Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (2): 318-329.doi: 10.3724/SP.J.1042.2024.00318
• Regular Articles • Previous Articles Next Articles
YANG Weiping1,4, LI Ruizhi1, LI Shengnan2, LIN jinfei1, REN Yanna3()
Received:
2023-07-28
Online:
2024-02-15
Published:
2023-11-23
Contact:
REN Yanna
E-mail:yanna052267213@163.com
CLC Number:
YANG Weiping, LI Ruizhi, LI Shengnan, LIN jinfei, REN Yanna. The facilitation effect of audiovisual perceptual training on the cognitive ability in older adults and its mechanisms[J]. Advances in Psychological Science, 2024, 32(2): 318-329.
研究者 | 被试 年龄 | 干预方案 | 测试任务 | 训练效应 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
任务范式 | 干预时间 | 训练频率 | 干预效应 | 近迁移效应 | 远迁移效应 | 长期效应 | |||||
Andersen等( | 71.2 | 纹理辨别任务; 字母辨别任务n = 9、n = 8 | 2天 | 12次 | 纹理识别任务和UFOV测试 | SOA阈值 | - | 没有发现分配性注意力的改善 | 至少3个月 | ||
Yotsumoto等( | 72.2 | 视觉知觉训练n = 17 | 7天 | 45分钟/次, 3次/周 | 纹理辨别任务 | SOA阈值; V1、V2、V3三个视觉区域的FA值 | - | - | - | ||
DeLoss等 ( | 71.23 | 定向辨别任务n = 16 | >7天 | 1.5小时/次, 1次/天 | 两个方向的定向辨别任务 | 噪音条件下阈值 | - | - | - | ||
Erbes等 ( | 85.90 | 使用视觉训练仪进行动态立体视觉训练n = 11 | 6周 | 2次/周 | 动态训练(显示旋转的球)和静态测试 | 立体视敏度和相应的反应时间 | 立体视觉和反应时间改善 | - | 6个月 | ||
Li等( | 60~86 | 定向辨别任务n = 20 | 3天 | 1次/天 | 视觉工作记忆任务 | 方位辨别阈值和反应时间、正确率 | 抵消年龄相关的知觉衰退 | 克服工作记忆容量的限制 | - | ||
Mishra等 ( | 71.93 | 以光栅刺激为材料的运动性扫视知觉任务n = 15 | 3~5周 10小时 | 40分钟/次, 3~5次/周 | 感知辨别任务、延迟识别工作记忆任务 | 准确性, ERP峰值(N1, N2成分) | - | 工作记忆、注意力分配改善 | - | ||
Lin等 ( | 72.9 | 计算机化VSOP训练n = 10 | 6周 | 1小时/次, 4次/周 | 有用视野(UFOV)、日常生活中工具性活动(TIADL) | 反应时; 神经成像数据 | - | 注意力、工作记忆和日常生活中的工具性活动(IADLs)改善 | - | ||
Fostick等 ( | 65.45 | 时间顺序判断任务(TOJ), n = 28 | 14天 | - | 听觉时间加工 | 时间顺序判断阈值, 强度辨别阈值 | ATP训练组言语感知提升, 积极控制组无提升 | 时间顺序判断训练组自我效能感提高 | 90天 | ||
Anderson等( | 63.00 | 基于听觉的认知训练 (Brain Fitness), n = 35 | 8周 40小时 | 每周5天, 每天1小时 | 言语感知; 听觉短时记忆; 处理速度 | 噪音言语感知, 短时记忆, 处理速度 | - | - | - | ||
Kawata等 ( | 68.07 | 听觉工作记忆训练, n = 13、听觉短时记忆训练n = 14, 听觉注意力训练, n = 14 | 4周 8小时 | 每周2天, 每次1小时 | 工作记忆, 情景记忆, 注意力测试, 纯音听力测定 | 听觉阈值, 左颞叶的灰质体积和功能连接性 | - | - | - | ||
O'Brien等 ( | 69.69 | 听觉认知训练(ACT), n = 9 | 10周 20小时 | 每周2天, 每次1小时 | 听觉 Oddball | 听觉加工、处理速度 | - | P3b振幅下降 | - | ||
Heidari等 ( | 67.6 | 元音听觉训练, n = 16 | 5周 15小时 | 每周3次, 每次1小时 | 噪音言语感知, 言语、空间和听力质量量表问卷, 听觉脑干反应 | 噪音言语感知、空间和听力质量量表、基频 | - | - | - | ||
Matos Silva等 ( | 78.6 | 第1组听觉训练(噪音语音), n = 7; 第2组(G2)过滤语音训练, n = 8 | 5周 10次 | 每周2次, 每次30分钟 | 噪音言语感知 | 噪音言语感知 | - | - | 3个月 | ||
Ferguson等( | 50~70 | 听觉音素辨别训练, 即时训练组, n = 23; 延迟训练组, n = 21 | 8~12周 | 即时训练组第1和4周进行训练, 延迟训练组第5和第8周训练 | 音素辨别、言语感知、认知、听力障碍自我报告 | 音素辨别能力 | - | 即时训练组在听力障碍的自我报告、注意力分散和工作记忆方面改善 | 4周 | ||
Tye-Murray等( | 64.6 | 听觉训练, 间隔训练组, n = 24; 集中训练组, n = 23 | 20小时 | 集中训练组的每周五次, 持续两周。间隔训练组每周两次, 持续10周 | 适当迁移处理 | 语音识别能力 | - | - | 3个月 | ||
Kattner等 (2020) | 19~58 | 听觉转换训练, 混合任务训练组, n = 19 | 4天 | 每次30~40分钟 | 听觉任务转换, 视觉任务转换, 数字stroop, 数字跨度任务, Corsi Span任务, 流体智力测量 | 听觉混合任务成本 | - | 听觉任务转换训练可以降低未经训练的视觉任务的混合成本。在工作记忆、抑制或流体智力无远迁移效应 | - | ||
Setti等 ( | 实验 组:72.75 对照 组:75.8 | 视听时间顺序辨别任务, n = 34 | 5天 | 1次/1天 每次30分钟 | 视听时间顺序辨别任务 声音诱导闪光错觉 | 75% 参与者的完成训练, 训练后时间顺序判断任务表现出较低的错觉敏感性, 辨别力d’提高。 | 训练成功的参与者与未训练的参与者和对照组相比, 错觉易感性降低。训练后错觉敏感性与训练后时间绑定窗口大小相关 | - | - | ||
Yang等 ( | 68.1 20.1 | 视听辨别任务, n = 52 | 1月4天/周 | 每天持续10~20分钟 | 视听辨别任务 | 老年人和年轻人都提高了任务表现 | - | (1)老年人训练后的P300振幅明显高于训练前的。对照组在测试前和测试后无差异。 (2)老年人和年轻人训练后的任务准确率显著高于训练前。 | - | ||
O’Brien等 ( | 74.17 24.2 | 视听同时性判断任务, n = 43 | 3天 | 1次/1天 | 视听同时性判断任务 声音诱导闪光错觉 | 老年人和年轻人在训练均有更高的准确性 | (1)老年人的时间绑定窗口从训练前到训练后显著降低。 (2)训练后两组的知觉敏感性均无变化。 | - | - | ||
Mc Govern等( | 65~85 19-31 | 视听二择迫选任务, n = 55 | 3天 | 1次/1天 | - | 两个年龄组的阈值均得到提高 | (1)裂变和融合错觉的易感性均有所降低。 (2) 两个年龄组的裂变错觉的时间绑定窗口显著缩小, 而融合错觉的时间绑定窗口仅在年轻人中显著缩小。 | - | - | ||
Lee等 ( | 63.3 64.7 | 视听综合训练 | 3次 | 2h/次 | Stroop (dots)测试的注意控制能力测试 Purdue Pegboard的非优势手上肢功能测试 | - | - | MCI参与者的注意控制能力和非优势手上肢功能方面比健康老年人得到显著改善 | - | ||
Powers等 ( | 20.73 | 视听同步判断任务, n = 22; 二择迫选任务, n = 20 | 5天 | 每天1h | 视听同步判断任务, 二择迫选任务 | 显著提高任务准确性, 视听时间绑定窗口缩小。 | - | - | 训练效果持续一周。 | ||
Powers等 ( | 23.4 | 同步判断任务, n = 13。 | 1天 | 1小时 | 同步判断任务 | 训练后, 颞后上沟(pSTS)和听觉和视觉皮层区域的BOLD显著下降, 训练后静息状态和有效连通性皮层之间的耦合显著增加。 | - | - | - | ||
Powers等 ( | 20.3 | 视听二择迫选任务, n = 22; 同步判断任务, n = 20。 | 5天 | 每天1h | 声音诱发闪光错觉任务 | 训练后辨别闪光能力提高(d’)。视听时间绑定窗口缩小。 | 无迁移变化 | - | - | ||
Sürig, Bottari和 Röder ( | 25.6 | 同时性判断训练, n = 21 | 10天 | 5次 | 冗余目标任务 定位任务 | 实验组(自适应)比对照组(随机呈现)学习更快。 辨别阈值在第一次训练后下降并保持不变。 | 空间视听腹语效应的大小增加 | 视听自适应训练组的训练效应转移到冗余目标任务上。 | - | ||
Zerr等 ( | 22.60 | 同时性判断任务, n == 40 | 3天 | 1次/一天, 4~5分钟/每次 | 视听同时性判断任务 双闪错觉任务 单词识别任务 | 提高任务准确率。视听训练比单感觉训练更能明显缩小时间绑定窗口。 | 没有向DFIT任务出现迁移; 语音感知时间绑定窗口变窄。 | - | 7天后效果持续存在。 | ||
De Niear等 ( | 20.21 | 同时性判断任务, n = 51 | 1天 | 1.5~2.0小时 | 同时性判断任务 | 困难难度训练组被试训练后任务准确性提高, 训练后时间绑定窗口缩小。简单难度组训练后时间绑定窗口显著增大。 | - | - | - | ||
De Niear等( | 20.61 | 简单刺激视听同时性判断任务组, n = 8; 语音刺激视听同时性判断任务组, n = 11; 视觉检测任务, n = 9 | 3天 | 1次/1天 | 视听同时性判断任务 | 两个训练组在训练任务的时间敏锐度上均有提高。 对照组时间绑定窗口未见缩小。 | 没有将训练转移到未训练的任务 | - | 闪光和声音任务训练组训练效果在1周后仍然持续。 | ||
Theves等 ( | 20~38 | 视听同时性判断任务组, n = 20; 无反馈视听同时性判断任务组, n = 16; 听觉oddball检测任务, n = 16 | 2天 | 1次/一天 (30~35分钟) | 视听同时性判断任务 | (1)有反馈训练显著缩小时间绑定窗口(平均降低44%) (2)无反馈训练显著缩小时间绑定窗口, 但幅度较小。 听觉oddball训练组TBW没有变化。 (3)训练后, 颞叶敏锐度的增加(80~410 ms时中央和顶叶脑区β波段活动增加) | - | - | - | ||
Horsfall等 ( | 21.03 | 明亮刺激的视听同时性判断任务组, 组, n = 11; 暗淡刺激视听同时性判断任务组, n = 10 | 1天 | 1次/一天 | 声音诱发闪光错觉任务 | 明亮刺激训练导致使用明亮刺激的时间绑定窗口减少。微弱刺激训练的组在训练后时间绑定窗口没有减少。 | 明亮刺激训练效果没有转移到昏暗刺激下的表现, 对时间绑定窗口没有影响。 | - | - | ||
Huang等 (2021) | 21.58 | SIFI任务训练组, n = 26; 只进行前后测的对照组, n = 28 | 7天 | 1次/一天 | 声音诱发闪光错觉任务 | 被试对融合和裂变错觉的敏感性降低。 训练效果呈线性趋势, 5日后趋于稳定。 | 与对照组相比, 训练组在裂变错觉上的准确性有提高, 但在融合错觉上没有提高。 | - | - | ||
La Rocca等 ( | 22.1 | 视听跨模态特征匹配任务组, n = 12; 单视觉运动一致组, n = 12; 听觉噪音与视觉刺激不相关组, n = 12 | 1天 | 1次/一天 1次/20分钟 | 视觉运动一致任务 | 训练后, 神经网络包括前额叶、顶叶和视觉皮层在γ (60~120Hz)和β (15~30Hz)波段出现大规模同步 |
研究者 | 被试 年龄 | 干预方案 | 测试任务 | 训练效应 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
任务范式 | 干预时间 | 训练频率 | 干预效应 | 近迁移效应 | 远迁移效应 | 长期效应 | |||||
Andersen等( | 71.2 | 纹理辨别任务; 字母辨别任务n = 9、n = 8 | 2天 | 12次 | 纹理识别任务和UFOV测试 | SOA阈值 | - | 没有发现分配性注意力的改善 | 至少3个月 | ||
Yotsumoto等( | 72.2 | 视觉知觉训练n = 17 | 7天 | 45分钟/次, 3次/周 | 纹理辨别任务 | SOA阈值; V1、V2、V3三个视觉区域的FA值 | - | - | - | ||
DeLoss等 ( | 71.23 | 定向辨别任务n = 16 | >7天 | 1.5小时/次, 1次/天 | 两个方向的定向辨别任务 | 噪音条件下阈值 | - | - | - | ||
Erbes等 ( | 85.90 | 使用视觉训练仪进行动态立体视觉训练n = 11 | 6周 | 2次/周 | 动态训练(显示旋转的球)和静态测试 | 立体视敏度和相应的反应时间 | 立体视觉和反应时间改善 | - | 6个月 | ||
Li等( | 60~86 | 定向辨别任务n = 20 | 3天 | 1次/天 | 视觉工作记忆任务 | 方位辨别阈值和反应时间、正确率 | 抵消年龄相关的知觉衰退 | 克服工作记忆容量的限制 | - | ||
Mishra等 ( | 71.93 | 以光栅刺激为材料的运动性扫视知觉任务n = 15 | 3~5周 10小时 | 40分钟/次, 3~5次/周 | 感知辨别任务、延迟识别工作记忆任务 | 准确性, ERP峰值(N1, N2成分) | - | 工作记忆、注意力分配改善 | - | ||
Lin等 ( | 72.9 | 计算机化VSOP训练n = 10 | 6周 | 1小时/次, 4次/周 | 有用视野(UFOV)、日常生活中工具性活动(TIADL) | 反应时; 神经成像数据 | - | 注意力、工作记忆和日常生活中的工具性活动(IADLs)改善 | - | ||
Fostick等 ( | 65.45 | 时间顺序判断任务(TOJ), n = 28 | 14天 | - | 听觉时间加工 | 时间顺序判断阈值, 强度辨别阈值 | ATP训练组言语感知提升, 积极控制组无提升 | 时间顺序判断训练组自我效能感提高 | 90天 | ||
Anderson等( | 63.00 | 基于听觉的认知训练 (Brain Fitness), n = 35 | 8周 40小时 | 每周5天, 每天1小时 | 言语感知; 听觉短时记忆; 处理速度 | 噪音言语感知, 短时记忆, 处理速度 | - | - | - | ||
Kawata等 ( | 68.07 | 听觉工作记忆训练, n = 13、听觉短时记忆训练n = 14, 听觉注意力训练, n = 14 | 4周 8小时 | 每周2天, 每次1小时 | 工作记忆, 情景记忆, 注意力测试, 纯音听力测定 | 听觉阈值, 左颞叶的灰质体积和功能连接性 | - | - | - | ||
O'Brien等 ( | 69.69 | 听觉认知训练(ACT), n = 9 | 10周 20小时 | 每周2天, 每次1小时 | 听觉 Oddball | 听觉加工、处理速度 | - | P3b振幅下降 | - | ||
Heidari等 ( | 67.6 | 元音听觉训练, n = 16 | 5周 15小时 | 每周3次, 每次1小时 | 噪音言语感知, 言语、空间和听力质量量表问卷, 听觉脑干反应 | 噪音言语感知、空间和听力质量量表、基频 | - | - | - | ||
Matos Silva等 ( | 78.6 | 第1组听觉训练(噪音语音), n = 7; 第2组(G2)过滤语音训练, n = 8 | 5周 10次 | 每周2次, 每次30分钟 | 噪音言语感知 | 噪音言语感知 | - | - | 3个月 | ||
Ferguson等( | 50~70 | 听觉音素辨别训练, 即时训练组, n = 23; 延迟训练组, n = 21 | 8~12周 | 即时训练组第1和4周进行训练, 延迟训练组第5和第8周训练 | 音素辨别、言语感知、认知、听力障碍自我报告 | 音素辨别能力 | - | 即时训练组在听力障碍的自我报告、注意力分散和工作记忆方面改善 | 4周 | ||
Tye-Murray等( | 64.6 | 听觉训练, 间隔训练组, n = 24; 集中训练组, n = 23 | 20小时 | 集中训练组的每周五次, 持续两周。间隔训练组每周两次, 持续10周 | 适当迁移处理 | 语音识别能力 | - | - | 3个月 | ||
Kattner等 (2020) | 19~58 | 听觉转换训练, 混合任务训练组, n = 19 | 4天 | 每次30~40分钟 | 听觉任务转换, 视觉任务转换, 数字stroop, 数字跨度任务, Corsi Span任务, 流体智力测量 | 听觉混合任务成本 | - | 听觉任务转换训练可以降低未经训练的视觉任务的混合成本。在工作记忆、抑制或流体智力无远迁移效应 | - | ||
Setti等 ( | 实验 组:72.75 对照 组:75.8 | 视听时间顺序辨别任务, n = 34 | 5天 | 1次/1天 每次30分钟 | 视听时间顺序辨别任务 声音诱导闪光错觉 | 75% 参与者的完成训练, 训练后时间顺序判断任务表现出较低的错觉敏感性, 辨别力d’提高。 | 训练成功的参与者与未训练的参与者和对照组相比, 错觉易感性降低。训练后错觉敏感性与训练后时间绑定窗口大小相关 | - | - | ||
Yang等 ( | 68.1 20.1 | 视听辨别任务, n = 52 | 1月4天/周 | 每天持续10~20分钟 | 视听辨别任务 | 老年人和年轻人都提高了任务表现 | - | (1)老年人训练后的P300振幅明显高于训练前的。对照组在测试前和测试后无差异。 (2)老年人和年轻人训练后的任务准确率显著高于训练前。 | - | ||
O’Brien等 ( | 74.17 24.2 | 视听同时性判断任务, n = 43 | 3天 | 1次/1天 | 视听同时性判断任务 声音诱导闪光错觉 | 老年人和年轻人在训练均有更高的准确性 | (1)老年人的时间绑定窗口从训练前到训练后显著降低。 (2)训练后两组的知觉敏感性均无变化。 | - | - | ||
Mc Govern等( | 65~85 19-31 | 视听二择迫选任务, n = 55 | 3天 | 1次/1天 | - | 两个年龄组的阈值均得到提高 | (1)裂变和融合错觉的易感性均有所降低。 (2) 两个年龄组的裂变错觉的时间绑定窗口显著缩小, 而融合错觉的时间绑定窗口仅在年轻人中显著缩小。 | - | - | ||
Lee等 ( | 63.3 64.7 | 视听综合训练 | 3次 | 2h/次 | Stroop (dots)测试的注意控制能力测试 Purdue Pegboard的非优势手上肢功能测试 | - | - | MCI参与者的注意控制能力和非优势手上肢功能方面比健康老年人得到显著改善 | - | ||
Powers等 ( | 20.73 | 视听同步判断任务, n = 22; 二择迫选任务, n = 20 | 5天 | 每天1h | 视听同步判断任务, 二择迫选任务 | 显著提高任务准确性, 视听时间绑定窗口缩小。 | - | - | 训练效果持续一周。 | ||
Powers等 ( | 23.4 | 同步判断任务, n = 13。 | 1天 | 1小时 | 同步判断任务 | 训练后, 颞后上沟(pSTS)和听觉和视觉皮层区域的BOLD显著下降, 训练后静息状态和有效连通性皮层之间的耦合显著增加。 | - | - | - | ||
Powers等 ( | 20.3 | 视听二择迫选任务, n = 22; 同步判断任务, n = 20。 | 5天 | 每天1h | 声音诱发闪光错觉任务 | 训练后辨别闪光能力提高(d’)。视听时间绑定窗口缩小。 | 无迁移变化 | - | - | ||
Sürig, Bottari和 Röder ( | 25.6 | 同时性判断训练, n = 21 | 10天 | 5次 | 冗余目标任务 定位任务 | 实验组(自适应)比对照组(随机呈现)学习更快。 辨别阈值在第一次训练后下降并保持不变。 | 空间视听腹语效应的大小增加 | 视听自适应训练组的训练效应转移到冗余目标任务上。 | - | ||
Zerr等 ( | 22.60 | 同时性判断任务, n == 40 | 3天 | 1次/一天, 4~5分钟/每次 | 视听同时性判断任务 双闪错觉任务 单词识别任务 | 提高任务准确率。视听训练比单感觉训练更能明显缩小时间绑定窗口。 | 没有向DFIT任务出现迁移; 语音感知时间绑定窗口变窄。 | - | 7天后效果持续存在。 | ||
De Niear等 ( | 20.21 | 同时性判断任务, n = 51 | 1天 | 1.5~2.0小时 | 同时性判断任务 | 困难难度训练组被试训练后任务准确性提高, 训练后时间绑定窗口缩小。简单难度组训练后时间绑定窗口显著增大。 | - | - | - | ||
De Niear等( | 20.61 | 简单刺激视听同时性判断任务组, n = 8; 语音刺激视听同时性判断任务组, n = 11; 视觉检测任务, n = 9 | 3天 | 1次/1天 | 视听同时性判断任务 | 两个训练组在训练任务的时间敏锐度上均有提高。 对照组时间绑定窗口未见缩小。 | 没有将训练转移到未训练的任务 | - | 闪光和声音任务训练组训练效果在1周后仍然持续。 | ||
Theves等 ( | 20~38 | 视听同时性判断任务组, n = 20; 无反馈视听同时性判断任务组, n = 16; 听觉oddball检测任务, n = 16 | 2天 | 1次/一天 (30~35分钟) | 视听同时性判断任务 | (1)有反馈训练显著缩小时间绑定窗口(平均降低44%) (2)无反馈训练显著缩小时间绑定窗口, 但幅度较小。 听觉oddball训练组TBW没有变化。 (3)训练后, 颞叶敏锐度的增加(80~410 ms时中央和顶叶脑区β波段活动增加) | - | - | - | ||
Horsfall等 ( | 21.03 | 明亮刺激的视听同时性判断任务组, 组, n = 11; 暗淡刺激视听同时性判断任务组, n = 10 | 1天 | 1次/一天 | 声音诱发闪光错觉任务 | 明亮刺激训练导致使用明亮刺激的时间绑定窗口减少。微弱刺激训练的组在训练后时间绑定窗口没有减少。 | 明亮刺激训练效果没有转移到昏暗刺激下的表现, 对时间绑定窗口没有影响。 | - | - | ||
Huang等 (2021) | 21.58 | SIFI任务训练组, n = 26; 只进行前后测的对照组, n = 28 | 7天 | 1次/一天 | 声音诱发闪光错觉任务 | 被试对融合和裂变错觉的敏感性降低。 训练效果呈线性趋势, 5日后趋于稳定。 | 与对照组相比, 训练组在裂变错觉上的准确性有提高, 但在融合错觉上没有提高。 | - | - | ||
La Rocca等 ( | 22.1 | 视听跨模态特征匹配任务组, n = 12; 单视觉运动一致组, n = 12; 听觉噪音与视觉刺激不相关组, n = 12 | 1天 | 1次/一天 1次/20分钟 | 视觉运动一致任务 | 训练后, 神经网络包括前额叶、顶叶和视觉皮层在γ (60~120Hz)和β (15~30Hz)波段出现大规模同步 |
[1] |
高玉林, 唐晓雨, 刘思宇, 王爱君, 张明. (2023). 内源性空间线索有效性对老年人视听觉整合的影响. 心理学报, 55(5), 671-684.
doi: 10.3724/SP.J.1041.2023.00671 |
[2] | 林崇德. (2018). 发展心理学 (第三版). 北京: 人民教育出版社. |
[3] |
吴梅红. (2023). 老龄化对F0轮廓线索在汉语言语识别去掩蔽作用的影响. 心理学报, 55(1), 94-105.
doi: 10.3724/SP.J.1041.2023.00094 |
[4] |
杨伟平, 李胜楠, 李子默, 郭敖, 任艳娜. (2020). 老年人视听觉整合的影响因素及其神经机制. 心理科学进展, 28(5), 790-799.
doi: 10.3724/SP.J.1042.2020.00790 |
[5] | 杨伟平, 杨项富, 李胜楠. (2023). 不同刺激条件下视听觉整合的年老化研究. 心理科学, 46(4), 848-856. |
[6] |
周衡, 何华, 于薇, 王爱君, 张明. (2020). 老年人声音诱发闪光错觉的大脑静息态低频振幅. 心理学报, 52(7), 823-834.
doi: 10.3724/SP.J.1041.2020.00823 |
[7] | Andersen, G. J., Ni, R., Bower, J. D., & Watanabe, T. (2010). Perceptual learning, aging, and improved visual performance in early stages of visual processing. Journal of Vision, 10(13), 4. |
[8] |
Anderson, N. D. (2019). Cognitive neuroscience of aging. The Journals of Gerontology: Series B, 74(7), 1083-1085.
doi: 10.1093/geronb/gbz078 URL |
[9] |
Anderson, S., White-Schwoch, T., Parbery-Clark, A., & Kraus, N. (2013). Reversal of age-related neural timing delays with training. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4357-4362.
doi: 10.1073/pnas.1213555110 pmid: 23401541 |
[10] |
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., Al-Hashimi, O., Faraji, F., Janowich, J.,... Gazzaley, A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97-101.
doi: 10.1038/nature12486 |
[11] |
Anguera, J. A., Schachtner, J. N., Simon, A. J., Volponi, J., Javed, S., Gallen, C. L., & Gazzaley, A. (2021). Long-term maintenance of multitasking abilities following video game training in older adults. Neurobiology of Aging, 103, 22-30.
doi: 10.1016/j.neurobiolaging.2021.02.023 pmid: 33789209 |
[12] | Belleville, S., Mellah, S., de Boysson, C., Demonet, J. F., & Bier, B. (2014). The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. Plos One, 9(8), e102710. |
[13] |
Bieber, R. E., & Gordon-Salant, S. (2021). Improving older adults' understanding of challenging speech: Auditory training, rapid adaptation and perceptual learning. Hearing Research, 402, 108054.
doi: 10.1016/j.heares.2020.108054 URL |
[14] |
Chan, J. S., Kaiser, J., Brandl, M., Matura, S., Prvulovic, D., Hogan, M. J., & Naumer, M. J. (2015). Expanded temporal binding windows in people with mild cognitive impairment. Current Alzheimer Research, 12(1), 61-68.
pmid: 25523426 |
[15] |
Chan, J. S., Wibral, M., Stawowsky, C., Brandl, M., Helbling, S., Naumer, M. J.,... Wollstadt, P. (2021). Predictive coding over the lifespan: Increased reliance on perceptual priors in older adults-a magnetoencephalography and dynamic causal modeling study. Frontiers in Aging Neuroscience, 13, 631599.
doi: 10.3389/fnagi.2021.631599 URL |
[16] | Chen, C., Liu, G. G., Shi, Q. L., Sun, Y., Zhang, H., Wang, M.,... Yao, Y. (2020). Health-related quality of life and associated factors among oldest-old in china. The Journal of Nutrition, Health & Aging, 24(3), 330-338. |
[17] |
DeLoss, D. J., Watanabe, T., & Andersen, G. J. (2015). Improving vision among older adults: Behavioral training to improve sight. Psychological Science, 26(4), 456-466.
doi: 10.1177/0956797614567510 pmid: 25749697 |
[18] |
De Niear, M. A., Gupta, P. B., Baum, S. H., & Wallace, M. T. (2018). Perceptual training enhances temporal acuity for multisensory speech. Neurobiology of Learning and Memory, 147, 9-17.
doi: S1074-7427(17)30167-3 pmid: 29107704 |
[19] |
De Niear, M. A., Koo, B., & Wallace, M. T. (2016). Multisensory perceptual learning is dependent upon task difficulty. Experimental Brain Research, 234(11), 3269-3277.
pmid: 27401473 |
[20] |
Diaconescu, A. O., Hasher, L., & McIntosh, A. R. (2013). Visual dominance and multisensory integration changes with age. Neuroimage, 65, 152-166.
doi: 10.1016/j.neuroimage.2012.09.057 pmid: 23036447 |
[21] |
Dias, J. W., McClaskey, C. M., & Harris, K. C. (2021). Audiovisual speech is more than the sum of its parts: Auditory-visual superadditivity compensates for age- related declines in audible and lipread speech intelligibility. Psychology and Aging, 36(4), 520-530.
doi: 10.1037/pag0000613 URL |
[22] |
Diaz, M. T., & Yalcinbas, E. (2021). The neural bases of multimodal sensory integration in older adults. International Journal of Behavioral Development, 45(5), 409-417.
doi: 10.1177/0165025420979362 pmid: 34650316 |
[23] | Erbes, S., & Michelson, G. (2021). Stereoscopic visual perceptual learning in seniors. Geriatrics, 6(3), 94. |
[24] |
Fearon, C., Butler, J. S., Newman, L., Lynch, T., & Reilly, R. B. (2015). Audiovisual processing is abnormal in Parkinson’s disease and correlates with freezing of gait and disease duration. Journal of Parkinson's Disease, 5(4), 925-936.
doi: 10.3233/JPD-150655 URL |
[25] |
Ferguson, M. A., Henshaw, H., Clark, D. P., & Moore, D. R. (2014). Benefits of phoneme discrimination training in a randomized controlled trial of 50- to 74-year-olds with mild hearing loss. Ear and Hearing, 35(4), 110-121.
doi: 10.1097/AUD.0000000000000020 pmid: 24752284 |
[26] |
Festa, E. K., Katz, A. P., Ott, B. R., Tremont, G., & Heindel, W. C. (2017). Dissociable effects of aging and mild cognitive impairment on bottom-up audiovisual integration. Journal of Alzheimers Disease, 59(1), 155-167.
doi: 10.3233/JAD-161062 pmid: 28598838 |
[27] |
Fields, R. D. (2015). A new mechanism of nervous system plasticity: Activity-dependent myelination. Nature Reviews Neuroscience, 16(12), 756-767.
doi: 10.1038/nrn4023 pmid: 26585800 |
[28] |
Fostick, L., Taitelbaum-Swead, R., Kreitler, S., Zokraut, S., & Billig, M. (2020). Auditory training to improve speech perception and self-efficacy in aging adults. Journal of Speech Language and Hearing Research, 63(4), 1270-1281.
doi: 10.1044/2019_JSLHR-19-00355 URL |
[29] |
Guo, A., Yang, W., Yang, X., Lin, J., Li, Z., Ren, Y.,... Wu, J. (2023). Audiovisual n-back training alters the neural processes of working memory and audiovisual integration: Evidence of changes in ERPs. Brain Sciences, 13(7), 992.
doi: 10.3390/brainsci13070992 URL |
[30] |
Hampton, T. (2019). For Alzheimer pathology, light and sound stimulation may hold promise. Jama-journal of the American Medical Association, 322(1), 17-18.
doi: 10.1001/jama.2019.8295 |
[31] |
Han, X., Xu, J., Chang, S., Keniston, L., & Yu, L. (2021). Multisensory-guided associative learning enhances multisensory representation in primary auditory cortex. Cerebral Cortex, 32(5), 1040-1054.
doi: 10.1093/cercor/bhab264 URL |
[32] |
Heidari, A., Moossavi, A., Yadegari, F., Bakhshi, E., & Ahadi, M. (2020). Effect of vowel auditory training on the speech-in-noise perception among older adults with normal hearing. Iranian Journal of Otorhinolaryngology, 32(111), 229-236.
doi: 10.22038/ijorl.2019.33433.2110 pmid: 32850511 |
[33] | Hirst, R. J., Setti, A., Kenny, R. A., & Newell, F. N. (2019). Age-related sensory decline mediates the sound-induced flash illusion: Evidence for reliability weighting models of multisensory perception. Scientific Reports, 9(1), 19347. |
[34] | Horsfall, R. P., Wuerger, S. M., & Meyer, G. F. (2021). Narrowing of the audiovisual temporal binding window due to perceptual training is specific to high visual intensity stimuli. I-perception, 12(1), 2041669520978670. |
[35] | Huang, H., Chen, G., Liu, Z.-Y., Meng, Q.-L., Li, J., Dong, H.,... Zheng, Y. (2023). Age-related hearing loss accelerates the decline in fast speech comprehension and the decompensation of cortical network connections. Neural Regeneration Research, 18(9), 1968-1975. |
[36] |
Huang, J., Wang, E., Lu, K., Wang, A., & Zhang, M. (2022). Long-term training reduces the responses to the sound-induced flash illusion. Attention Perception & Psychophysics, 84(2), 529-539.
doi: 10.3758/s13414-021-02363-5 |
[37] |
Kawata, N. Y. S., Nouchi, R., Oba, K., Matsuzaki, Y., & Kawashima, R. (2022). Auditory cognitive training improves brain plasticity in healthy older adults: Evidence from a randomized controlled trial. Frontiers in Aging Neuroscience, 14, 826672.
doi: 10.3389/fnagi.2022.826672 URL |
[38] |
Keil, J., & Senkowski, D. (2018). Neural oscillations orchestrate multisensory processing. Neuroscientist, 24(6), 609-626.
doi: 10.1177/1073858418755352 pmid: 29424265 |
[39] |
La Rocca, D., Ciuciu, P., Engemann, D. A., & van Wassenhove, V. (2020). Emergence of β and γ networks following multisensory training. Neuroimage, 206, 116313.
doi: 10.1016/j.neuroimage.2019.116313 URL |
[40] |
Laurienti, P. J., Burdette, J. H., Maldjian, J. A., & Wallace, M. T. (2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27(8), 1155-1163.
doi: 10.1016/j.neurobiolaging.2005.05.024 pmid: 16039016 |
[41] | Lee, L., Har, A.W., Ngai, C., Lai, D.W., Lam, B.Y., & Chan, C.C. (2020). Audiovisual integrative training for augmenting cognitive- motor functions in older adults with mild cognitive impairment. BMC Geriatrics, 20(1), 64. |
[42] |
Li, X., Allen, P. A., Lien, M.-C., & Yamamoto, N. (2017). Practice makes it better: A psychophysical study of visual perceptual learning and its transfer effects on aging. Psychology and Aging, 32(1), 16-27.
doi: 10.1037/pag0000145 pmid: 27991807 |
[43] | Lidestam, B., Moradi, S., Pettersson, R., & Ricklefs, T. (2014). Audiovisual training is better than auditory-only training for auditory-only speech-in-noise identification. The Journal of the Acoustical Society of America, 136(2), 142-147. |
[44] |
Lin, F. V., Heffner, K. L., Ren, P., Tivarus, M. E., Brasch, J., Chen, D.-G. D.,... Tadin, D. (2016). Cognitive and neural effects of vision‐based speed of processing training in older adults with amnestic mild cognitive impairment: A pilot study. Journal of the American Geriatrics Society, 64(6), 1293-1298.
doi: 10.1111/jgs.2016.64.issue-6 URL |
[45] |
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339-355.
doi: 10.1037//0882-7974.9.3.339 pmid: 7999320 |
[46] |
Mahoney, J. R., Cotton, K., & Verghese, J. (2019). Multisensory integration predicts balance and falls in older adults. The Journals of Gerontology: Series A, 74(9), 1429-1435.
doi: 10.1093/gerona/gly245 URL |
[47] | Matos Silva, C., Fernandes, C., Rocha, C., & Pereira, T. (2020). Study of acute and sub-acute effects of auditory training on the central auditory processing in older adults with hearing loss—A pilot study. International Journal of Environmental Research and Public Health, 17(14), 4944. |
[48] |
McGovern, D. P., Burns, S., Hirst, R. J., & Newell, F. N. (2022). Perceptual training narrows the temporal binding window of audiovisual integration in both younger and older adults. Neuropsychologia, 173, 108309.
doi: 10.1016/j.neuropsychologia.2022.108309 URL |
[49] |
Michail, G., Senkowski, D., Niedeggen, M., & Keil, J. (2021). Memory load alters perception-related neural oscillations during multisensory integration. The Journal of Neuroscience, 41(7), 1505-1515.
doi: 10.1523/JNEUROSCI.1397-20.2020 URL |
[50] |
Mishra, J., Rolle, C. E., & Gazzaley, A. (2015). Neural plasticity underlying visual perceptual learning in aging. Brain Research, 1612, 140-151.
doi: 10.1016/j.brainres.2014.09.009 pmid: 25218557 |
[51] |
Monje, M. (2018). Myelin plasticity and nervous system function. Annual Review of Neuroscience, 41(1), 61-76.
doi: 10.1146/neuro.2018.41.issue-1 URL |
[52] |
Monje, M.,O'Brien, J. L., Lister, J. J., Fausto, B. A., Clifton, G. K., & Edwards, J. D. (2017). Cognitive training enhances auditory attention efficiency in older adults. Frontiers in Aging Neuroscience, 9, 322.
doi: 10.3389/fnagi.2017.00322 pmid: 29046634 |
[53] |
Edwards, J. D., O'Brien, J. M., Chan, J. S., & Setti, A. (2020). Audio-visual training in older adults: 2-interval-forced choice task improves performance. Frontiers in Neuroscience, 14, 569212.
doi: 10.3389/fnins.2020.569212 URL |
[54] |
Osaka, M., Yaoi, K., Otsuka, Y., Katsuhara, M., & Osaka, N. (2012). Practice on conflict tasks promotes executive function of working memory in the elderly. Behavioural Brain Research, 233(1), 90-98.
doi: 10.1016/j.bbr.2012.04.044 pmid: 22579495 |
[55] |
Peiffer, A. M., Mozolic, J. L., Hugenschmidt, C. E., & Laurienti, P. J. (2007). Age-related multisensory enhancement in a simple audiovisual detection task. Neuroreport, 18(10), 1077-1081.
doi: 10.1097/WNR.0b013e3281e72ae7 pmid: 17558300 |
[56] |
Powers, A. R.,3rd, Hevey, M. A., & Wallace, M. T. (2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32(18), 6263-6274.
doi: 10.1523/JNEUROSCI.6138-11.2012 pmid: 22553032 |
[57] |
Powers, A. R.,3rd, Hillock, A. R., & Wallace, M. T. (2009). Perceptual training narrows the temporal window of multisensory binding. The Journal of Neuroscience, 29(39), 12265-12274.
doi: 10.1523/JNEUROSCI.3501-09.2009 URL |
[58] |
Powers, A. R.,3rd, Hillock-Dunn, A., & Wallace, M. T. (2016). Generalization of multisensory perceptual learning. Scientific Reports, 6, 23374.
doi: 10.1038/srep23374 pmid: 27000988 |
[59] | Ren, Y., Guo, A., Xu, Z., Wang, T., Wu, R., & Yang, W. (2020). Age-related functional brain connectivity during audio-visual hand-held tool recognition. Brain and Behavior, 10(9), e01759. |
[60] | Ren, Y., Li, H., Li, Y., Xu, Z., Luo, R., Ping, H.,... Yang, W. (2023). Sustained visual attentional load modulates audiovisual integration in older and younger adults. I-perception, 14(1), 20416695231157348. |
[61] |
Ren, Y., Li, S., Wang, T., & Yang, W. (2020). Age-related shifts in theta oscillatory activity during audio-visual integration regardless of visual attentional load. Frontiers in Aging Neuroscience, 12, 571950.
doi: 10.3389/fnagi.2020.571950 URL |
[62] |
Ren, Y., Li, S., Zhao, N., Hou, Y., Wang, T., Ren, Y., & Yang, W. (2022). Auditory attentional load attenuates age-related audiovisual integration: An EEG study. Neuropsychologia, 174, 108346.
doi: 10.1016/j.neuropsychologia.2022.108346 URL |
[63] | Ren, Y., Suzuki, K., Yang, W., Ren, Y., Wu, F., Yang, J.,... Hirata, K. (2018). Absent audiovisual integration elicited by peripheral stimuli in Parkinson's disease. Parkinson's Disease, doi: 10.1155/2018/1648017. |
[64] | Ren, Y., Xu, Z., Lu, S., Wang, T., & Yang, W. (2020). Stimulus specific to age-related audio-visual integration in discrimination tasks. I-Perception, 11(6), 2041669520978419. |
[65] | Schneider, B. A., & Pichora-Fuller, M. K. (2000). Implications of perceptual deterioration for cognitive aging research. In F. I. M. Craik & T. A. Salthouse (Eds.), Handbook of aging and cognition (pp. 155-219). Mahwah, NJ: Erlbaum. |
[66] |
Sürig, R., Bottari, D., & Röder, B. (2018). Transfer of audio-visual temporal training to temporal and spatial audio-visual tasks. Multisensory Research, 31(6), 556-578.
doi: 10.1163/22134808-00002611 pmid: 31264612 |
[67] |
Seitz, A. R., Kim, R., & Shams, L. (2006). Sound facilitates visual learning. Current Biology, 16(14), 1422-1427.
pmid: 16860741 |
[68] |
Setti, A., Finnigan, S., Sobolewski, R., McLaren, L., Robertson, I. H., Reilly, R. B.,... Newell, F. N. (2011). Audiovisual temporal discrimination is less efficient with aging: An event-related potential study. Neuroreport, 22(11), 554-558.
doi: 10.1097/WNR.0b013e328348c731 pmid: 21691233 |
[69] |
Setti, A., Stapleton, J., Leahy, D., Walsh, C., Kenny, R. A., & Newell, F. N. (2014). Improving the efficiency of multisensory integration in older adults: Audio-visual temporal discrimination training reduces susceptibility to the sound-induced flash illusion. Neuropsychologia, 61, 259-268.
doi: 10.1016/j.neuropsychologia.2014.06.027 pmid: 24983146 |
[70] |
Slade, K., Plack, C. J., & Nuttall, H. E. J. T. i. N. (2020). The effects of age-related hearing loss on the brain and cognitive function. Trends in Neurosciences, 43(10), 810-821.
doi: 10.1016/j.tins.2020.07.005 pmid: 32826080 |
[71] | Stein, B. E., & Meredith, M. A. (1993). The merging of the senses. MA: Massachusetts Institute of Technology (MIT) Press. |
[72] |
Stein, B. E., Stanford, T. R., & Rowland, B. A. (2020). Multisensory integration and the society for neuroscience: Then and now. The Journal of Neuroscience, 40(1), 3-11.
doi: 10.1523/JNEUROSCI.0737-19.2019 URL |
[73] | Stevenson, R. A., Baum, S. H., Krueger, J., Newhouse, P. A., & Wallace, M. T. (2018). Links between temporal acuity and multisensory integration across life span. Journal of Experimental Psychology Human Perception & Performance, 44(1), 106-116. |
[74] |
Stevenson, R. A., Wilson, M. M., Powers, A. R., & Wallace, M. T. (2013). The effects of visual training on multisensory temporal processing. Experimental Brain Research, 225(4), 479-489.
doi: 10.1007/s00221-012-3387-y pmid: 23307155 |
[75] |
Theves, S., Chan, J. S., Naumer, M. J., & Kaiser, J. (2020). Improving audio-visual temporal perception through training enhances beta-band activity. Neuroimage, 206, 116312.
doi: 10.1016/j.neuroimage.2019.116312 URL |
[76] |
Toovey, B. R. W., Kattner, F., & Schubert, T. (2021). Cross-modal transfer following auditory task-switching training in old adults. Frontiers in Psychology, 12, 615518.
doi: 10.3389/fpsyg.2021.615518 URL |
[77] |
Tran, T. T., Rolle, C. E., Gazzaley, A., & Voytek, B. (2020). Linked sources of neural noise contribute to age-related cognitive decline. Journal of Cognitive Neuroscience, 32(9), 1813-1822.
doi: 10.1162/jocn_a_01584 pmid: 32427069 |
[78] |
Tye-Murray, N., Spehar, B., Barcroft, J., & Sommers, M. (2017). Auditory training for adults who have hearing loss: A comparison of spaced versus massed practice schedules. Journal of Speech Language and Hearing Research, 60(8), 2337-2345.
doi: 10.1044/2017_JSLHR-H-16-0154 URL |
[79] |
Wu, J., Yang, J., Yu, Y., Li, Q., Nakamura, N., Shen, Y.,... Abe, K. (2012). Delayed audiovisual integration of patients with mild cognitive impairment and Alzheimer’s disease compared with normal aged controls. Journal of Alzheimer's Disease, 32(2), 317-328.
doi: 10.3233/JAD-2012-111070 URL |
[80] |
Wu, J., Yang, W., Gao, Y., & Kimura, T. (2012). Age-related multisensory integration elicited by peripherally presented audiovisual stimuli. Neuroreport, 23(10), 616-620.
doi: 10.1097/WNR.0b013e3283552b0f pmid: 22643234 |
[81] |
Xue, L., Lv, Y., & Zhao, J.-G. (2023). Neural attenuation: Age-related dedifferentiation in the left occipitotemporal cortex for visual word processing. Cerebral Cortex, 33(10), 6111-6119.
doi: 10.1093/cercor/bhac488 URL |
[82] |
Yang, W., Guo, A., Li, Y., Qiu, J., Li, S., Yin, S.,... Ren, Y. (2018). Audio-visual spatiotemporal perceptual training enhances the p300 component in healthy older adults. Frontiers in Psychology, 9, 2537.
doi: 10.3389/fpsyg.2018.02537 pmid: 30618958 |
[83] |
Yang, W., Guo, A., Yao, H., Yang, X., Li, Z., Li, S.,... Zhang, Z. (2022). Effect of aging on audiovisual integration: Comparison of high- and low-intensity conditions in a speech discrimination task. Frontiers in Aging Neuroscience, 14, 1010060.
doi: 10.3389/fnagi.2022.1010060 URL |
[84] |
Yang, W., Li, Z., Guo, A., Li, S., Yang, X., & Ren, Y. (2021). Effects of stimulus intensity on audiovisual integration in aging across the temporal dynamics of processing. International Journal of Psychophysiology, 162, 95-103.
doi: 10.1016/j.ijpsycho.2021.01.017 pmid: 33529642 |
[85] |
Yotsumoto, Y., Chang, L. H., Ni, R., Pierce, R., Andersen, G. J., Watanabe, T., & Sasaki, Y. (2014). White matter in the older brain is more plastic than in the younger brain. Nature Communications, 5, 5504.
doi: 10.1038/ncomms6504 pmid: 25407566 |
[86] |
Zaltz, Y., & Kishon-Rabin, L. (2022). Difficulties experienced by older listeners in utilizing voice cues for speaker discrimination. Frontiers in Psychology, 13, 797422.
doi: 10.3389/fpsyg.2022.797422 URL |
[87] |
Zerr, M., Freihorst, C., Schütz, H., Sinke, C., Müller, A., Bleich, S.,... Szycik, G. R. (2019). Brief sensory training narrows the temporal binding window and enhances long-term multimodal speech perception. Frontiers in Psychology, 10, 2489.
doi: 10.3389/fpsyg.2019.02489 pmid: 31749748 |
[88] |
Zhang, B., Gao, Z., Wang, X., Yao, Z., Xu, G., Liang, Z., & Zhou, Y. (2020). Aging affects fine and coarse coding of orientation information in macaque primary visual cortex. Neuroscience, 438, 50-59.
doi: S0306-4522(20)30297-9 pmid: 32407975 |
[89] |
Zilber, N., Ciuciu, P., Gramfort, A., Azizi, L., & van Wassenhove, V. (2014). Supramodal processing optimizes visual perceptual learning and plasticity. Neuroimage, 93 (Pt 1), 32-46.
doi: 10.1016/j.neuroimage.2014.02.017 URL |
[1] | YU Jing, NIU Cheng-Cheng, XU Hong-Zhou, JIANG Hai-Xin, LIN Guo-Jun, WU Ke, XU Zi-Han. The neuropsychological mechanism underlying the effect of volunteering on older adults’ cognitive function [J]. Advances in Psychological Science, 2024, 32(3): 413-420. |
[2] | LU Xiaowei, GUO Zhibin, CHENG Yu, SHEN Jie, GUI Wenjun, ZHANG Lin. Evaluation of facial trustworthiness in older adults: A positivity effect and its mechanism [J]. Advances in Psychological Science, 2023, 31(8): 1496-1503. |
[3] | CHEN Haobin, WANG Fengyan. Wisdom in old age [J]. Advances in Psychological Science, 2021, 29(5): 885-893. |
[4] | YANG Weiping, LI Shengnan, LI Zimo, GUO Ao, REN Yanna. The influential factors and neural mechanisms of audiovisual integration in older adults [J]. Advances in Psychological Science, 2020, 28(5): 790-799. |
[5] | Ya-xuan Ang, Fang-fang Wang, Yong-na Li. The Positivity Effect in Facial Trustworthiness Judgment in Older Adults: Age Difference and the Effects of Cognitive Declines [J]. Advances in Psychological Science, 2019, 27(suppl.): 11-11. |
[6] | LUO Xiaoxiao, KANG Guanlan, ZHOU Xiaolin. The influential factors and neural mechanisms of McGurk effect [J]. Advances in Psychological Science, 2018, 26(11): 1935-1951. |
[7] | WANG Chen-Xi, CHEN Tian-Yong, HAN Bu-Xin. Plasticity of the prefrontal cortex in old age and underlying mechanisms [J]. Advances in Psychological Science, 2018, 26(11): 2003-2012. |
[8] | XIN Xin; REN Gui-Qin; LI Jin-Cai; TANG Xiao-Yu. The characteristics and mechanisms of audiovisual integration: Evidence from mismatch negativity [J]. Advances in Psychological Science, 2017, 25(5): 757-768. |
[9] | QIAN Haoyue; ZHU Min; GAO Xiangping. Configural processing of faces in old adulthood [J]. Advances in Psychological Science, 2017, 25(2): 230-236. |
[10] | HAN Xiao; SHI Daiqing; ZHOU Xiaowen; YANG Yinghua; ZHU Zude. The training and transfer effect of cognitive training in old adults [J]. Advances in Psychological Science, 2016, 24(6): 909-922. |
[11] | WANG Huifang; JIANG Jingchuan. Framing effect in elderly adults [J]. Advances in Psychological Science, 2016, 24(4): 612-621. |
[12] | YANZhimin;LI Dan;ZHAOYuhan;YU Lin;YANGXun;ZHUShuirong;WANG Ping. Increasing Loneliness in Old People: A Cross-temporal Meta-analysis from 1995 to 2011 [J]. Advances in Psychological Science, 2014, 22(7): 1084-1091. |
[13] | WEN Xiao-Hui;LI Guo-Qiang;LIU Qiang. Processing of Audiovisual Integration and Its Neural Mechanism [J]. , 2011, 19(7): 976-982. |
[14] | BAI Rong;FAN Hui-Yong;ZHANG Jin-Fu. The Effect of Physical Activity on Cognitive Function in Older Adults [J]. , 2011, 19(12): 1777-1787. |
[15] |
DU Xin;CHEN Tian-Yong.
Cognitive and Neural Plasticity of Executive Functions among Older Adults [J]. , 2010, 18(9): 1471-1480. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||