.
[12] Bush G., Luu P., & Posner M. I . ( 2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4( 6), 215-222.
[13] Butler E. A., Egloff B., Wlhelm F. H., Smith N. C., Erickson E. A., & Gross J. J . ( 2003). The social consequences of expressive suppression. Emotion, 3( 1), 48-67.
[14] Canuet L., Ishii R., Pascual-Marqui R. D., Iwase M., Kurimoto R., Aoki Y., … Takeda M . ( 2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLOS ONE, 6( 11), e27863.
[15] Canuet L., Tellado I., Couceiro V., Fraile C., Fernandez- Novoa L., Ishii R., … Cacabelos R . ( 2012). Resting-state network disruption and APOE genotype in Alzheimer’s disease: A lagged functional connectivity study. PLOS ONE, 7( 9), e46289.
[16] Cauda F., Costa T., Torta D. M., Sacco K., D'Agata F., & Duca S., … Vercelli A . ( 2012). Meta-analytic clustering of the insular cortex: Characterizing the meta-analytic connectivity of the insula when involved in active tasks. Neuroimage, 62( 1), 343-355.
[17] Cheng L., Yuan J. J., He Y. Y., & Li H . ( 2009). Emotion regulation strategies: Cognitive reappraisal is more effective than expressive suppression. Advances in Psychological Science, 17( 4), 730-735.
[17] [ 程利, 袁加锦, 何媛媛, 李红 . ( 2009). 情绪调节策略: 认知重评优于表达抑制. 心理科学进展, 17( 4), 730-735.]
[18] Cui X. J., Lu C. J., Guo Y. F., & Shi H. M .( 2012). The relationship between emotion regulation and depression of college students. China Journal of Health Psychology, 20( 3), 431-433.
[18] [ 崔向军, 逯春洁, 郭永芳, 石贺敏 . ( 2012). 大学生情绪调节与抑郁的相关研究. 中国健康心理学杂志, 20( 3), 431-433.]
[19] D’ Avanzato C., Joormann J., Siemer M., & Gotlib I. H . ( 2013). Emotion regulation in depression and anxiety: Examining diagnostic specificity and stability of strategy use. Cognitive Therapy and Research, 37( 5), 968-980.
[20] Deak A., Bodrogi B., Biro B., Perlaki G., Orsi G., & Bereczkei T . ( 2017). Machiavellian emotion regulation in a cognitive reappraisal task: An fMRI study. Cognitive, Affective, & Behavioral Neuroscience, 17( 3), 528-541.
[21] Dennis T. A . ( 2007). Interactions between emotion regulation strategies and affective style: Implications for trait anxiety versus depressed mood. Motivation and Emotion, 31( 3), 200-207.
[22] Dennis T. A., & Hajcak G . ( 2009). The late positive potential: A neurophysiological marker for emotion regulation in children. Journal of Child Psychology and Psychiatry, 50( 11), 1373-1383.
[23] Dolcos F., Labar K. S., & Cabeza R . ( 2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42( 5), 855-863.
[24] Dougal S., Phelps E. A., & Davachi L . ( 2007). The role of medial temporal lobe in item recognition and source recollection of emotional stimuli. Cognitive Affective & Behavioral Neuroscience, 7( 3), 233-242.
[25] Drabant E. M., Mcrae K., Manuck S. B., Hariri A. R., & Gross J. J . ( 2008). Individual differences in typical reappraisal use predict amygdala and prefrontal responses. Biological Psychiatry, 65( 5), 367-373.
[26] Duncan J., & Owen A. M ., ( 2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 23( 10), 475-483.
[27] Egner T., Etkin A., Gale S., & Hirsch J . ( 2008). Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cerebral Cortex, 18( 6), 1475-1484.
[28] Egner T., & Hirsch J . ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task- relevant information. Nature Neuroscience, 8, 1784-1790.
[29] Ertl M., Hildebrandt M., Ourina K., Leicht G., & Mulert C . ( 2013). Emotion regulation by cognitive reappraisal - The role of frontal theta oscillations. NeuroImage, 81( 11), 412-421.
[30] Etkin A., Egner T., Peraza D. M., Kandel E. R., & Hirsch J . ( 2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51( 6), 871-882.
[31] Foti D., & Hajcak G . ( 2008). Deconstructing reappraisal: Descriptions preceding arousing pictures modulate the subsequent neural response. Journal of Cognitive Neuroscience, 20 ( 6), 977-988.
[32] Fraga González G., Van der Molen M., Žarić G., Bonte M., Tijms J., Blomert L., … Van der Molen M. W . ( 2016). Graph analysis of EEG resting state functional networks in dyslexic readers. Clinical Neurophysiology, 127( 9), 3165-3175.
[33] Frank D. W., Dewitt M., Hudgens-Haney M., Schaeffer D. J., Ball B. H., Schwarz N. F., … Sabatinelli D . ( 2014). Emotion regulation: Quantitative meta-analysis of functional activation and deactivation. Neuroscience & Biobehavioral Reviews, 45, 202-211.
[34] Gan T., Luo Y. J., & Zhang Z. J . ( 2009). The Influence of Emotion on Time Perception. Journal of Psychological Science, 32( 4), 836-839.
[34] [ 甘甜, 罗跃嘉, 张志杰 . ( 2009). 情绪对时间知觉的影响. 心理科学, 32( 4), 836-839.]
[35] Garnefski N., & Kraaij V . ( 2007). The Cognitive Emotion Regulation Questionnaire: Psychometric features and prospective relationships with depression and anxiety in adults. European Journal of Psychological Assessment, 23, 141-149.
[36] Giuliani N. R., Drabant E. M., Bhatnagar R., & Gross J. J . ( 2011a). Emotion regulation and brain plasticity: Expressive suppression use predicts anterior insula volume. Neuroimage, 58( 1), 10-15.
[37] Giuliani N. R., Drabant E. M., & Gross J. J . ( 2011b). Anterior cingulate cortex volume and emotion regulation: Is bigger better? Biological Psychology, 86( 3), 379-382.
[38] Goldin P. R., McRae K., Ramel W., & Gross J. J . ( 2008). The neural bases of emotion regulation: Reappraisal and suppression of negative emotion. Biological Psychiatry, 63( 6), 577-586.
[39] Gross J. J . ( 1998). The emerging field of emotion regulation: An integrative review. Review of General Psychology, 2( 3), 271-299.
[40] Gross J. J . ( 2002). Emotion regulation: Affective, cognitive, and social consequences. Psychophysiology, 39( 3), 281-291.
[41] Gross J. J . ( 2015). Emotion regulation: Current status and future prospects. Psychological Inquiry, 26( 1), 1-26.
[42] Gross J. J., & John O.P . ( 2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85( 2), 348-362.
[43] Gu H., Chen Q., Xing X., Zhao J., & Li X . ( 2019). Facial emotion recognition in deaf children: Evidence from event-related potentials and event-related spectral perturbation analysis. Neuroscience Letters, 703, 198-204.
[44] Haga S. M., Kraft P., & Corby E. K . ( 2009). Emotion regulation: Antecedents and well-being outcomes of cognitive reappraisal and expressive suppression in cross-cultural samples. Journal of Happiness Studies, 10( 3), 271-291.
[45] Hajcak G., & Nieuwenhuis S . ( 2006). Reappraisal modulates the electrocortical response to unpleasant pictures. Cognitive, Affective, & Behavioral Neuroscience, 6( 4), 291-297.
[46] Hamann S., . ( 2001). Cognitive and neural mechanisms of emotional memory. Trends in Cognitive Sciences, 5( 9), 394-400.
[47] Hermann A., Bieber A., Keck T., Vaitl D., & Stark R . ( 2014). Brain structural basis of cognitive reappraisal and expressive suppression. Social Cognitive & Affective Neuroscience, 9( 9), 1435-1442.
[48] Hermann A., Leutgeb V., Scharmüller W., Vaitl D., & Stark R . ( 2013). Individual differences in cognitive reappraisal usage modulate the time course of brain activation during symptom provocation in specific phobia. Biology of Mood and Anxiety Disorders, 3( 1), 16.
[49] Hofmann S. G., Heering S., Sawyer A. T., & Asnaani A . ( 2009). How to handle anxiety: The effects of reappraisal, acceptance, and suppression strategies on anxious arousal. Behaviour Research and Therapy, 47( 5), 389-394.
[50] Karamacoska D., Barry R. J., & Steiner G. Z . ( 2017). Resting state intrinsic EEG impacts on go stimulus-response processes. Psychophysiology, 54( 6), 894-903.
[51] Karamacoska D., Barry R. J., Steiner G. Z., Coleman E. P., & Wilson E. J . ( 2018). Intrinsic EEG and task-related changes in EEG affect go/nogo task performance. International Journal of Psychophysiology, S0167876017306864.
[52] Krach S., Jansen A., Krug A., Markov V., Thimm M., Sheldrick A. J., … Kircher T . ( 2010). Comt genotype and its role on hippocampal-prefrontal regions in declarative memory. Neuroimage, 53( 3), 978-984.
[53] Samuelson K. W . ( 2011). Post-traumatic stress disorder and declarative memory functioning: A review. Dialogues in Clinical Neuroscience, 13( 3), 346-351.
[54] Langer N., Pedroni A., Gianotti L. R. R., Hänggi J., Knoch D., & Jäncke L . ( 2012). Functional brain network efficiency predicts intelligence. Human Brain Mapping, 33( 6), 1393-1406.
[55] Langner C. A., Epel E., Matthews K., Moskowitz J. T., & Adler N . ( 2012). Social hierarchy and depression: The role of emotion suppression. Journal of Psychology, 146( 4), 417-436.
[56] Langeslag S. J. E., Jansma B. M., Franken I. H. A., & Strien J. W. V . ( 2007). Event-related potential responses to love-related facial stimuli. Biological Psychology, 76( 1-2), 109-115.
[57] Langeslag S. J. E., & van Strien J. W . ( 2017). Preferential processing of task-irrelevant beloved-related information and task performance: Two event-related potential studies. Neuropsychologia, S002839321730341X.
[58] Lee T. W., Dolan R. J., & Critchley H. D . ( 2008). Controlling emotional expression: Behavioral and neural correlates of nonimitative emotional responses. Cerebral Cortex, 18( 1), 104-113.
[59] Li X., Lu J., Li B., Li H., Jin L., & Qiu J . ( 2017). The role of ventromedial prefrontal cortex volume in the association of expressive suppression and externally oriented thinking. Journal of Affective Disorders, 222, 112-119.
[60] Li Z. Q., Wang L., Zhang H. C., & Liu H. C . ( 2010). Personality traits and subjective well-being: The mediating role of emotion regulation. Journal of Psychological Science, 33( 1), 165-167.
[60] [ 李中权, 王力, 张厚粲, 柳恒超 . ( 2010). 人格特质与主观幸福感: 情绪调节的中介作用. 心理科学, 33( 1), 165-167.]
[61] Liu X., Banich M. T., Jacobson B. L., & Tanabe J. L . ( 2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22( 3), 1097-1106.
[62] Lou Y. X., Cai A. Y., Yang J. M., & Yuan J. J . ( 2014). The impact of introversion-extraversion on emotion regulations and the neurophysiological underpinnings. Advances in Psychological Science, 22( 12), 1855-1866.
[62] [ 娄熠雪, 蔡阿燕, 杨洁敏, 袁加锦 . ( 2014). 内-外倾人格对情绪调节的影响及神经机制. 心理科学进展, 22(12), 1855-1866.]
[63] Makris N., Goldstein J. M., Kennedy D., Hodge S. M., Caviness V. S., & Faraone S. V., … Seidmancdfi L. J . ( 2006). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83( 2-3), 155-171.
[64] Mcrae K., Hughes B., Chopra S., Gabrieli J. D. E., Gross J. J., & Ochsner K. N . ( 2010). The neural bases of distraction and reappraisal. Journal of Cognitive Neuroscience, 22( 2), 248-262.
[65] Miller E. K., & Cohen J. D . ( 2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.
[66] Moore S. A., Zoellner L. A., & Mollenholt N . ( 2008). Are expressive suppression and cognitive reappraisal associated with stress-related symptoms?. Behaviour Research and Therapy, 46( 9), 993-1000.
[67] Moser J. S., Hajcak G., Bukay E., & Simons R. F . ( 2006). Intentional modulation of emotional responding to unpleasant pictures: An ERP study. Psychophysiology, 43( 3), 292-296.
[68] Nallasamy N., & Tsao D. Y . ( 2011). Functional connectivity in the brain: Effects of anesthesia. The Neuroscientist, 17( 1), 94-106.
[69] Nelson B. D., Fitzgerald D. A., Klumpp H., Shankman S. A., & Phan K. L . ( 2015). Prefrontal engagement by cognitive reappraisal of negative faces. Behavioural Brain Research, 279, 218-225.
[70] Ochsner K. N., Bunge S. A., Gross J. J., & Gabrieli J. D. E . ( 2002). Rethinking feelings: An FMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14( 8), 1215-1229.
[71] Ochsner K. N., Hughes B., Robertson E. R., Cooper J. C., & Gabrieli J. D. E . ( 2009). Neural systems supporting the control of affective and cognitive conflicts. Journal of Cognitive Neuroscience, 21( 9), 1841-1854.
[72] Ohira H., Nomura M., Ichikawa N., Isowa T., Iidaka T., Sato A., … Yamada J .( 2006). Association of neural and physiological responses during voluntary emotion suppression. NeuroImage, 29( 3), 721-733.
[73] Ohmatsu S., Nakano H., Tominaga T., Terakawa Y., Murata T., & Morioka S . ( 2014). Activation of the serotonergic system by pedaling exercise changes anterior cingulate cortex activity and improves negative emotion. Behavioural Brain Research, 270, 112-117.
[74] Pagani M., Di Lorenzo G., Verardo A. R., Nicolais G., Monaco L., & Lauretti G., … Siracusano A . ( 2012). Neurobiological correlates of EMDR monitoring - An EEG study. PLOS ONE, 7( 9), e45753.
[75] Pan J., Zhan L., Hu C. L., Yang J., Wang C., Gu L., … Wu X . ( 2018). Emotion regulation and complex brain networks: Association between expressive suppression and efficiency in the fronto-parietal network and default-mode network. Frontiers in Human Neuroscience, 12, 70.
[76] Pannu H. J., Morey R. A., Petty C. M., Srishti S., Smoski M. J., Gregory M. C., & Labar K. S . ( 2010). Staying cool when things get hot: Emotion regulation modulates neural mechanisms of memory encoding. Frontiers in Human Neuroscience, 4, 230.
[77] Pascual-Marqui R. D., Lehmann D., Koukkou M., Kochi K., Anderer P., Saletu B., … Kinoshita T . ( 2011) Assessing interactions in the brain with exact low resolution electromagnetic tomography. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 3768-3784.
[78] Pei X., Wang J., Deng B., Wei X., & Yu H . ( 2014). Wlpvg approach to the analysis of eeg-based functional brain network under manual acupuncture. Cognitive Neurodynamics, 8( 5), 417-428.
[79] Phan K. L., Fitzgerald D. A., Nathan P. J., Moore G. J., Uhde T. W., & Tancer M. E . ( 2005). Neural substrates for voluntary suppression of negative affect: A functional magnetic resonance imaging study. Biological Psychiatry, 57( 3), 210-219.
[80] Qian L., Xi C., Tom H., Duo X., Frederick C., & James B. R . ( 2014). Theta band activity in response to emotional expressions and its relationship with gamma band activity as revealed by MEG and advanced beamformer source imaging. Frontiers in Human Neuroscience, 7, 940.
[81] Scult M. A., Knodt A. R., Swartz J. R., Brigidi B. D., & Hariri A. R . ( 2017). Thinking and feeling: Individual differences in habitual emotion regulation and stress- related mood are associated with prefrontal executive control. Clinical Psychological Science, 5( 1), 150-157.
[82] Sheline Y. I., Price J. L., Yan Z., & Mintun M. A . ( 2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences, 107( 24), 11020-11025.
[83] Shigeto H., Ishiguro J., & Nittono H . ( 2011). Effects of visual stimulus complexity on event-related brain potentials and viewing duration in a free-viewing task. Neuroscience Letters, 497( 2), 85-89.
[84] Stam C. J., Nolte G., & Daffertshofer A . ( 2007). Phase lag index: Assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Human Brain Mapping, 28( 11), 1178-1193.
[85] Szaflarski J. P., Allendorfer J. B., Heyse H., Mendoza L., Szaflarski B. A., & Cohen N . ( 2014). Functional mri of facial emotion processing in left temporal lobe epilepsy. Epilepsy & Behavior, 32, 92-99.
[86] Urbain C., Sato J., Pang E. W., & Taylor M. J . ( 2017). The temporal and spatial brain dynamics of automatic emotion regulation in children. Developmental Cognitive Neuroscience, 26, 62-68.
[87] van den Heuvel M. P., Stam C. J., Kahn R. S., & Hulshoff Pol H. E . ( 2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29( 23), 7619-7624.
[88] van den Heuvel, M. P., & Hulshoff Pol, H. E . ( 2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20( 8), 519-534.
[89] Vanderhasselt M. A., Kuhn S., & De Raedt R . ( 2013). "Put on your poker face": Neural systems supporting the anticipation for expressive suppression and cognitive reappraisal. Social Cognitive and Affective Neuroscience, 8( 8), 903-910.
[90] van Diessen E., Numan T., van Dellen E., van der Kooi A.W., Boersma M., Hofman D., … Stam C. J . ( 2015). Opportunities and methodological challenges in EEG and MEG resting state functional brain network research. Clinical Neurophysiology, 126( 8), 1468-1481.
[91] Varnum M. E. W., & Hampton R. S . ( 2016). Cultures differ in the ability to enhance affective neural responses. Social Neuroscience, 12( 5), 1-10.
[92] Viviani R . ( 2014). Neural correlates of emotion regulation in the ventral prefrontal cortex and the encoding of subjective value and economic utility. Frontiers in Psychiatry, 5.
[93] Wagner M., Fuchs M., & Kastner J . ( 2004). Evaluation of sLORETA in the presence of noise and multiple sources. Brain Topography, 16( 4), 277-280.
[94] Wang J. X., Wang C. M., Xie F., Chang M., & Zhang K . ( 2015). The effect of cognitive reappraisal and distraction in regulating negative emotion: ERPs study. Journal of Psychological Science, 38( 5), 1039-1044.
[94] [ 王敬欣, 王春梅, 谢芳, 常敏, 张阔 . ( 2015). 负性情绪调节中认知重评和分心策略的作用: ERPs研究. 心理科学, 38( 5), 1039-1044.]
[95] Wang J., Wang X., Xia M., Liao X., Evans A., & He Y . ( 2015). Gretna: A graph theoretical network analysis toolbox for imaging connectomics. Frontiers in Human Neuroscience, 9.
[96] Wang J., Zuo X., & He Y . ( 2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4.
[97] Wang K., Huang H., Chen L., Hou X., Zhang Y., Yang J., … Qiu J . ( 2017). MRI correlates of interaction between gender and expressive suppression among the Chinese population. Neuroscience, 347, 76-84.
[98] Wang L., Liu H. C., Li Z. Q., & Du W .( 2007). Reliability and validity of emotion regulation questionnaire Chinese revised version. China Journal of Health Psychology, 15( 6), 503-505.
[98] [ 王力, 柳恒超, 李中权, 杜卫 . ( 2007). 情绪调节问卷中文版的信效度研究. 中国健康心理学杂志, 15( 6), 503-505.]
[99] Wang Y. N., Zhou L. M., Qu C., & Luo Y. J . ( 2007). Implicitly processing of affective connotation of chinese words evidence from event-related brain potential. Journal of Beijing Normal University (Natural Science), 43( 4), 466-470.
[99] [ 王一牛, 周立明, 曲琛, 罗跃嘉 . ( 2007). 感情色彩双字词内隐加工的ERP研究. 北京师范大学学报(自然科学版), 43( 4), 466-470.]
[100] Xing M., Tadayonnejad R., MacNamara A., Ajilore O., Phan K. L., Klumpp H., & Leow A . ( 2016). EEG based functional connectivity reflects cognitive load during emotion regulation. IEEE International Symposium on Biomedical Imaging. IEEE.
[101] Zhang W., Li X., Liu X., Duan X., Wang D., & Shen J . ( 2013). Distraction reduces theta synchronization in emotion regulation during adolescence. Neuroscience Letters, 550, 81-86.
[102] Zhao L.Y., Tian J., Wang W., Qin W., Shi J., Li Q., … Lu L . ( 2012). The role of dorsal anterior cingulate cortex in the regulation of craving by reappraisal in smokers. PLOS ONE, 7( 8), e43598.
[103] Zhou Y., Yu C., Zheng H., Liu Y., Song M., Qin W., … Jiang T . ( 2010). Increased neural resources recruitment in the intrinsic organization in major depression. Journal of Affective Disorders, 121( 3), 220-230.
[1] 孙俊才,寻凤娇,刘萍,张文海. 高善良特质在情绪调节行动控制中的内隐优势[J]. 心理学报, 2019, 51(7): 781-794.
[2] 李红,杨小光,郑文瑜,王超. 抑郁倾向对个体情绪调节目标的影响——来自事件相关电位的证据[J]. 心理学报, 2019, 51(6): 637-647.
[3] 彭婉晴,罗帏,周仁来. 工作记忆刷新训练改善抑郁倾向大学生情绪调节能力的HRV证据[J]. 心理学报, 2019, 51(6): 648-661.
[4] 江琦,侯璐璐,邱江,李长燃,王焕贞. 尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究[J]. 心理学报, 2018, 50(6): 655-666.
[5] 叶婉青, 李晓彤, 王大华. 老年人对夫妻间负性事件的认知性情绪调节策略及其与婚姻满意度的关系:交叉滞后分析[J]. 心理学报, 2018, 50(4): 426-435.
[6] 杨青青, 胡娜, 陈旭, 牛娟, 翟晶.  恋人亲密情景下的回避型与安全型 依恋个体情绪调节电生理差异[J]. 心理学报, 2018, 50(3): 306-316.
[7] 吕梦思, 席居哲, 罗一睿.  不同心理弹性者的日常情绪特征: 结合体验采样研究的证据[J]. 心理学报, 2017, 49(7): 928-940.
[8] 侯璐璐, 江琦, 王焕贞, 李长燃.  特质愤怒对攻击行为的影响: 基于综合认知模型的视角[J]. 心理学报, 2017, 49(12): 1548-1558.
[9] 陈颖媛;邹智敏;潘俊豪. 资质过剩感影响组织公民行为的情绪路径[J]. 心理学报, 2017, 49(1): 72-82.
[10] 周宵;伍新春;曾旻;田雨馨. 青少年的情绪调节策略对创伤后应激障碍和创伤后成长的影响:社会支持的调节作用[J]. 心理学报, 2016, 48(8): 969-980.
[11] 蔡阿燕;杨洁敏;许爽;袁加锦. 表达抑制调节负性情绪的男性优势 ——来自事件相关电位的证据[J]. 心理学报, 2016, 48(5): 482-494.
[12] 廖素群;郑希付. 认知重评对负性效价的抑制促进条件性恐惧消退[J]. 心理学报, 2016, 48(4): 352-361.
[13] 罗利;黄敏儿. 情绪调节在特质与情绪间中介效应模型的年龄差异[J]. 心理学报, 2016, 48(11): 1455-1466.
[14] 安献丽;陈四光. 认知重评阻断条件化恐惧记忆的习得与表达 ——对恐惧反应的长程抑制作用[J]. 心理学报, 2016, 48(10): 1239-1247.
[15] 白学军;岳鹏飞. 情绪标注对负性情绪的抑制:来自自主神经活动的证据[J]. 心理学报, 2013, 45(7): 715-724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《心理学报》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn