Please wait a minute...
Advances in Psychological Science    2018, Vol. 26 Issue (8) : 1391-1403     DOI: 10.3724/SP.J.1042.2018.01391
Regular Articles |
The neural mechanism of fear generalization based on perception
Yi LEI1,2,3(),Ying MEI1,2,3,Wenhai ZHANG4,Hong LI1,2,3
1 School of Psychology and Sociology, Shenzhen University, Shenzhen 518000, China
2 Shenzhen Key Laboratory of Emotion and Social Cognition Science, Shenzhen 518000, China
3 Shenzhen Institute of Neuroscience, Shenzhen 518000, China
4 Yancheng Institute of Jiangsu Province Mental Health Education Center, Yancheng 224003, China
Download: PDF(544 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks     Supporting Info
Guide   
Abstract  

Fear generalization is a phenomenon that conditioned fear responses extended to safe stimuli which shares perceptual similarity with threat stimuli. Moderate fear generalization is beneficial for human survival, but excessive fear generalization leads to maladaptation to environment. Rules that underlie fear generalization have been investigated by related researches based on perception, and been widely applied to studies in various domains. This paper reviews the study of the generalization of fear based on perception. Here, we begin with Pavlovian fear conditioning and the gradient of fear generalization, which lays the foundation for theoretical approaches used today. Then we review the research of fear generalization based on perception in multiple sensory channels (i.e., visual, auditory, context). Third, we summarize the neural circuits of fear generalization which involve hippocampus, amygdala, insula, and prefrontal cortex. Last but not least, we briefly clarify the difference between perception-based and concept-based fear generalization which receive increased interests. Further studies should extend this work in many ways, such as combining concepts-based fear generalization, using Just-Noticeable-Difference Threshold to ensure that the generalization stimuli can actually be discriminated, increasing the explicitness and divisity of stimuli, as well as applping hormonesand multi-modal data analysis methods.

Keywords perceptual      similarity      conditioning      fear generalization      neural mechanism     
ZTFLH:  B845  
Corresponding Authors: Yi LEI     E-mail: yutian@szu.edu.cnn
Online First Date: 02 July 2018    Issue Date: 02 July 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yi LEI
Ying MEI
Wenhai ZHANG
Hong LI
Cite this article:   
Yi LEI,Ying MEI,Wenhai ZHANG, et al. The neural mechanism of fear generalization based on perception[J]. Advances in Psychological Science, 2018, 26(8): 1391-1403.
URL:  
http://journal.psych.ac.cn/xlkxjz/EN/10.3724/SP.J.1042.2018.01391     OR     http://journal.psych.ac.cn/xlkxjz/EN/Y2018/V26/I8/1391
  
  
1 冯彪, 徐亮, 张蔚欣, 陈婷, 王文清, 郑希付 . ( 2017). 积极情绪对条件性恐惧泛化的抑制作用. 心理学报, 49( 3), 317-328.
2 徐亮, 区诵宜, 郑希付, 陈婷, 冯彪, 闫沛 . ( 2016). 状态焦虑对条件性恐惧泛化的影响. 心理学报, 48( 12), 1507-1518.
3 Ahmed, O., & Lovibond, P. F . ( 2015). The impact of instructions on generalization of conditioned fear in humans. Behavior Therapy, 46( 5), 597-603.
url: http://linkinghub.elsevier.com/retrieve/pii/S0005789415000039
4 Andreatta M., Leombruni E., Glotzbach-Schoon E., Pauli P., & Mühlberger A . ( 2015). Generalization of contextual fear in humans. Behavior Therapy, 46( 5), 583-596.
url: http://linkinghub.elsevier.com/retrieve/pii/S0005789415000040
5 Andreatta M., Neueder D., Glotzbach-Schoon E., Mühlberger A., & Pauli P . ( 2017). Effects of context preexposure and delay until anxiety retrieval on generalization of contextual anxiety. Learning & Memory, 24( 1), 43-54.
6 Bekinschtein P., Kent B. A., Oomen C. A., Clemenson G. D., Gage F. H., Saksida L. M., & Bussey T. J . ( 2013). BDNF in the dentate gyrus is required for consolidation of “pattern-separated” memories. Cell Reports, 5( 3), 759-768.
url: http://linkinghub.elsevier.com/retrieve/pii/S2211124713005500
7 Bennett M., Hermans D., Dymond S., Vervoort E., & Baeyens F . ( 2015). From bad to worse: Symbolic equivalence and opposition in fear generalisation. Cognition & Emotion, 29( 6), 1137-1145.
8 Berns G. S., Chappelow J., Cekic M., Zink C. F., Pagnoni G., & Martin-Skurski M. E . ( 2006). Neurobiological substrates of dread. Science, 312( 5774), 754-758.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1123721
9 Biedenkapp, J. C., & Rudy, J. W . ( 2007). Context preexposure prevents forgetting of a contextual fear memory: Implication for regional changes in brain activation patterns associated with recent and remote memory tests. Learning & Memory, 14( 3), 200-203.
10 Bouton M. E., Mineka S., & Barlow D. H . ( 2001). A modern learning theory perspective on the etiology of panic disorder. Psychological Review, 108( 1), 4-32.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0033-295X.108.1.4
11 Brunet A., Orr S. P., Tremblay J., Robertson K., Nader K., & Pitman R. K . ( 2008). Effect of post-retrieval propranolol on psychophysiologic responding during subsequent script- driven traumatic imagery in post-traumatic stress disorder. Journal of Psychiatric Research, 42( 6), 503-506.
url: http://linkinghub.elsevier.com/retrieve/pii/S0022395607000921
12 Burton, H., & Sinclair, R. J . ( 2000). Attending to and remembering tactile stimuli: A review of brain imaging data and single-neuron responses. Journal of Clinical Neurophysiology, 17( 6), 575-591.
url: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004691-200011000-00004
13 Cha J., Greenberg T., Carlson J. M., DeDora D. J., Hajcak G., & Mujica-Parodi L. R . ( 2014). Circuit-wide structural and functional measures predict ventromedial prefrontal cortex fear generalization: Implications for generalized anxiety disorder. Journal of Neuroscience, 34( 11), 4043-4053.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.3372-13.2014
14 Ciocchi S., Herry C., Grenier F., Wolff S. B. E., Letzkus J. J., Vlachos I., .. Lüthi A . ( 2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468( 7321), 277-282.
url: http://www.nature.com/doifinder/10.1038/nature09559
15 Cullen P. K., Gilman T. L., Winiecki P., Riccio D. C., & Jasnow A. M . ( 2015). Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization. Neurobiology of Learning & Memory, 124, 19-27.
16 Drew, M. R., & Huckleberry, K. A . ( 2017). Modulation of aversive memory by adult hippocampal neurogenesis. Neurotherapeutics, 14( 3), 646-661.
url: http://link.springer.com/10.1007/s13311-017-0528-9
17 Dunsmoor J. E., Bandettini P. A., & Knight D. C . ( 2007). Impact of continuous versus intermittent CS-UCS pairing on human brain activation during Pavlovian fear conditioning. Behavioral Neuroscience, 121( 4), 635-642.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/0735-7044.121.4.635
18 Dunsmoor J. E., Kroes M. C. W., Braren S. H., & Phelps E. A . ( 2017). Threat intensity widens fear generalization gradients. Behavioral Neuroscience, 131( 2), 168-175.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/bne0000186
19 Dunsmoor, J. E., & LaBar, K. S . ( 2012). Brain activity associated with omission of an aversive event reveals the effects of fear learning and generalization. Neurobiology of Learning & Memory, 97( 3), 301-312.
20 Dunsmoor, J. E., & LaBar, K. S . ( 2013). Effects of discrimination training on fear generalization gradients and perceptual classification in humans. Behavioral Neuroscience, 127( 3), 350-356.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0031933
21 Dunsmoor, J. E., & Murphy, G. L . ( 2015). Categories, concepts, and conditioning: How humans generalize fear. Trends in Cognitive Sciences, 19( 2), 73-77.
url: http://linkinghub.elsevier.com/retrieve/pii/S1364661314002551
22 Dunsmoor, J. E., & Murphy, G. L . ( 2014). Stimulus typicality determines how broadly fear is generalized. Psychological Science, 25( 9), 1816-1821.
url: http://journals.sagepub.com/doi/10.1177/0956797614535401
23 Dunsmoor, J. E., & Paz, R . ( 2015). Fear generalization and anxiety: Behavioral and neural mechanisms. Biological Psychiatry, 78( 5), 336-343.
url: http://linkinghub.elsevier.com/retrieve/pii/S0006322315003182
24 Dunsmoor J. E., Prince S. E., Murty V. P., Kragel P. A., & LaBar K. S . ( 2011). Neurobehavioral mechanisms of human fear generalization. NeuroImage, 55( 4), 1878-1888.
url: http://linkinghub.elsevier.com/retrieve/pii/S1053811911000760
25 Dunsmoor J. E., White A. J., & LaBar K. S . ( 2011). Conceptual similarity promotes generalization of higher order fear learning. Learning & Memory, 18( 3), 156-160.
26 Dymond S., Dunsmoor J. E., Vervliet B., Roche B., & Hermans D . ( 2015). Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behavior Therapy, 46( 5), 561-582.
url: http://linkinghub.elsevier.com/retrieve/pii/S0005789414001348
27 Dymond S., Schlund M. W., Roche B., & Whelan R . ( 2014). The spread of fear: Symbolic generalization mediates graded threat-avoidance in specific phobia. The Quarterly Journal of Experimental Psychology, 67( 2), 247-259.
url: http://journals.sagepub.com/doi/10.1080/17470218.2013.800124
28 Eckstein M., Becker B., Scheele D., Scholz C., Preckel K., Schlaepfer T. E., .. Hurlemann R . ( 2015). Oxytocin facilitates the extinction of conditioned fear in humans. Biological Psychiatry, 78( 3), 194-202.
url: https://linkinghub.elsevier.com/retrieve/pii/S0006322314007951
29 Fitzgerald P. J., Giustino T. F., Seemann J. R., & Maren S . ( 2015). Noradrenergic blockade stabilizes prefrontal activity and enables fear extinction under stress. Proceedings of the National Academy of Sciences of the United States of America, 112( 28), E3729-E3737.
url: http://www.pnas.org/lookup/doi/10.1073/pnas.1500682112
30 Ghirlanda, S., & Enquist, M . ( 2003). A century of generalization. Animal Behaviour, 66( 1), 15-36.
url: http://linkinghub.elsevier.com/retrieve/pii/S0003347203921749
31 Ghosh, S., & Chattarji, S . ( 2015). Neuronal encoding of the switch from specific to generalized fear. Nature Neuroscience, 18( 1), 112-120.
url: http://www.nature.com/articles/nn.3888
32 Gilbert P. E., Kesner R. P., & Lee I . ( 2001). Dissociating hippocampal subregions: A double dissociation between dentate gyrus and CA1. Hippocampus, 11( 6), 626-636.
url: http://doi.wiley.com/10.1002/%28ISSN%291098-1063
33 Glenn C. R., Klein D. N., Lissek S., Britton J. C., Pine D. S., & Hajcak G . ( 2012). The development of fear learning and generalization in 8-13 year-olds. Developmental Psychobiology, 54( 7), 675-684.
url: http://doi.wiley.com/10.1002/dev.v54.7
34 Gluck, M. A., & Myers, C. E . ( 1993). Hippocampal mediation of stimulus representation: A computational theory. Hippocampus, 3( 4), 491-516.
url: http://doi.wiley.com/10.1002/%28ISSN%291098-1063
35 Greenberg T., Carlson J. M., Cha J., Hajcak G., & Mujica-Parodi L. R . ( 2013 a). Neural reactivity tracks fear generalization gradients. Biological Psychology, 92( 1), 2-8.
url: http://linkinghub.elsevier.com/retrieve/pii/S030105111100305X
36 Greenberg T., Carlson J. M., Cha J., Hajcak G., & Mujica-Parodi L. R . ( 2013 b). Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depression & Anxiety, 30( 3), 242-250.
37 Hermans D., Baeyens F., & Vervliet, B .( 2013) . Generalization of acquired emotional responses. In Handbook of cognition and emotion (pp. 117-134). New York: Guilford Press.
38 Holt D. J., Boeke E. A., Wolthusen R. P. F., Nasr S., Milad M. R., & Tootell R. B. H . ( 2014). A parametric study of fear generalization to faces and non-face objects: Relationship to discrimination thresholds. Frontiers in Human Neuroscience, 8, 624.
39 Hoppenbrouwers S. S., Bulten B. H., & Brazil I. A . ( 2016). Parsing fear: A reassessment of the evidence for fear deficits in psychopathy. Psychological Bulletin, 142( 6), 573-600.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/bul0000040
40 Hovland, C. I . ( 1937). The generalization of conditioned responses: I. The sensory generalization of conditioned responses with varying frequencies of tone. The Journal of General Psychology, 17( 1), 125-148.
url: http://www.tandfonline.com/doi/abs/10.1080/00221309.1937.9917977
41 Hyun K. J., Perry C. J., Ganella D. E., & Madsen H. B . ( 2017). Postnatal development of neurotransmitter systems and their relevance to extinction of conditioned fear. Neurobiology of Learning & Memory, 138, 252-270.
42 Jasnow A. M., Lynch J. F., Gilman T. L., & Riccio D. C . ( 2017). Perspectives on fear generalization and its implications for emotional disorders. Journal of Neuroscience Research, 95( 3), 821-835.
url: http://doi.wiley.com/10.1002/jnr.v95.3
43 Keiser A. A., Turnbull L. M., Darian M. A., Feldman D. E., Song I., & Tronson N. C . ( 2017). Sex differences in context fear generalization and recruitment of hippocampus and amygdala during retrieval. Neuropsychopharmacology, 42( 2), 397-407.
url: http://www.nature.com/articles/npp2016174
44 Klucken T., Schweckendiek J., Koppe G., Merz C. J., Kagerer S., Walter B., .. Stark R . ( 2012). Neural correlates of disgust- and fear-conditioned responses. Neuroscience, 201, 209-218.
url: http://linkinghub.elsevier.com/retrieve/pii/S0306452211012747
45 Lang P. J., Davis M., & Öhman A . ( 2000). Fear and anxiety: Animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61( 3), 137-159.
url: http://linkinghub.elsevier.com/retrieve/pii/S0165032700003438
46 Lau J. Y., Lissek S., Nelson E. E., Lee Y., Robersonnay R., Poeth K., .. Pine D. S . ( 2008). Fear conditioning in adolescents with anxiety disorders: Results from a novel experimental paradigm. Journal of the American Academy of Child & Adolescent Psychiatry, 47( 1), 94-102.
47 Laufer O., Israeli D., & Paz R . ( 2016). Behavioral and neural mechanisms of overgeneralization in anxiety. Current Biology, 26( 6), 713-722.
url: http://linkinghub.elsevier.com/retrieve/pii/S0960982216000737
48 Laufer, O., & Paz, R . ( 2012). Monetary loss alters perceptual thresholds and compromises future decisions via amygdala and prefrontal networks. Journal of Neuroscience, 32( 18), 6304-6311.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.6281-11.2012
49 LeDoux, J . ( 1996). The emotional brain: The mysterious underpinnings of emotional life. New York: Touchstone.
50 LeDoux, J. E . ( 2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
url: http://www.annualreviews.org/doi/10.1146/annurev.neuro.23.1.155
51 Levy-Gigi E., Szabo C., Richter-Levin G., & Kéri S . ( 2015). Reduced hippocampal volume is associated with overgeneralization of negative context in individuals with PTSD. Neuropsychology, 29( 1), 151-161.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/neu0000131
52 Likhtik, E., & Paz, R . ( 2015). Amygdala-prefrontal interactions in (mal)adaptive learning. Trends in Neurosciences, 38( 3), 158-166.
url: http://linkinghub.elsevier.com/retrieve/pii/S0166223614002355
53 Likhtik E., Stujenske J. M., Topiwala M. A., Harris A. Z., & Gordon J. A . ( 2014). Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nature Neuroscience, 17( 1), 106-113.
url: http://www.nature.com/articles/nn.3582
54 Lissek, S . ( 2012). Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: The case for conditioned overgeneralization. Depression and Anxiety, 29( 4), 257-263.
url: http://doi.wiley.com/10.1002/da.2012.29.issue-4
55 Lissek S., Biggs A. L., Rabin S. J., Cornwell B. R., Alvarez R. P., Pine D. S., & Grillon C . ( 2008). Generalization of conditioned fear-potentiated startle in humans: Experimental validation and clinical relevance. Behaviour Research & Therapy, 46( 5), 678-687.
56 Lissek S., Bradford D. E., Alvarez R. P., Burton P., Espensen-Sturges T., Reynolds R. C., & Grillon C . ( 2014). Neural substrates of classically conditioned fear-generalization in humans: A parametric fMRI Study. Social Cognitive & Affective Neuroscience, 9( 8), 1134-1142.
57 Lissek S., Kaczkurkin A. N., Rabin S., Geraci M., Pine D. S., & Grillon C . ( 2014). Generalized anxiety disorder is associated with overgeneralization of classically conditioned fear. Biological Psychiatry, 75( 11), 909-915.
url: http://linkinghub.elsevier.com/retrieve/pii/S000632231300680X
58 Lissek S., Rabin S., Heller R. E., Lukenbaugh D., Geraci M., Pine D. S., & Grillon C . ( 2010). Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. American Journal of Psychiatry, 167( 1), 47-55.
url: http://psychiatryonline.org/doi/abs/10.1176/appi.ajp.2009.09030410
59 Lommen M. J. J., Engelhard I. M., & van den Hout, M. A . ( 2010). Neuroticism and avoidance of ambiguous stimuli: Better safe than sorry? Personality & Individual Differences, 49( 8), 1001-1006.
60 Lopresto D., Schipper P., & Homberg J. R . ( 2016). Neural circuits and mechanisms involved in fear generalization: Implications for the pathophysiology and treatment of posttraumatic stress disorder. Neuroscience & Biobehavioral Reviews, 60, 31-42.
61 Lynch J., III., Cullen P. K., Jasnow A. M., & Riccio D. C . ( 2013). Sex differences in the generalization of fear as a function of retention intervals. Learning & Memory, 20( 11), 628-632.
62 Lynch J. F., III., Dejanovic D., Winiecki P., Mulvany J., Ortiz S., Riccio D.C., & Jasnow A. M . ( 2014). Activation of ERβ modulates fear generalization through an effect on memory retrieval. Hormones & Behavior, 66( 2), 421-429.
63 Lynch J. F., III., Winiecki P., Vanderhoof T., Riccio. D. C., & Jasnow A. M . ( 2016). Hippocampal cytosolic estrogen receptors regulate fear generalization in females. Neurobiology of Learning & Memory, 130, 83-92.
64 Maren S., Phan K. L., & Liberzon I . ( 2013). The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nature Reviews Neuroscience, 14( 6), 417-428.
url: http://www.nature.com/articles/nrn3492
65 Marschner A., Kalisch R., Vervliet B., Vansteenwegen D., & Buchel C . ( 2008). Dissociable roles for the hippocampus and the amygdala in human cued versus context fear conditioning. Journal of Neuroscience, 28( 36), 9030-9036.
url: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1651-08.2008
66 Mcallister K. A. L., Saksida L. M., & Bussey T. J . ( 2013). Dissociation between memory retention across a delay and pattern separation following medial prefrontal cortex lesions in the touchscreen TUNL task. Neurobiology of Learning & Memory, 101, 120-126.
67 Mchugh T. J., Jones M. W., Quinn J. J., Balthasar N., Coppari R., Elmquist J. K., .. Tonegawa S . ( 2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317( 5834), 94-99.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1140263
68 McLean C. P., Asnaani A., Litz B. T., & Hofmann S. G . ( 2011). Gender differences in anxiety disorders: Prevalence, course of illness, comorbidity and burden of illness. Journal of Psychiatric Research, 45( 8), 1027-1035.
url: http://linkinghub.elsevier.com/retrieve/pii/S0022395611000458
69 Milad M. R., Wright C. I., Orr S. P., Pitman R. K., Quirk G. J., & Rauch S. L . ( 2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62( 5), 446-454.
url: http://linkinghub.elsevier.com/retrieve/pii/S0006322306012984
70 Missig G., Ayers L. W., Schulkin J., & Rosen J. B . ( 2010). Oxytocin reduces background anxiety in a fear-potentiated startle paradigm. Neuropsychopharmacology, 35( 13), 2607-2616.
url: http://www.nature.com/articles/npp2010155
71 Niibori Y., Yu T. S., Epp J. R., Akers K. G., Josselyn S. A., & Frankland P. W . ( 2012). Suppression of adult neurogenesis impairs population coding of similar contexts in hippocampal CA3 region. Nature Communications, 3, 1253.
url: http://www.nature.com/articles/ncomms2261
72 Onat, S., & Büchel, C . ( 2015). The neuronal basis of fear generalization in humans. Nature Neuroscience, 18( 12), 1811-1818.
url: http://www.nature.com/articles/nn.4166
73 Orsini, C. A., & Maren, S . ( 2012). Neural and cellular mechanisms of fear and extinction memory formation. Neuroscience & Biobehavioral Reviews, 36( 7), 1773-1802.
74 Pervanidou, P., & Chrousos, G. P . ( 2010). Neuroendocrinology of post-traumatic stress disorder. In Progress in brain research (Vol. 182, pp. 149-160). Amsterdam, Netherlands: Elsevier Science & Technology.
75 Resnik, J., & Paz, R . ( 2015). Fear generalization in the primate amygdala. Nature Neuroscience, 18( 2), 188-190.
url: http://www.nature.com/articles/nn.3900
76 Resnik J., Sobel N., & Paz R . ( 2011). Auditory aversive learning increases discrimination thresholds. Nature Neuroscience, 14( 6), 791-796.
url: http://www.nature.com/articles/nn.2802
77 Sahay A., Scobie K. N., Hill A. S., O'Carroll C. M., Kheirbek M. A., Burghardt N. S., .. Hen R . ( 2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 472( 7344), 466-470.
url: http://www.nature.com/articles/nature09817
78 Saper, C. B . ( 1982). Convergence of autonomic and limbic connections in the insular cortex of the rat. Journal of Comparative Neurology, 210( 2), 163-173.
url: http://doi.wiley.com/10.1002/%28ISSN%291096-9861
79 Saul'skaya, N. B., & Sudorgina, P. V . ( 2016). Activity of the nitrergic system of the medial prefrontal cortex in rats with high and low levels of generalization of a conditioned reflex fear reaction. Neuroscience and Behavioral Physiology, 46( 8), 964-970.
url: http://link.springer.com/10.1007/s11055-016-0338-2
80 Schiele M. A., Reinhard J., Reif A., Domschke K., Romanos M., Deckert J., & Pauli P . ( 2016). Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults. Developmental Psychobiology, 58( 4), 471-481.
url: http://doi.wiley.com/10.1002/dev.v58.4
81 Squire, L. R., & Alvarez, P . ( 1995). retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5( 2), 169-177.
url: http://linkinghub.elsevier.com/retrieve/pii/0959438895800239
82 Stefanucci, J. K., & Storbeck, J . ( 2009). Don't look down: Emotional arousal elevates height perception. Journal of Experimental Psychology General, 138( 1), 131-145.
url: http://doi.apa.org/getdoi.cfm?doi=10.1037/a0014797
83 Steimer, T . ( 2002). The biology of fear- and anxiety-related behaviors. Dialogues in Clinical Neuroscience, 4( 3), 231-249.
84 Struyf D., Zaman J., Vervliet B., & van Diest I . ( 2015). Perceptual discrimination in fear generalization: Mechanistic and clinical implications. Neuroscience & Biobehavioral Reviews, 59, 201-207.
85 Talpos J. C., McTighe S. M., Dias R., Saksida L. M., & Bussey T. J . ( 2010). Trial-unique, delayed nonmatching- to-location (TUNL): A novel, highly hippocampus- dependent automated touchscreen test of location memory and pattern separation. Neurobiology of Learning & Memory, 94( 3), 341-352.
86 Treves, A., & Rolls, E. T . ( 1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2( 2), 189-199.
url: http://doi.wiley.com/10.1002/%28ISSN%291098-1063
87 Vervliet, B., & Geens, M . ( 2014). Fear generalization in humans: Impact of feature learning on conditioning and extinction. Neurobiology of Learning & Memory, 113, 143-148.
88 Vervliet B., Kindt M., Vansteenwegen D., & Hermans D . ( 2010). Fear generalization in humans: Impact of verbal instructions. Behaviour Research & Therapy, 48( 1), 38-43.
89 Viviani, D., & Stoop, R . ( 2008). Opposite effects of oxytocin and vasopressin on the emotional expression of the fear response. Progress in Brain Research, 170, 207-218.
url: http://linkinghub.elsevier.com/retrieve/pii/S0079612308004184
90 Watson, J. B., & Rayner, R . ( 1920). Conditioned emotional re. Journal of Experimental Psychology, 3, 1-14.
url: http://content.apa.org/journals/xge/3/1/1
91 Wiltgen B. J., Zhou M., Cai Y., Balaji J., Karlsson M. G., Parivash S. N., .. Silva A. J . ( 2010). The hippocampus plays a selective role in the retrieval of detailed contextual memories. Current Biology, 20( 15), 1336-1344.
url: http://linkinghub.elsevier.com/retrieve/pii/S096098221000816X
92 Woody, S. R., & Teachman, B. A . ( 2000). Intersection of disgust and fear: Normative and pathological views. Clinical Psychology: Science and Practice, 7( 3), 291-311.
url: http://doi.wiley.com/10.1093/clipsy.7.3.291
93 Xu W., Morishita W., Buckmaster P. S., Pang Z. P., Malenka R. C., & Südhof T. C . ( 2012). Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission. Neuron, 73( 5), 990-1001.
url: http://linkinghub.elsevier.com/retrieve/pii/S0896627312000888
94 Xu, W., & Südhof, T. C . ( 2013). A neural circuit for memory specificity and generalization. Science, 339( 6125), 1290-1295.
url: http://www.sciencemag.org/cgi/doi/10.1126/science.1229534
95 Zoicas I., Slattery D. A., & Neumann I. D . ( 2014). Brain oxytocin in social fear conditioning and its extinction: Involvement of the lateral septum. Neuropsychopharmacology, 39( 13), 3027-3035.
url: http://www.nature.com/articles/npp2014156
[1] LIN Borong, HE Qing, ZHAO Jin, YANG Jia, SHI Yingzhen, YAN Fangfang, XI Jie, HUANG Changbing. Transcranial electrical stimulation and visual function modulation[J]. Advances in Psychological Science, 2018, 26(9): 1632-1641.
[2] Yifan ZHANG,Xingliang QI,Houde CAI. Neural mechanisms underlying dynamic changes of active maternal behavior in rodents[J]. Advances in Psychological Science, 2018, 26(8): 1417-1428.
[3] Xiaoqian REN,Xian FANG,Xue SUI,Yan WU. Characteristics and neural mechanisms of handwritten character recognition[J]. Advances in Psychological Science, 2018, 26(7): 1174-1185.
[4] Kaili ZHANG, Pei ZHOU, Pei WANG. The affects of facial expression and gaze direction on face processing: Based on perceptual load theory[J]. Advances in Psychological Science, 2018, 26(6): 984-993.
[5] LI Kaiyun, CHEN Gongxiang, FU Xiaolan.  Visual motion perception in Autism Spectrum Disorder[J]. Advances in Psychological Science, 2018, 26(5): 831-845.
[6] LIANG Tengfei, WU Haiyan, ZHANG Yin, LONG Fangfang, CHEN Jiangtao, HU Zhonghua, LIU Qiang.  Attentional selection in the perceptual scenes and internal working memory representations: A unitized perspective[J]. Advances in Psychological Science, 2018, 26(4): 625-635.
[7] LIN Yuting, ZHANG Delong, LIU Ming.  The system of visual imagery generation and its effect factors[J]. Advances in Psychological Science, 2018, 26(4): 636-644.
[8] YU Mingyang, LI Fuhong, CAO Bihua.  The advantage in recognition of happy faces and its cognitive neural mechanism[J]. Advances in Psychological Science, 2018, 26(2): 254-261.
[9] WU Qian, WANG Yunjia.  Categorical perception of lexical tone and the neural mechanisms[J]. Advances in Psychological Science, 2018, 26(1): 62-71.
[10] HUANG Chen, ZHAO Jing.  Visual-spatial attention processing in developmental dyslexia[J]. Advances in Psychological Science, 2018, 26(1): 72-80.
[11] HE Wen-Guang.  The cognitive mechanism and neural basis of aging in language processing[J]. Advances in Psychological Science, 2017, 25(9): 1479-1491.
[12] HENG Shupeng, ZHOU Zongkui, SUN Lijun.  HENG Shupeng; ZHOU Zongkui; SUN Lijun[J]. Advances in Psychological Science, 2017, 25(9): 1565-1578.
[13] ZHANG Xiuping, ZHANG Yuping, YANG Xiaohong, YANG Yufang.  Emotion comprehension in discourse and its cognitive neural mechanism[J]. Advances in Psychological Science, 2017, 25(8): 1289-1298.
[14] HE Jinbo, NIE Yufeng, ZHOU Zongkui, CHAI Yao.  Are both neural mechanisms of Internet gaming and heroin addicts the same? Research evidence based on MRI[J]. Advances in Psychological Science, 2017, 25(8): 1327-1336.
[15] ZHONG Yiping, ZHAN Youlong, LI Jin, FAN Wei.  Study on the mechanism and intervention of moral decision: Effects of self-relevance and risk level[J]. Advances in Psychological Science, 2017, 25(7): 1093-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
Copyright © Advances in Psychological Science
Support by Beijing Magtech