[1] | Arias-carrión O.&P?ppel E., ( 2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67( 4), 481-488. | [2] | Aron A. R., Robbins T. W., & Poldrack R. A . ( 2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18( 4), 177-185. | [3] | Anderson B. A., Laurent P. A., & Yantis S . ( 2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108( 25), 10367-10371. | [4] | Barbaro L., Peelen M. V., & Hickey C . ( 2017). Valence, not utility, underlies reward-driven prioritization in human vision. Journal of Neuroscience, 37( 43), 1128-1117. | [5] | Boehler C. N., Appelbaum L. G., Krebs R. M., Hopf J-M., & Woldorff M. G . ( 2012). The influence of different Stop- signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229( 1), 123-130. | [6] | Boehler C. N., Hopf J.-M., Stoppel C. M., & Krebs R. M . ( 2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125( 3), 498-503. | [7] | Boehler C. N., Müente T. F., Krebs R. M., Heinze H.-J., Schoenfeld M. A., & Hopf J. M . ( 2009). Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cerebral Cortex, 19( 1), 134-145. | [8] | Boehler C. N., Schevernels H., Hopf J-M., Stoppel C. M., & Krebs R. M . ( 2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive Affective & Behavioral Neuroscience, 14( 2), 593-609. | [9] | Botvinick M.&Braver T., ( 2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66( 1), 83-113. | [10] | Braver T. S., Krug M. K., Chiew K. S., Kool W., Westbrook J. A., Clement N. J., .. Somerville L. H . ( 2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14( 2), 443-472. | [11] | Botvinick M., Nystrom L. E., Fissell K., Carter C. S., & Cohen J. D . ( 1999). Conflict monitoring versus selection- for-action in anterior cingulate cortex. Nature, 402( 785), 179-181. | [12] | Botvinick M. M., Cohen J. D., & Carter C. S . ( 2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8( 12), 539-546. | [13] | Carter C. S., Macdonald A. M., Botvinick M., Ross L. L., Stenger V. A., Noll D., & Cohen J. D . ( 2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97( 4), 1944-1948. | [14] | Chikazoe J., Jimura K., Asari T., Yamashita K. L., Morimoto H., Hirose S., … Konishi S . ( 2009). Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cerebral Cortex, 19( 1), 146-152. | [15] | Derntl B.&Habel U., ( 2016). Angry but not neutral faces facilitate response inhibition in schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 267( 7), 621-627. | [16] | Egner T.&Hirsch J., ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790 | [17] | Erika-Florence M., Leech R., & Hampshire A . ( 2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5( 5), 4073. | [18] | Freeman S.M., & Aron A.R . ( 2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28( 2), 237-251. | [19] | Freeman S. M., Razhas L., & Aron A. R . ( 2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24( 2), 212-216. | [20] | Hampshire A., & Sharp D.J . ( 2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19( 8), 445-452. | [21] | Hickey C., & Peelen M.V . ( 2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85( 3), 512-518. | [22] | Jiang J., Xiang L., Zhang Q. L., & Chen A. T . ( 2014). Conflict adaptation is independent of consciousness: Behavioral and ERP evidence. Acta Psychologica Sinica, 46( 5), 581-592. | [22] | [ 蒋军, 向玲, 张庆林, 陈安涛 . ( 2014). 冲突适应独立于意识: 来自行为和ERP的证据. 心理学报,46( 5), 581-592.] | [23] | Kerns J. G., Cohen J. D., MacDonald Ⅲ, A. W.., Cho R. Y.., Stenger V. A., & Carter C. S . ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5660), 1023-1026. | [24] | Krawczyk D. C., Gazzaley A., & D'Esposito M . ( 2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141( 4), 168-177. | [25] | Krebs R. M., Boehler C. N., Appelbaum L. G., & Woldorff M. G . ( 2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8( 1), e53894. | [26] | Krebs R. M., Boehler C. N., Egner T., & Woldorff M. G . ( 2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31( 26), 9752-9759. | [27] | Krebs R. M., Boehler C. N., Roberts K. C., Song A. W., & Woldorff M. G . ( 2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22( 3), 607-615. | [28] | Krebs R. M., Boehler C. N., & Woldorff M. G . ( 2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117( 3), 341-347. | [29] | Lee H. W., Lu M-S., Chen C-Y., Muggleton N. G., Hsu T-Y., & Juan C-H . ( 2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research, 296, 459-467. | [30] | Leotti L.A., & , Wager T.D . ( 2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36( 2), 430-447. | [31] | Logan G.D., & Cowan W.B . ( 1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91( 3), 295-327. | [32] | Navalpakkam V.&Treisman A., ( 2010). Optimal reward harvesting in complex perceptual environment. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5232-5237. | [33] | Pawliczek C. M., Derntl B., Kellermann T., Kohn N., Gur R. C., & Habel U . ( 2013). Inhibitory control and trait aggression: Neural and behavioral insights using the emotional stop signal task. Neuroimage, 79( 6), 264-274. | [34] | Pessoa L. ( 2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13( 4), 160-166. | [35] | Pessoa L., & Engelmann J.B . ( 2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4( 17), 4-17. | [36] | Salinas E., & Stanford T.R . ( 2013). The countermanding task revisited: Fast stimulus detection is a key determinant of psychophysical performance. Journal of Neuroscience, 33( 13), 5668-5685. | [37] | Schevernels H., Bombeke K., Van der Borght L., Hopf J-M., Krebs R. M., & Boehler C. N . ( 2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neuroimage, 121, 115-125. | [38] | Sharp D. J., Bonnelle V., De Boissezon X., Beckmann C. F., James S. G., Patel M. C., & Mehta M. A . ( 2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107( 13), 6106-6111. | [39] | Tang D.D., & Chen A.T . ( 2013). Neural oscillation mechanisms of conflict adaptation. Scientia Sinica Vitae, 43( 11), 992-1002. | [39] | [ 唐丹丹, 陈安涛 . ( 2013). 冲突适应的神经振荡机制. 中国科学:生命科学, 43( 11), 992-1002.] | [40] | van den Berg B., Krebs R. M., Lorist M. M., & Woldorff M. G . ( 2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience, 14( 2), 561-577. | [41] | van Steenbergen H., Band G. P. H., & Hommel B . ( 2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90( 3), 234-241. | [42] | Verbruggen F., Chambers C. D., & Logan G. D . ( 2013). Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychological Science, 24( 3), 352-362. | [43] | Wang X. P., Zhao X. Y., Xue G., & Chen A. T . ( 2016). Alertness function of thalamus in conflict adaptation. Neuroimage, 132, 274-282. | [44] | Westbrook A., & Braver T.S . ( 2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89( 4), 695-710. | [45] | Xu K. Z., Anderson B. A., Emeric E. E., Sali A. W., Stuphorn V., Yantis S., & Courtney S. M . ( 2017). Neural basis of cognitive control over movement inhibition: Human fMRI and primate electrophysiology evidence. Neuron, 96( 6), 1447-1458. |
|