心理学报 ›› 2020, Vol. 52 ›› Issue (9): 1031-1047.doi: 10.3724/SP.J.1041.2020.01031
• 研究报告 • 下一篇
收稿日期:
2019-10-22
发布日期:
2020-09-04
出版日期:
2020-09-25
通讯作者:
张智君
E-mail:zjzhang@zju.edu.cn
基金资助:
LIU Zhifang1, TONG Wen2, ZHANG Zhijun3(), ZHAO Yajun4
Received:
2019-10-22
Online:
2020-09-04
Published:
2020-09-25
Contact:
ZHANG Zhijun
E-mail:zjzhang@zju.edu.cn
摘要:
研究包含3项实验, 通过观察语境预测性与目标词汇的整词词频、词内汉字字频间交互作用, 以探讨阅读中语境预测性如何影响中文词汇加工问题。研究以双字词为例, 实验1操控目标词汇的语境预测性与整词词频, 结果发现, 语境预测性与整词词频交互作用不显著。实验2操控目标词汇的语境预测性与首字字频, 结果发现, 语境预测性与首字字频交互作用不显著。实验1和实验2的贝叶斯分析都倾向于支持交互作用不存在假设。实验3操控目标词汇的语境预测性与尾字字频, 结果发现, 语境预测性与尾字字频交互影响首次注视时间、凝视时间、总注视时间和再注视概率。由此可知, 语境预测性与整词词频、首字字频变量相对独立地影响词汇加工; 语境预测性直接影响词内汉字(尾字)的加工过程。
中图分类号:
刘志方, 仝文, 张智君, 赵亚军. (2020). 语境预测性对阅读中字词加工过程的影响:眼动证据. 心理学报, 52(9), 1031-1047.
LIU Zhifang, TONG Wen, ZHANG Zhijun, ZHAO Yajun. (2020). Predictability impacts word and character processing in Chinese reading: Evidence from eye movements. Acta Psychologica Sinica, 52(9), 1031-1047.
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-高频 | 0.74 (0.14) | 111.60 (62.59) | 792.27 (537.11) | 597.95 (435.01) | 7.45 (2.87) | 7.60 (2.68) |
低预测性-低频 | 0.01 (0.01) | 3.42 (0.72) | 798.27 (1038.02) | 684.40 (545.69) | 7.25 (3.54) | 7.25 (2.17) |
高预测性-低频 | 0.74 (0.17) | 3.69 (1.30) | 630.24 (818.67) | 554.74 (571.21) | 7.60 (2.60) | 7.65 (2.52) |
低预测性-高频 | 0.01 (0.02) | 113.94 (60.21) | 729.21 (531.07) | 768.29 (580.95) | 7.20 (2.53) | 7.65 (1.53) |
表1 实验1四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-高频 | 0.74 (0.14) | 111.60 (62.59) | 792.27 (537.11) | 597.95 (435.01) | 7.45 (2.87) | 7.60 (2.68) |
低预测性-低频 | 0.01 (0.01) | 3.42 (0.72) | 798.27 (1038.02) | 684.40 (545.69) | 7.25 (3.54) | 7.25 (2.17) |
高预测性-低频 | 0.74 (0.17) | 3.69 (1.30) | 630.24 (818.67) | 554.74 (571.21) | 7.60 (2.60) | 7.65 (2.52) |
低预测性-高频 | 0.01 (0.02) | 113.94 (60.21) | 729.21 (531.07) | 768.29 (580.95) | 7.20 (2.53) | 7.65 (1.53) |
目标词汇种类 | 框架句子 |
---|---|
高预测性-高频 | 公司经理在提高产品质量方面花费了大量精力。 |
低预测性-低频 | 公司经理在提高产品名声方面花费了大量精力。 |
高预测性-低频 | 外星人经常驾驶飞船去往地球的各个角落。 |
低预测性-高频 | 外星人经常驾驶汽车去往地球的各个角落。 |
表2 实验1中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-高频 | 公司经理在提高产品质量方面花费了大量精力。 |
低预测性-低频 | 公司经理在提高产品名声方面花费了大量精力。 |
高预测性-低频 | 外星人经常驾驶飞船去往地球的各个角落。 |
低预测性-高频 | 外星人经常驾驶汽车去往地球的各个角落。 |
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
高频词 | 低频词 | 高频词 | 低频词 | |
首次注视时间 | 221 (2.34) | 223 (2.34) | 228 (2.34) | 241 (2.34) |
凝视时间 | 238 (3.31) | 243 (3.31) | 252 (3.31) | 277 (3.32) |
总注视时间 | 247 (7.48) | 261 (7.48) | 343 (7.49) | 375 (7.48) |
跳读概率 | 30.0 (1.0) | 30.2 (1.0) | 26.7 (1.0) | 24.8 (1.0) |
再注视概率 | 6.2 (0.7) | 7.5 (0.7) | 9.1 (0.7) | 13.3 (0.7) |
回视概率 | 5.6 (0.6) | 7.1 (0.6) | 12.1 (0.6) | 14.1 (0.6) |
表3 实验1各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
高频词 | 低频词 | 高频词 | 低频词 | |
首次注视时间 | 221 (2.34) | 223 (2.34) | 228 (2.34) | 241 (2.34) |
凝视时间 | 238 (3.31) | 243 (3.31) | 252 (3.31) | 277 (3.32) |
总注视时间 | 247 (7.48) | 261 (7.48) | 343 (7.49) | 375 (7.48) |
跳读概率 | 30.0 (1.0) | 30.2 (1.0) | 26.7 (1.0) | 24.8 (1.0) |
再注视概率 | 6.2 (0.7) | 7.5 (0.7) | 9.1 (0.7) | 13.3 (0.7) |
回视概率 | 5.6 (0.6) | 7.1 (0.6) | 12.1 (0.6) | 14.1 (0.6) |
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.32 | 0.01 | 422.53 | < 0.001 | [2.30, 2.33] | 2.37 | 0.01 | 332.77 | < 0.001 | [2.35, 2.38] |
词频 | 0.02 | 0.00 | 5.38 | < 0.001 | [0.01, 0.02] | 0.03 | 0.00 | 7.42 | < 0.001 | [0.02, 0.03] |
语境预测性 | 0.02 | 0.00 | 7.16 | < 0.001 | [0.02, 0.03] | 0.04 | 0.00 | 10.15 | < 0.001 | [0.03, 0.04] |
词频×语境预测性 | 0.02 | 0.01 | 1.59 | 0.12 | - | 0.03 | 0.02 | 1.45 | 0.16 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.46 | 0.01 | 225.76 | < 0.001 | [2.44, 2.48] | -1.05 | 0.06 | -17.05 | < 0.001 | [-1.18, -0.93] |
词频 | 0.03 | 0.00 | 5.80 | < 0.001 | [0.02, 0.03] | -0.05 | 0.04 | -1.30 | 0.19 | - |
语境预测性 | 0.10 | 0.00 | 22.99 | < 0.001 | [0.09, 0.11] | -0.23 | 0.04 | -5.64 | < 0.001 | [-0.31, -0.15] |
词频×语境预测性 | 0.01 | 0.04 | 0.35 | 0.73 | - | -0.14 | 0.20 | -0.71 | 0.48 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.78 | 0.10 | -27.81 | < 0.001 | [-2.98, -2.59] | -2.52 | 0.09 | -26.98 | < 0.001 | [-2.70, -2.34] |
词频 | 0.35 | 0.07 | 5.35 | < 0.001 | [0.22, 0.47] | 0.22 | 0.06 | 3.45 | < 0.001 | [0.10, 0.34] |
语境预测性 | 0.56 | 0.07 | 8.69 | < 0.001 | [0.44, 0.69] | 0.84 | 0.06 | 13.23 | < 0.001 | [0.72, 0.97] |
词频×语境预测性 | 0.23 | 0.32 | 0.71 | 0.48 | - | -0.10 | 0.34 | -0.29 | 0.78 | - |
表4 实验1混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.32 | 0.01 | 422.53 | < 0.001 | [2.30, 2.33] | 2.37 | 0.01 | 332.77 | < 0.001 | [2.35, 2.38] |
词频 | 0.02 | 0.00 | 5.38 | < 0.001 | [0.01, 0.02] | 0.03 | 0.00 | 7.42 | < 0.001 | [0.02, 0.03] |
语境预测性 | 0.02 | 0.00 | 7.16 | < 0.001 | [0.02, 0.03] | 0.04 | 0.00 | 10.15 | < 0.001 | [0.03, 0.04] |
词频×语境预测性 | 0.02 | 0.01 | 1.59 | 0.12 | - | 0.03 | 0.02 | 1.45 | 0.16 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.46 | 0.01 | 225.76 | < 0.001 | [2.44, 2.48] | -1.05 | 0.06 | -17.05 | < 0.001 | [-1.18, -0.93] |
词频 | 0.03 | 0.00 | 5.80 | < 0.001 | [0.02, 0.03] | -0.05 | 0.04 | -1.30 | 0.19 | - |
语境预测性 | 0.10 | 0.00 | 22.99 | < 0.001 | [0.09, 0.11] | -0.23 | 0.04 | -5.64 | < 0.001 | [-0.31, -0.15] |
词频×语境预测性 | 0.01 | 0.04 | 0.35 | 0.73 | - | -0.14 | 0.20 | -0.71 | 0.48 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.78 | 0.10 | -27.81 | < 0.001 | [-2.98, -2.59] | -2.52 | 0.09 | -26.98 | < 0.001 | [-2.70, -2.34] |
词频 | 0.35 | 0.07 | 5.35 | < 0.001 | [0.22, 0.47] | 0.22 | 0.06 | 3.45 | < 0.001 | [0.10, 0.34] |
语境预测性 | 0.56 | 0.07 | 8.69 | < 0.001 | [0.44, 0.69] | 0.84 | 0.06 | 13.23 | < 0.001 | [0.72, 0.97] |
词频×语境预测性 | 0.23 | 0.32 | 0.71 | 0.48 | - | -0.10 | 0.34 | -0.29 | 0.78 | - |
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-首字高频 | 76.1 (19.2) | 12 (12) | 1558 (1062) | 707 (727) | 7.2 (2.1) | 7.7 (2.1) |
低预测性-首字低频 | 0.2 (0.11) | 10 (11) | 51 (27) | 610 (841) | 7.9 (2.1) | 7.3 (2.4) |
高预测性-首字低频 | 78.7 (19.2) | 10 (11) | 38 (27) | 641 (884) | 7.0 (2.3) | 6.9 (2.7) |
低预测性-首字高频 | 0.2 (0.11) | 10 (11) | 1377 (1044) | 740 (767) | 7.1 (2.0) | 7.7 (2.5) |
表5 实验2四种目标词汇的字频、笔画数、整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-首字高频 | 76.1 (19.2) | 12 (12) | 1558 (1062) | 707 (727) | 7.2 (2.1) | 7.7 (2.1) |
低预测性-首字低频 | 0.2 (0.11) | 10 (11) | 51 (27) | 610 (841) | 7.9 (2.1) | 7.3 (2.4) |
高预测性-首字低频 | 78.7 (19.2) | 10 (11) | 38 (27) | 641 (884) | 7.0 (2.3) | 6.9 (2.7) |
低预测性-首字高频 | 0.2 (0.11) | 10 (11) | 1377 (1044) | 740 (767) | 7.1 (2.0) | 7.7 (2.5) |
目标词汇种类 | 框架句子 |
---|---|
高预测性- 首字高频 | 哥哥要出远门, 妈妈一边帮他收拾行李一边叮嘱他注意安全。 |
低预测性- 首字低频 | 哥哥要出远门, 妈妈一边帮他收拾岩石一边叮嘱他注意安全。 |
高预测性- 首字低频 | 产科专家正在指导孕妇做好产前保健活动。 |
低预测性- 首字高频 | 产科专家正在指导经理做好产前保健活动。 |
表6 实验2中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性- 首字高频 | 哥哥要出远门, 妈妈一边帮他收拾行李一边叮嘱他注意安全。 |
低预测性- 首字低频 | 哥哥要出远门, 妈妈一边帮他收拾岩石一边叮嘱他注意安全。 |
高预测性- 首字低频 | 产科专家正在指导孕妇做好产前保健活动。 |
低预测性- 首字高频 | 产科专家正在指导经理做好产前保健活动。 |
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
首字高频 | 首字低频 | 首字高频 | 首字低频 | |
首次注视时间 | 228 (2.27) | 224 (2.27) | 240 (2.27) | 244 (2.27) |
凝视时间 | 246 (3.40) | 247 (3.40) | 281 (3.40) | 281 (3.40) |
总注视时间 | 276 (7.70) | 278 (7.71) | 402 (7.71) | 399 (7.71) |
跳读概率 | 29.5 (0.9) | 25.1 (0.9) | 21.6 (0.9) | 20.8 (0.9) |
再注视概率 | 6.9 (0.7) | 9.1 (0.7) | 14.2 (0.7) | 13.5 (0.7) |
回视概率 | 10.3 (0.7) | 9.3 (0.7) | 18.8 (0.7) | 13.5 (0.7) |
表7 实验2各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高语境预测性 | 低语境预测性 | ||
---|---|---|---|---|
首字高频 | 首字低频 | 首字高频 | 首字低频 | |
首次注视时间 | 228 (2.27) | 224 (2.27) | 240 (2.27) | 244 (2.27) |
凝视时间 | 246 (3.40) | 247 (3.40) | 281 (3.40) | 281 (3.40) |
总注视时间 | 276 (7.70) | 278 (7.71) | 402 (7.71) | 399 (7.71) |
跳读概率 | 29.5 (0.9) | 25.1 (0.9) | 21.6 (0.9) | 20.8 (0.9) |
再注视概率 | 6.9 (0.7) | 9.1 (0.7) | 14.2 (0.7) | 13.5 (0.7) |
回视概率 | 10.3 (0.7) | 9.3 (0.7) | 18.8 (0.7) | 13.5 (0.7) |
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 443.52 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 352.54 | < 0.001 | [2.38, 2.40] |
首字字频 | -0.00 | 0.00 | -0.04 | 0.97 | - | 0.00 | 0.00 | 0.48 | 0.63 | - |
语境预测性 | 0.03 | 0.00 | 10.11 | < 0.001 | [0.02, 0.03] | 0.05 | 0.00 | 3.25 | 0.001 | [0.04, 0.06] |
首字字频×语境预测性 | 0.02 | 0.01 | 1.53 | 0.13 | - | 0.01 | 0.02 | 0.31 | 0.76 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.51 | 0.01 | 223.69 | < 0.001 | [2.38, 2.40] | -1.26 | 0.06 | -21.48 | < 0.001 | [-1.38, -1.15] |
首字字频 | -0.01 | 0.00 | -1.42 | 0.16 | - | -0.14 | 0.04 | -3.42 | < 0.001 | [-0.21, -0.06] |
语境预测性 | 0.11 | 0.00 | 27.75 | < 0.001 | [0.04, 0.06] | -0.35 | 0.04 | -8.87 | < 0.001 | [-0.43, -0.27] |
首字字频×语境预测性 | 0.01 | 0.04 | 0.34 | 0.74 | - | -0.19 | 0.18 | 1.06 | 0.29 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.44 | 0.08 | -29.85 | < 0.001 | [-2.60, -2.28] | -2.37 | 0.10 | -23.80 | < 0.001 | [-2.56, -2.17] |
首字字频 | 0.13 | 0.06 | 2.36 | 0.02 | [0.02, 0.24] | -0.25 | 0.06 | -4.66 | < 0.001 | [-0.36, -0.15] |
语境预测性 | 0.67 | 0.06 | 12.25 | < 0.001 | [0.57, 0.78] | 0.71 | 0.06 | 13.00 | < 0.001 | [0.60, 0.82] |
首字字频×语境预测性 | -0.35 | 0.26 | -1.35 | 0.18 | - | -0.22 | 0.37 | -0.59 | 0.56 | - |
表8 实验2混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 443.52 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 352.54 | < 0.001 | [2.38, 2.40] |
首字字频 | -0.00 | 0.00 | -0.04 | 0.97 | - | 0.00 | 0.00 | 0.48 | 0.63 | - |
语境预测性 | 0.03 | 0.00 | 10.11 | < 0.001 | [0.02, 0.03] | 0.05 | 0.00 | 3.25 | 0.001 | [0.04, 0.06] |
首字字频×语境预测性 | 0.02 | 0.01 | 1.53 | 0.13 | - | 0.01 | 0.02 | 0.31 | 0.76 | - |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.51 | 0.01 | 223.69 | < 0.001 | [2.38, 2.40] | -1.26 | 0.06 | -21.48 | < 0.001 | [-1.38, -1.15] |
首字字频 | -0.01 | 0.00 | -1.42 | 0.16 | - | -0.14 | 0.04 | -3.42 | < 0.001 | [-0.21, -0.06] |
语境预测性 | 0.11 | 0.00 | 27.75 | < 0.001 | [0.04, 0.06] | -0.35 | 0.04 | -8.87 | < 0.001 | [-0.43, -0.27] |
首字字频×语境预测性 | 0.01 | 0.04 | 0.34 | 0.74 | - | -0.19 | 0.18 | 1.06 | 0.29 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.44 | 0.08 | -29.85 | < 0.001 | [-2.60, -2.28] | -2.37 | 0.10 | -23.80 | < 0.001 | [-2.56, -2.17] |
首字字频 | 0.13 | 0.06 | 2.36 | 0.02 | [0.02, 0.24] | -0.25 | 0.06 | -4.66 | < 0.001 | [-0.36, -0.15] |
语境预测性 | 0.67 | 0.06 | 12.25 | < 0.001 | [0.57, 0.78] | 0.71 | 0.06 | 13.00 | < 0.001 | [0.60, 0.82] |
首字字频×语境预测性 | -0.35 | 0.26 | -1.35 | 0.18 | - | -0.22 | 0.37 | -0.59 | 0.56 | - |
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-尾字高频 | 83.7 (14.3) | 13 (11) | 471 (563) | 1123 (415) | 7.8 (1.9) | 8.1 (2.9) |
低预测性-尾字低频 | 5 (2.4) | 14 (19) | 597 (725) | 51 (28) | 6.9 (2.5) | 7.4 (2.3) |
高预测性-尾字低频 | 83.7 (152) | 15 (19) | 611 (841) | 47 (20) | 7.1 (2.5) | 7.8 (2.0) |
低预测性-尾字高频 | 1.3 (4.1) | 14 (24) | 535 (801) | 1115 (667) | 7.2 (2.5) | 7.3 (1.7) |
表9 实验3四种目标词汇的字频、笔画数, 整词词频和语境预测性参数均值和标准差
目标词汇种类 | 语境预测性 | 整词词频 | 首字字频 | 尾字字频 | 首字笔画数 | 尾字笔画数 |
---|---|---|---|---|---|---|
高预测性-尾字高频 | 83.7 (14.3) | 13 (11) | 471 (563) | 1123 (415) | 7.8 (1.9) | 8.1 (2.9) |
低预测性-尾字低频 | 5 (2.4) | 14 (19) | 597 (725) | 51 (28) | 6.9 (2.5) | 7.4 (2.3) |
高预测性-尾字低频 | 83.7 (152) | 15 (19) | 611 (841) | 47 (20) | 7.1 (2.5) | 7.8 (2.0) |
低预测性-尾字高频 | 1.3 (4.1) | 14 (24) | 535 (801) | 1115 (667) | 7.2 (2.5) | 7.3 (1.7) |
目标词汇种类 | 框架句子 |
---|---|
高预测性-尾字高频 | 演员在拍戏之前都要认真地阅读剧本以便把握剧情细节。 |
低预测性-尾字低频 | 演员在拍戏之前都要认真地阅读画册以便把握剧情细节。 |
高预测性-尾字低频 | 小红没有及时向房东支付房租就被赶出了房间。 |
低预测性-尾字高频 | 小红没有及时向房东支付现金就被赶出了房间。 |
表10 实验3中包含4种目标词汇的框架句子举例
目标词汇种类 | 框架句子 |
---|---|
高预测性-尾字高频 | 演员在拍戏之前都要认真地阅读剧本以便把握剧情细节。 |
低预测性-尾字低频 | 演员在拍戏之前都要认真地阅读画册以便把握剧情细节。 |
高预测性-尾字低频 | 小红没有及时向房东支付房租就被赶出了房间。 |
低预测性-尾字高频 | 小红没有及时向房东支付现金就被赶出了房间。 |
指标 | 高预测性 | 低预测性 | ||
---|---|---|---|---|
尾字高频 | 尾字低频 | 尾字高频 | 尾字低频 | |
首次注视时间 | 225 (2.36) | 222 (2.36) | 232 (2.36) | 241 (2.36) |
凝视时间 | 247 (3.46) | 238 (3.46) | 257 (3.46) | 278 (3.46) |
总注视时间 | 282 (8.42) | 256 (8.42) | 361 (8.42) | 425 (8.42) |
跳读概率 | 29.8 (1.0) | 30.1 (1.0) | 27.0 (1.0) | 24.3 (1.0) |
再注视概率 | 8.0 (0.7) | 6.1 (0.7) | 8.7 (0.7) | 13.2 (0.7) |
回视概率 | 11.2 (0.7) | 9.2 (0.7) | 15.5 (0.7) | 16.7 (0.7) |
表11 实验3各条件下目标词汇上注视时间类指标和注视概率类指标的均值与标准误差
指标 | 高预测性 | 低预测性 | ||
---|---|---|---|---|
尾字高频 | 尾字低频 | 尾字高频 | 尾字低频 | |
首次注视时间 | 225 (2.36) | 222 (2.36) | 232 (2.36) | 241 (2.36) |
凝视时间 | 247 (3.46) | 238 (3.46) | 257 (3.46) | 278 (3.46) |
总注视时间 | 282 (8.42) | 256 (8.42) | 361 (8.42) | 425 (8.42) |
跳读概率 | 29.8 (1.0) | 30.1 (1.0) | 27.0 (1.0) | 24.3 (1.0) |
再注视概率 | 8.0 (0.7) | 6.1 (0.7) | 8.7 (0.7) | 13.2 (0.7) |
回视概率 | 11.2 (0.7) | 9.2 (0.7) | 15.5 (0.7) | 16.7 (0.7) |
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 400.65 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 313.49 | < 0.001 | [2.37, 2.40] |
尾字字频 | 0.01 | 0.00 | 1.46 | 0.14 | - | 0.01 | 0.00 | 1.82 | 0.07 | [0.00, 0.01] |
语境预测性 | 0.02 | 0.0 | 6.59 | < 0.001 | [0.02, 0.03] | 0.03 | 0.00 | 9.25 | < 0.001 | [0.03, 0.04] |
尾字字频×语境预测性 | 0.03 | 0.01 | 1.99 | 0.05 | [0.00, 0.05] | 0.05 | 0.02 | 2.38 | 0.02 | [0.01, 0.09] |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.50 | 0.01 | 212.21 | < 0.001 | [2.37, 2.40] | -1.06 | 0.07 | -16.15 | < 0.001 | [-1.19, -0.94] |
尾字字频 | 0.01 | 0.00 | 3.07 | 0.002 | [0.00, 0.01] | -0.07 | 0.04 | -1.73 | 0.08 | [-0.15, -0.01] |
语境预测性 | 0.11 | 0.00 | 24.14 | < 0.001 | [0.03, 0.04] | -0.24 | 0.04 | -5.68 | < 0.001 | [-0.32, -0.16] |
尾字字频×语境预测性 | 0.08 | 0.04 | 2.08 | 0.05 | [0.01, 0.09] | -0.16 | 0.22 | -0.73 | 0.47 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.94 | 0.10 | -28.14 | < 0.001 | [-3.14, -2.73] | -2.39 | 0.11 | -21.04 | < 0.001 | [-2.61, -2.17] |
尾字字频 | 0.09 | 0.07 | 1.31 | 0.19 | - | -0.05 | 0.06 | -0.75 | 0.46 | - |
语境预测性 | 0.50 | 0.07 | 7.26 | < 0.001 | [0.37, 0.63] | 0.68 | 0.06 | 11.37 | < 0.001 | [0.57, 0.80] |
尾字字频×语境预测性 | 0.80 | 0.33 | 2.41 | 0.02 | [0.15 1.48] | 0.40 | 0.43 | 0.93 | 0.35 | - |
表12 实验3混合线性模型分析结果
变量 | 首次注视时间 | 凝视时间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
b | SE | t | p | 95% CI | b | SE | t | p | 95% CI | |
Intercept | 2.33 | 0.01 | 400.65 | < 0.001 | [2.32, 2.34] | 2.39 | 0.01 | 313.49 | < 0.001 | [2.37, 2.40] |
尾字字频 | 0.01 | 0.00 | 1.46 | 0.14 | - | 0.01 | 0.00 | 1.82 | 0.07 | [0.00, 0.01] |
语境预测性 | 0.02 | 0.0 | 6.59 | < 0.001 | [0.02, 0.03] | 0.03 | 0.00 | 9.25 | < 0.001 | [0.03, 0.04] |
尾字字频×语境预测性 | 0.03 | 0.01 | 1.99 | 0.05 | [0.00, 0.05] | 0.05 | 0.02 | 2.38 | 0.02 | [0.01, 0.09] |
变量 | 总注视时间 | 跳读概率 | ||||||||
b | SE | t | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | 2.50 | 0.01 | 212.21 | < 0.001 | [2.37, 2.40] | -1.06 | 0.07 | -16.15 | < 0.001 | [-1.19, -0.94] |
尾字字频 | 0.01 | 0.00 | 3.07 | 0.002 | [0.00, 0.01] | -0.07 | 0.04 | -1.73 | 0.08 | [-0.15, -0.01] |
语境预测性 | 0.11 | 0.00 | 24.14 | < 0.001 | [0.03, 0.04] | -0.24 | 0.04 | -5.68 | < 0.001 | [-0.32, -0.16] |
尾字字频×语境预测性 | 0.08 | 0.04 | 2.08 | 0.05 | [0.01, 0.09] | -0.16 | 0.22 | -0.73 | 0.47 | - |
变量 | 再注视概率 | 回视概率 | ||||||||
b | SE | z | p | 95% CI | b | SE | z | p | 95% CI | |
Intercept | -2.94 | 0.10 | -28.14 | < 0.001 | [-3.14, -2.73] | -2.39 | 0.11 | -21.04 | < 0.001 | [-2.61, -2.17] |
尾字字频 | 0.09 | 0.07 | 1.31 | 0.19 | - | -0.05 | 0.06 | -0.75 | 0.46 | - |
语境预测性 | 0.50 | 0.07 | 7.26 | < 0.001 | [0.37, 0.63] | 0.68 | 0.06 | 11.37 | < 0.001 | [0.57, 0.80] |
尾字字频×语境预测性 | 0.80 | 0.33 | 2.41 | 0.02 | [0.15 1.48] | 0.40 | 0.43 | 0.93 | 0.35 | - |
[1] |
Altarriba, J., Kroll, J. F., Sholl, A., & Rayner, K. (1996). The influence of lexical and conceptual constraints on reading mixed language sentences: Evidence from eye fixations and naming times. Memory & Cognition, 24, 477-492.
doi: 10.3758/bf03200936 URL pmid: 8757496 |
[2] |
Altman, D. G., & Bland, J. M. (1995). Absence of evidence is not evidence of absence. British Medical Journal, 311, 485-485.
doi: 10.1136/bmj.311.7003.485 URL pmid: 7647644 |
[3] |
Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247-264.
doi: 10.1016/s0010-0277(99)00059-1 URL pmid: 10585516 |
[4] |
Ashby, J., Rayner, K., & Clifton, C. (2005). Eye movements of highly skilled and average readers: Differential effects of frequency and predictability. The Quarterly Journal of Experimental Psychology, 58(6), 1065-1086.
doi: 10.1080/02724980443000476 URL pmid: 16194948 |
[5] |
Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412.
doi: 10.1016/j.jml.2007.12.005 URL |
[6] |
Bai, X., Yan, G., Liversedge, S. P., Zang, C., & Rayner, K. (2008). Reading spaced and unspaced Chinese text: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 34(5), 1277-1287.
doi: 10.1037/0096-1523.34.5.1277 URL pmid: 18823210 |
[7] |
Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17(3), 364-390.
doi: 10.1016/0010-0285(85)90013-1 URL pmid: 4053565 |
[8] |
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255-278.
doi: 10.1016/j.jml.2012.11.001 URL |
[9] | Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1-48. |
[10] |
Bonhage, C. E., Mueller, J. L., Friederici, A. D., & Fiebach. C. J. (2015). Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension. Cortex, 68, 33-47.
doi: 10.1016/j.cortex.2015.04.011 URL pmid: 26003489 |
[11] |
Cervero, F., & Laird, J. M. (2000). Absence of evidence is not evidence of absence (again). Pain, 84(1), 114-115.
doi: 10.1016/s0304-3959(99)00180-3 URL pmid: 10681244 |
[12] | Chen, C., Liu, Z., Su, Y., & Cheng, Y. (2018). The prediction effects for skill and less-skill deaf readers in Chinese reading: Evidence from eye movement. Psychological Development and Education, 34(6), 692-699. |
[ 陈朝阳, 刘志方, 苏永强, 程亚华. (2018). 高低阅读技能聋生词汇加工的语境预测性效应特点:眼动证据. 心理发展与教育, 34(6), 692-699.] | |
[13] |
Clifton, C., Ferreira, F., Henderson, J. M., Inhoff, A. W., Liversedge, S. P., Reichle, E. D., & Schotter, E. R. (2016). Eye movements in reading and information processing: Keith Rayner’s 40 year legacy. Journal of Memory and Language, 86(1), 1-19.
doi: 10.1016/j.jml.2015.07.004 URL |
[14] |
Dambacher, M., Kliegl, R., Hofmann, M., & Jacobs, A. M. (2006). Frequency and predictability effects on event related potentials during reading. Brain Research, 1084(1), 89-103.
doi: 10.1016/j.brainres.2006.02.010 URL pmid: 16545344 |
[15] |
Ehrlich, S. F., & Rayner, K.. (1981). Contextual effects on word perception and eye movements during reading. Journal of Verbal Learning and Verbal Behavior, 20(6), 641-655.
doi: 10.1016/S0022-5371(81)90220-6 URL |
[16] |
Engbert, R., Nuthmann, A., Richter, E. M., & Kliegl, R. (2005). Swift: A dynamical model of saccade generation during reading. Psychological Review, 112(4), 777-813.
doi: 10.1037/0033-295X.112.4.777 URL pmid: 16262468 |
[17] |
Fischler, I. (1985). Word recognition, use of context, and reading skill among deaf college students. Reading Research Quarterly, 20(2), 203-218.
doi: 10.2307/747756 URL |
[18] | Fodor, J. A. (1983). The Modularity of Mind. Cambridge, MA: MIT Press. |
[19] | Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. Walker (Eds.), Sentence processing: Psycholinguistic studies to Merrill Garrett (pp.27-85). Hillsdale, NJ: Erbaum. |
[20] | Forster, K. I. (1981). Priming and the effects of sentence and lexical contexts on naming time-evidence for autonomous lexical processing. Quarterly Journal of Experimental Psychology. 33(4), 465-495. |
[21] |
Gollan, T., Slattery, T. J., Goldenberg, D., van Assche, E., Duyck, W., & Rayner, K. (2011). Frequency drives lexical access in reading but not in speaking: The frequency-lag hypothesis. Journal of Experimental Psychology: General, 140(2), 186-209.
doi: 10.1037/a0022256 URL |
[22] |
Gu, J, & Li, X. (2015). The effects of character transposition within and across words in Chinese reading. Attention, Perception,and Psychophysics, 77(7), 272-281.
doi: 10.3758/s13414-014-0749-5 URL |
[23] |
Hand, C. J., Miellet, S., O’Donnell, P. J., & Sereno, S. C. (2010). The frequency-predictability interaction in reading: It depends where you’re coming from. Journal of Experimental Psychology: Human Perception and Performance, 36(5), 1294-1313.
doi: 10.1037/a0020363 URL pmid: 20854004 |
[24] |
Hu, C., Kong, X., Wagenmakers, E. J., Ly, A., & Peng, K. (2018). The Bayes factor and its implementation in JASP: A practical primer. Advances in Psychological Science, 26(6), 951-965.
doi: 10.3724/SP.J.1042.2018.00951 URL |
[ 胡传鹏, 孔祥祯, Wagenmakers, E. J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.] | |
[25] |
Huck, A., Thompson, R. L., Cruice, M., & Marshall, J. (2017). Effects of word frequency and contextual predictability on sentence reading in aphasia: An eye movement analysis. Aphasiology, 31(11), 1307-1332.
doi: 10.1080/02687038.2017.1278741 URL |
[26] |
Hudson, P. T. W., & Bergman, M W. (1985). Lexical knowledge in word recognition: Word length and word frequency in naming and lexical decision tasks. Journal of Memory and Language, 24(1), 46-58.
doi: 10.1016/0749-596X(85)90015-4 URL |
[27] |
Inhoff, A. W. (1984). Two stages of word processing during eye fixations in the reading of prose. Journal of Verbal Learning and Verbal Behavior, 23(5), 612-624.
doi: 10.1016/S0022-5371(84)90382-7 URL |
[28] |
Inhoff, A. W., & Liu, W. (1998). The perceptual span and oculomotor activity during the reading of Chinese sentences. Journal of Experimental Psychology: Human Perception and Performance, 24(1), 20-34.
doi: 10.1037//0096-1523.24.1.20 URL pmid: 9483822 |
[29] |
Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16(1-2), 262-284.
doi: 10.1080/09541440340000213 URL |
[30] |
Kretzschmar, F., Schlesewsky, M., & Staub, A. (2015). Dissociating word frequency and predictability effects in reading: Evidence from coregistration of eye movements and EEG. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(6), 1648-1662.
doi: 10.1037/xlm0000128 URL pmid: 26010829 |
[31] |
Lee, C. Y., Liu, Y. N., & Tsai, J. L. (2012). The time course of contextual effects on visual word recognition. Frontiers in Psychology, 3. 285.
doi: 10.3389/fpsyg.2012.00285 URL pmid: 22934087 |
[32] |
Li, X., & Pollatsek, A. (2011). Word knowledge influences character perception. Psychonomic Bulletin & Review, 18(5), 833-839.
doi: 10.3758/s13423-011-0115-8 URL pmid: 21660620 |
[33] |
Li, X., Bicknell, K., Liu, P., Wei, W., & Rayner, K. (2014). Reading is fundamentally similar across disparate writing systems: A systematic characterization of how words and characters influence eye movements in Chinese reading. Journal of Experimental Psychology: General, 143(2), 895-913.
doi: 10.1037/a0033580 URL |
[34] | Li, X., Liu, P. P., & Ma, G. J. (2011). Advances in cognitive mechanisms of word segmentation during Chinese reading. Advances in Psychological Science, 19(4), 459-470. |
[ 李兴珊, 刘萍萍, 马国杰. (2011). 中文阅读中词切分的认知机理述评. 心理科学进展, 19(4), 459-470.] | |
[35] |
Li, X., Rayner, K., & Cave, K. P. (2009). On the segmentation of Chinese words during reading. Cognitive Psychology, 58(4), 525-552.
doi: 10.1016/j.cogpsych.2009.02.003 URL |
[36] |
Li, X. S., & Shen, W. (2013). Joint effect of insertion of spaces and word length in saccade target selection in Chinese reading. Journal of Research in Reading, 36(S1), S64-S77.
doi: 10.1111/j.1467-9817.2012.01552.x URL |
[37] |
Liang, F., Blythe, H. I., Zang, C., Bai, X., Yan, G., & Liversedge, S. P. (2015). Positional character frequency and word spacing facilitate the acquisition of novel words during Chinese children's reading. Journal of Cognitive Psychology, 27(5), 594-608.
doi: 10.1080/20445911.2014.1000918 URL |
[38] | Lin, N., Angele, B., Hua, H., Shen, W., Zhou, J., & Li, X. (2018). Skipping of Chinese characters does not rely on word-based processing. Attention, Perception, & Psychophysics, 80(2), 600-607. |
[39] |
Liu, P. P., & Li, X S. (2012). Inserting spaces before and after words affects word processing differently in Chinese: Evidence from eye movements. British Journal of Psychology, 105(1), 57-68.
doi: 10.1111/bjop.12013 URL pmid: 24387096 |
[40] |
Liu, Y., Guo, S., Yu, L., & Reichle, E. D. (2018). Word predictability affects saccade length in Chinese reading: An evaluation of the dynamic-adjustment model. Psychonomic Bulletin & Review. 25(5), 1891-1899.
doi: 10.3758/s13423-017-1357-x URL pmid: 28762028 |
[41] |
Liu, Z., Zhang, Z., Pan, Y., Tong, W., & Su, H. (2017). The characteristics of visual word encoding in preview and fixation frames during Chinese reading: Evidences from disappearing text. Acta Psychologica Sinica, 49(7), 853-865.
doi: 10.3724/SP.J.1041.2017.00853 URL |
[ 刘志方, 张智君, 潘运, 仝文, 苏衡. (2017). 中文阅读中预视阶段和注视阶段内词汇视觉编码的过程特点: 来自消失文本的证据. 心理学报, 49(7), 853-865.] | |
[42] | Lu, Z. L., Bai, X. J., & Yan, G. L. (2008). Eye movement study on the interaction between word frequency and predictability in the recognition of Chinese words. Psychological Research, 1(4), 29-33. |
[ 卢张龙, 白学军, 闫国利. (2008). 汉语词汇识别中词频和可预测性交互作用的眼动研究. 心理研究, 1(4), 29-33.] | |
[43] | Ma, G., & Li, X. (2015). How character complexity modulates eye movement control in Chinese reading. Reading & Writing, 28(6), 747-761. |
[44] |
Ma, G., Li, X., & Rayner, K. (2015). Readers extract character frequency information from nonfixated-target word at long pretarget fixations during Chinese reading. Journal of Experimental Psychology: Human Perception and Performance, 41(5), 1409-1419.
doi: 10.1037/xhp0000072 URL pmid: 26168144 |
[45] |
McClelland, J. L. (1987). The case for interactionism in language processing. Psychology of Reading, 1(12), 3-36.
doi: 10.1080/0270271790010102 URL |
[46] | McClelland, J. L., & Rumelhart, D E. (1981). An interactive activation model of context effects in letter perception, part i: An account of basic findings. Readings in Cognitive Science, 88(5), 580-596. |
[47] |
Miellet, S., Sparrow, L., & Sereno, S. C. (2007). Word frequency and predictability effects in reading French: An evaluation of the E-Z reader model. Psychonomic Bulletin & Review, 14(4), 762-769.
doi: 10.3758/bf03196834 URL pmid: 17972746 |
[48] |
Monsell, S., Doyle, M. C., & Haggard, P. N. (1989). Effects of frequency on visual word recognition tasks: Where are they?. Journal of Experimental Psychology: General, 118(1), 43-71.
doi: 10.1037/0096-3445.118.1.43 URL |
[49] | Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S., Forner, K., & Ly, A. (2018). BayesFactor: Computation of Bayes factors for common designs. Retrieved from https:// CRAN.R-project.org/package=BayesFactor. |
[50] |
Morton, J. (1969). Interaction of information in word recognition. Psychological Review, 76(2), 165-178.
doi: 10.1037/h0027366 URL |
[51] |
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
doi: 10.1037/0033-2909.124.3.372 URL pmid: 9849112 |
[52] |
Rayner, K. (2009). The Thirty-Fifth Sir Frederick Bartlett Lecture: Eye movements and attention during reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457-1506.
doi: 10.1080/17470210902816461 URL |
[53] |
Rayner, K., & Duffy, S. A. (1986). Lexical complexity and fixation times in reading: Effects of word frequency, verb complexity, and lexical ambiguity. Memory and Cognition, 14(3), 191-201.
doi: 10.3758/bf03197692 URL pmid: 3736392 |
[54] |
Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in reading: A further examination. Psychonomic Bulletin & Review, 3(4), 504-509.
doi: 10.3758/BF03214555 URL pmid: 24213985 |
[55] |
Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of frequency and predictability on eye fixations in reading: Implications for the E-Z Reader model. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 720-732.
doi: 10.1037/0096-1523.30.4.720 URL pmid: 15301620 |
[56] |
Rayner, K., Binder, K. S., Ashby, J., & Pollatsek, A. (2001). Eye movement control in reading: Word predictability has little influence on initial landing positions in words. Vision Research, 41(7), 943-954.
doi: 10.1016/s0042-6989(00)00310-2 URL pmid: 11248279 |
[57] |
Rayner, K., Li, X., Juhasz, B. J., & Yan, G. (2005). The effect of word predictability on the eye movements of Chinese readers. Psychonomic Bulletin & Review, 12(6), 1089-1093
doi: 10.3758/bf03206448 URL pmid: 16615333 |
[58] |
Rayner, K., Reichle, E. D., Stroud, M. J., Williams, C. C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21(3), 448-465.
doi: 10.1037/0882-7974.21.3.448 URL pmid: 16953709 |
[59] |
Reichle, E. D., Pollatsek, A., Fisher, D., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157.
doi: 10.1037/0033-295x.105.1.125 URL pmid: 9450374 |
[60] |
Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z reader model of eye-movement control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26(4), 445-526.
doi: 10.1017/s0140525x03000104 URL pmid: 15067951 |
[61] |
Reilly, R. G., & Radach, R. (2006). Some empirical tests of an interactive activation model of eye movement control in reading. Cognitive Systems Research, 7(1), 34-55.
doi: 10.1016/j.cogsys.2005.07.006 URL |
[62] | Reilly, R., & Radach, R. (2012). The dynamics of reading in non-Roman writing systems: A reading and writing special issue. Reading & Writing, 25(5), 935-950. |
[63] |
Richter, E. M., Engbert, R., & Kliegl, R. (2006). Current advances in SWIFT. Cognitive Systems Research, 7(1), 23-33.
doi: 10.1016/j.cogsys.2005.07.003 URL |
[64] |
Rouder, J. N., & Morey, R D. (2012). Default Bayes factors for model selection in regression. Multivariate Behavioral Research, 47(6), 877-903.
doi: 10.1080/00273171.2012.734737 URL |
[65] |
Rumelhart, D. E., & McClelland, J L. (1982). An interactive activation model of context effects in letter perception: Part ii. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89(1), 60-94.
URL pmid: 7058229 |
[66] |
Schotter, E. R., Angele, B., & Rayner, K. (2012). Parafoveal processing in reading. Attention, Perception & Psychophysics, 74(1), 5-35.
doi: 10.3758/s13414-011-0219-2 URL pmid: 22042596 |
[67] |
Schotter, E. R., Lee, M., Reiderman, M., & Rayner, K. (2015). The effect of contextual constraint on parafoveal processing in reading. Journal of Memory and Language, 83, 118-139.
doi: 10.1016/j.jml.2015.04.005 URL pmid: 26257469 |
[68] |
Schustack, M. W., Ehrlich, S. F., & Rayner, K. (1987). Local and global sources of contextual facilitation in reading. Journal of Memory and Language, 26(3), 322-340.
doi: 10.1016/0749-596X(87)90117-3 URL |
[69] |
Sereno, S. C., & Rayner, K. (2000). The when and where of reading in the brain. Brain and Cognition, 42(1), 78-81.
doi: 10.1006/brcg.1999.1167 URL pmid: 10739604 |
[70] |
Sereno, S. C., & Rayner, K. (2003). Measuring word recognition in reading: Eye movements and event-related potentials. Trends in Cognitive Sciences, 7(11), 489-493.
doi: 10.1016/j.tics.2003.09.010 URL pmid: 14585445 |
[71] | Shen, W., & Li, X. S. (2012). The uniqueness of word superiority effect in Chinese reading. Chinese Science Bulletin, 57(35), 3414-3420. |
[ 申薇, 李兴珊. (2012). 中文阅读中词优效应的特异性. 科学通报, 57(35), 3414-3420.] | |
[72] |
Shen, W., Li, X., & Pollatsek, A. (2018). The processing of Chinese compound words with ambiguous morphemes in sentence context. The Quarterly Journal of Experimental Psychology, 71(1), 131-139.
doi: 10.1080/17470218.2016.1270975 URL |
[73] |
Slattery, T. J., Staub, A., & Rayner, K. (2012). Saccade launch site as a predictor of fixation durations in reading: Comments on Hand, Miellet, O’Donnell, and Sereno (2010). Journal of Experimental Psychology: Human Perception and Performance, 38(1), 251-261.
doi: 10.1037/a0025980 URL pmid: 22082213 |
[74] |
Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360-407.
doi: 10.1598/RRQ.21.4.1 URL |
[75] |
Stanovich, K. E., & West, R F. (1981). The effect of sentence context on ongoing word recognition: Tests of a two-process theory. Journal of Experimental Psychology: Human Perception and Performance, 7(3), 658-672.
doi: 10.1037/0096-1523.7.3.658 URL |
[76] |
Stanovich, K. E., & West, R F. (1983). On priming by a sentence context. Journal of Experimental Psychology: General, 112(1), 1-36.
doi: 10.1037/0096-3445.112.1.1 URL |
[77] |
Su, H., Liu, Z., & Cao, L. (2016). The effects of word frequency and word predictability in preview and their implications for word segmentation in Chinese reading: Evidence from eye movements. Acta Psychologica Sinica, 48(6), 625-636.
doi: 10.3724/SP.J.1041.2016.00625 URL |
[ 苏衡, 刘志方, 曹立人. (2016). 中文阅读预视加工中的词频和预测性效应及其对词切分的启示:基于眼动的证据. 心理学报, 48(6), 625-636.] | |
[78] |
Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.
doi: 10.1016/j.tics.2009.06.003 URL |
[79] |
Wagenmakers, E. J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2017). Bayesian inference for psychology. part ii: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 1-19.
doi: 10.3758/s13423-018-1443-8 URL pmid: 29450790 |
[80] |
White, S. J., Rayner, K., & Liversedge, S. P. (2005). The influence of parafoveal word length and contextual constraint on fixation durations and word skipping in reading. Psychonomic Bulletin & Review, 12(3), 466-471.
doi: 10.3758/bf03193789 URL pmid: 16235630 |
[81] |
Yan, G., Tian, H., Bai, X., & Rayner, K. (2006). The effect of word and character frequency on the eye movements of Chinese readers. British Journal of Psychology, 97(2), 259-268.
doi: 10.1348/000712605X70066 URL |
[82] | Yao, P., & Li, X. (2019, October). How does predictability affect word processing in real time sentence processing. Paper presented at the meeting of The 22nd National Academic Congress of Psychology, Hangzhou, China. |
[ 药盼盼, 李兴珊. (2019, 10月). 可预测性促进词汇加工机制的探究. 第二十二届全国心理学学术会议摘要, 杭州, 浙江] | |
[83] | Yen, M. H., Radach, R., Tzeng, O. J. L., & Tsai, J. L. (2012). Usage of statistical cues for word boundary in reading Chinese sentences. Reading & Writing, 25(5), 1007-1029. |
[1] | 龙翼婷, 姜英杰, 崔璨, 岳阳. 奖赏预测误差对项目和联结记忆影响的分离:元记忆的作用[J]. 心理学报, 2023, 55(6): 877-891. |
[2] | 黄元娜, 江程铭, 刘洪志, 李纾. 风险、跨期和空间决策的决策策略共享:眼动和主观判断的证据[J]. 心理学报, 2023, 55(6): 994-1015. |
[3] | 刘洪志, 杨钘兰, 李秋月, 魏子晗. 跨期决策中的维度差异偏好:眼动证据[J]. 心理学报, 2023, 55(4): 612-625. |
[4] | 曹海波, 兰泽波, 高峰, 于海涛, 李鹏, 王敬欣. 词素位置概率在中文阅读中的作用:词汇判断和眼动研究[J]. 心理学报, 2023, 55(2): 159-176. |
[5] | 张慢慢, 胡惠兰, 张志超, 李鑫, 汪强, 白学军, 臧传丽. 预测性对快速读者和慢速读者词汇加工的影响[J]. 心理学报, 2023, 55(1): 79-93. |
[6] | 卢张龙, 刘梦娜, 刘玉洁, 马盼盼, 张瑞平. 内隐序列学习表征机制探究:眼动证据[J]. 心理学报, 2022, 54(7): 779-788. |
[7] | 鹿子佳, 符颖, 张慢慢, 臧传丽, 白学军. 中文词类信息在副中央凹中的加工[J]. 心理学报, 2022, 54(5): 441-452. |
[8] | 刘洪志, 李兴珊, 李纾, 饶俪琳. 基于期望值最大化的理论何时失效:风险决策中为自己-为所有人决策差异的眼动研究[J]. 心理学报, 2022, 54(12): 1517-1531. |
[9] | 唐晓雨, 崔鑫忠, 高敏, 袁梦莹. 视听时、空一致性对Pip-and-Pop效应的影响[J]. 心理学报, 2022, 54(11): 1310-1324. |
[10] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[11] | 吴三美, 田良苏, 陈家侨, 陈广耀, 王敬欣. 中文阅读中无关言语效应的认知机制探究:眼动证据[J]. 心理学报, 2021, 53(7): 729-745. |
[12] | 杨帆, 隋雪, 李雨桐. 中文阅读中长距离回视引导机制的眼动研究[J]. 心理学报, 2020, 52(8): 921-932. |
[13] | 张慢慢, 臧传丽, 徐宇峰, 白学军, 闫国利. 快速与慢速读者的中央凹加工对副中央凹预视的影响[J]. 心理学报, 2020, 52(8): 933-945. |
[14] | 高晓雷, 李晓伟, 孙敏, 白学军, 高蕾. 藏语阅读中中央凹词频效应及对副中央凹预视效应的影响[J]. 心理学报, 2020, 52(10): 1143-1155. |
[15] | 梁菲菲, 马杰, 李馨, 连坤予, 谭珂, 白学军. 发展性阅读障碍儿童阅读中的眼跳定位缺陷:基于新词学习的实验证据[J]. 心理学报, 2019, 51(7): 805-815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||