心理学报 ›› 2019, Vol. 51 ›› Issue (1): 48-57.doi: 10.3724/SP.J.1041.2019.00048
王宴庆1, 陈安涛1,*, 胡学平2, 尹首航1
收稿日期:
2018-03-05
发布日期:
2018-11-26
出版日期:
2019-01-25
通讯作者:
陈安涛
基金资助:
WANG Yanqing1, CHEN Antao1,*, HU Xueping2, YIN Shouhang1
Received:
2018-03-05
Online:
2018-11-26
Published:
2019-01-25
Contact:
CHEN Antao
摘要:
认知控制是动态的、过程性的认知调控, 涉及监测和控制两个过程。先前研究表明奖赏可以提升认知控制, 但是奖赏是通过增强信号监测来提升认知控制的, 还是作用于控制过程来提升认知控制的, 是一个有待研究的重要问题。在本研究中, 我们设计了三个实验来调查这一问题。实验1采用Stop-Signal任务验证奖赏是否能提升认知控制; 实验2通过改变反应规则将Stop-Signal任务信号监测加工分离出来, 探讨实验1中奖赏的提升作用是否来源于奖赏对信号监测的增强; 实验3通过操纵注意资源损耗分析, 考察注意资源分配对信号监测的促进作用。实验1结果显示, 个体能更快地根据奖赏信息做出抑制反应。实验2结果表明, 在信号监测任务中, 个体能更加快速地监测到与当前抑制状态相冲突且和奖赏相关的反应信号, 据此可认为奖赏通过增强对相关信号的监测, 有助于个体更早地启动奖赏刺激信号所对应的反应, 更高效地控制冲突。实验3结果说明, 当任务难度增大, 注意资源损耗, 奖赏相关信号的反应时和正确率仍优于无奖赏信号, 说明注意资源的分配可以调节相关信号的监测速度。总体来看, 本研究通过一系列实验表明, 以目标为导向的行为发生过程中, 奖赏能有效提升认知控制效率, 其关键机制在于通过注意资源分配增强相关信号的监测。
中图分类号:
王宴庆, 陈安涛, 胡学平, 尹首航. (2019). 奖赏通过增强信号监测提升认知控制. 心理学报, 51(1), 48-57.
WANG Yanqing, CHEN Antao, HU Xueping, YIN Shouhang. (2019). Reward improves cognitive control by enhancing signal monitoring. Acta Psychologica Sinica, 51(1), 48-57.
图1 实验流程图 A, 实验1中, 判断箭头朝向, 箭头上出现向上或向下的三角形(停止信号)时停止反应; B, 实验2中, 不对箭头反应, 箭头上出现向上或向下的三角形(Go信号)时判断箭头朝向; C, 实验3中, 不对箭头反应, 箭头上出现向下的三角形(停止信号)时不做反应, 箭头上出现向上的三角形(Go信号)时判断箭头朝向。
行为指标 | 无奖赏试次 | 奖赏试次 |
---|---|---|
停止信号SSD (ms) | 236 ± 85 | 247 ± 88 |
停止信号SSRT (ms) | 233 ± 73 | 220 ± 73 |
停止信号正确率 | 0.51 ± 0.06 | 0.51 ± 0.07 |
Go试次反应时(ms) | 493 ± 77 | -- |
Go试次正确率 | 0.98 ± 0.02 | -- |
表1 实验1 Stop-Signal任务行为指标数据(M ± SD)
行为指标 | 无奖赏试次 | 奖赏试次 |
---|---|---|
停止信号SSD (ms) | 236 ± 85 | 247 ± 88 |
停止信号SSRT (ms) | 233 ± 73 | 220 ± 73 |
停止信号正确率 | 0.51 ± 0.06 | 0.51 ± 0.07 |
Go试次反应时(ms) | 493 ± 77 | -- |
Go试次正确率 | 0.98 ± 0.02 | -- |
[1] |
Arias-carrión O.&Pŏppel E., ( 2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiologiae Experimentalis, 67( 4), 481-488.
URL pmid: 18320725 |
[2] | Aron A. R., Robbins T. W., & Poldrack R. A . ( 2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18( 4), 177-185. |
[3] |
Anderson B. A., Laurent P. A., & Yantis S . ( 2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108( 25), 10367-10371.
doi: 10.1073/pnas.1104047108 URL |
[4] |
Barbaro L., Peelen M. V., & Hickey C . ( 2017). Valence, not utility, underlies reward-driven prioritization in human vision. Journal of Neuroscience, 37( 43), 1128-1117.
doi: 10.1523/JNEUROSCI.1128-17.2017 URL |
[5] |
Boehler C. N., Appelbaum L. G., Krebs R. M., Hopf J-M., & Woldorff M. G . ( 2012). The influence of different Stop- signal response time estimation procedures on behavior-behavior and brain-behavior correlations. Behavioural Brain Research, 229( 1), 123-130.
doi: 10.1016/j.bbr.2012.01.003 URL pmid: 3306010 |
[6] |
Boehler C. N., Hopf J.-M., Stoppel C. M., & Krebs R. M . ( 2012). Motivating inhibition - reward prospect speeds up response cancellation. Cognition, 125( 3), 498-503.
doi: 10.1016/j.cognition.2012.07.018 URL pmid: 22921189 |
[7] |
Boehler C. N., Müente T. F., Krebs R. M., Heinze H.-J., Schoenfeld M. A., & Hopf J. M . ( 2009). Sensory MEG responses predict successful and failed inhibition in a stop-signal task. Cerebral Cortex, 19( 1), 134-145.
doi: 10.1093/cercor/bhn063 URL pmid: 18440947 |
[8] |
Boehler C. N., Schevernels H., Hopf J-M., Stoppel C. M., & Krebs R. M . ( 2014). Reward prospect rapidly speeds up response inhibition via reactive control. Cognitive Affective & Behavioral Neuroscience, 14( 2), 593-609.
doi: 10.3758/s13415-014-0251-5 URL pmid: 24448735 |
[9] |
Botvinick M.&Braver T., ( 2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Review of Psychology, 66( 1), 83-113.
doi: 10.1146/annurev-psych-010814-015044 URL pmid: 25251491 |
[10] |
Braver T. S., Krug M. K., Chiew K. S., Kool W., Westbrook J. A., Clement N. J., .. Somerville L. H . ( 2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14( 2), 443-472.
doi: 10.3758/s13415-014-0300-0 URL pmid: 4986920 |
[11] |
Botvinick M., Nystrom L. E., Fissell K., Carter C. S., & Cohen J. D . ( 1999). Conflict monitoring versus selection- for-action in anterior cingulate cortex. Nature, 402( 785), 179-181.
doi: 10.1038/46035 URL pmid: 10647008 |
[12] |
Botvinick M. M., Cohen J. D., & Carter C. S . ( 2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8( 12), 539-546.
doi: 10.1016/j.tics.2004.10.003 URL pmid: 15556023 |
[13] |
Carter C. S., Macdonald A. M., Botvinick M., Ross L. L., Stenger V. A., Noll D., & Cohen J. D . ( 2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97( 4), 1944-1948.
doi: 10.1073/pnas.97.4.1944 URL |
[14] |
Chikazoe J., Jimura K., Asari T., Yamashita K. L., Morimoto H., Hirose S., … Konishi S . ( 2009). Functional dissociation in right inferior frontal cortex during performance of go/no-go task. Cerebral Cortex, 19( 1), 146-152.
doi: 10.1093/cercor/bhn065 URL pmid: 18445602 |
[15] |
Derntl B.&Habel U., ( 2016). Angry but not neutral faces facilitate response inhibition in schizophrenia patients. European Archives of Psychiatry and Clinical Neuroscience, 267( 7), 621-627.
doi: 10.1007/s00406-016-0748-8 URL pmid: 27866272 |
[16] |
Egner T.&Hirsch J., ( 2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8( 12), 1784-1790
doi: 10.1038/nn1594 URL pmid: 16286928 |
[17] |
Erika-Florence M., Leech R., & Hampshire A . ( 2014). A functional network perspective on response inhibition and attentional control. Nature Communications, 5( 5), 4073.
doi: 10.1038/ncomms5073 URL pmid: 4059922 |
[18] |
Freeman S.M., & Aron A.R . ( 2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28( 2), 237-251.
doi: 10.1162/jocn_a_00893 URL pmid: 5208043 |
[19] |
Freeman S. M., Razhas L., & Aron A. R . ( 2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24( 2), 212-216.
doi: 10.1016/j.cub.2013.12.019 URL pmid: 4396623 |
[20] |
Hampshire A., & Sharp D.J . ( 2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19( 8), 445-452.
doi: 10.1016/j.tics.2015.06.006 URL pmid: 26160027 |
[21] |
Hickey C., & Peelen M.V . ( 2015). Neural mechanisms of incentive salience in naturalistic human vision. Neuron, 85( 3), 512-518.
doi: 10.1016/j.neuron.2014.12.049 URL pmid: 25654257 |
[22] | Jiang J., Xiang L., Zhang Q. L., & Chen A. T . ( 2014). Conflict adaptation is independent of consciousness: Behavioral and ERP evidence. Acta Psychologica Sinica, 46( 5), 581-592. |
[ 蒋军, 向玲, 张庆林, 陈安涛 . ( 2014). 冲突适应独立于意识: 来自行为和ERP的证据. 心理学报,46( 5), 581-592.]
doi: 10.3724/SP.J.1041.2014.00581 URL |
|
[23] |
Kerns J. G., Cohen J. D., MacDonald Ⅲ, A. W.., Cho R. Y.., Stenger V. A., & Carter C. S . ( 2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303( 5660), 1023-1026.
doi: 10.1126/science.1089910 URL |
[24] |
Krawczyk D. C., Gazzaley A., & D'Esposito M . ( 2007). Reward modulation of prefrontal and visual association cortex during an incentive working memory task. Brain Research, 1141( 4), 168-177.
doi: 10.1016/j.brainres.2007.01.052 URL pmid: 17320835 |
[25] |
Krebs R. M., Boehler C. N., Appelbaum L. G., & Woldorff M. G . ( 2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8( 1), e53894.
doi: 10.1371/journal.pone.0053894 URL pmid: 3542315 |
[26] |
Krebs R. M., Boehler C. N., Egner T., & Woldorff M. G . ( 2011). The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience, 31( 26), 9752-9759.
doi: 10.1523/JNEUROSCI.0732-11.2011 URL pmid: 3142621 |
[27] |
Krebs R. M., Boehler C. N., Roberts K. C., Song A. W., & Woldorff M. G . ( 2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex, 22( 3), 607-615.
doi: 10.1093/cercor/bhr134 URL pmid: 21680848 |
[28] |
Krebs R. M., Boehler C. N., & Woldorff M. G . ( 2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117( 3), 341-347.
doi: 10.1016/j.cognition.2010.08.018 URL pmid: 2967668 |
[29] |
Lee H. W., Lu M-S., Chen C-Y., Muggleton N. G., Hsu T-Y., & Juan C-H . ( 2016). Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Behavioural Brain Research, 296, 459-467.
doi: 10.1016/j.bbr.2015.08.024 URL pmid: 26304720 |
[30] |
Leotti L.A., & , Wager T.D . ( 2010). Motivational influences on response inhibition measures. Journal of Experimental Psychology: Human Perception and Performance, 36( 2), 430-447.
doi: 10.1037/a0016802 URL pmid: 3983778 |
[31] |
Logan G.D., & Cowan W.B . ( 1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91( 3), 295-327.
doi: 10.1037/0033-295x.91.3.295 URL |
[32] |
Navalpakkam V.&Treisman A., ( 2010). Optimal reward harvesting in complex perceptual environment. Proceedings of the National Academy of Sciences of the United States of America, 107( 11), 5232-5237.
doi: 10.1073/pnas.0911972107 URL pmid: 20194768 |
[33] |
Pawliczek C. M., Derntl B., Kellermann T., Kohn N., Gur R. C., & Habel U . ( 2013). Inhibitory control and trait aggression: Neural and behavioral insights using the emotional stop signal task. Neuroimage, 79( 6), 264-274.
doi: 10.1016/j.neuroimage.2013.04.104 URL pmid: 23660028 |
[34] |
Pessoa L. ( 2009). How do emotion and motivation direct executive control? Trends in Cognitive Sciences, 13( 4), 160-166.
doi: 10.1016/j.tics.2009.01.006 URL pmid: 19285913 |
[35] |
Pessoa L., & Engelmann J.B . ( 2010). Embedding reward signals into perception and cognition. Frontiers in Neuroscience, 4( 17), 4-17.
doi: 10.3389/fnins.2010.00017 URL pmid: 2940450 |
[36] |
Salinas E., & Stanford T.R . ( 2013). The countermanding task revisited: Fast stimulus detection is a key determinant of psychophysical performance. Journal of Neuroscience, 33( 13), 5668-5685.
doi: 10.1523/JNEUROSCI.3977-12.2013 URL pmid: 3650622 |
[37] |
Schevernels H., Bombeke K., Van der Borght L., Hopf J-M., Krebs R. M., & Boehler C. N . ( 2015). Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task. Neuroimage, 121, 115-125.
doi: 10.1016/j.neuroimage.2015.07.023 URL pmid: 26188262 |
[38] |
Sharp D. J., Bonnelle V., De Boissezon X., Beckmann C. F., James S. G., Patel M. C., & Mehta M. A . ( 2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceedings of the National Academy of Sciences of the United States of America, 107( 13), 6106-6111.
doi: 10.1073/pnas.1000175107 URL pmid: 20220100 |
[39] | Tang D.D., & Chen A.T . ( 2013). Neural oscillation mechanisms of conflict adaptation. Scientia Sinica Vitae, 43( 11), 992-1002. |
[ 唐丹丹, 陈安涛 . ( 2013). 冲突适应的神经振荡机制. 中国科学:生命科学, 43( 11), 992-1002.] | |
[40] |
van den Berg B., Krebs R. M., Lorist M. M., & Woldorff M. G . ( 2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience, 14( 2), 561-577.
doi: 10.3758/s13415-014-0281-z URL pmid: 24820263 |
[41] |
van Steenbergen H., Band G. P. H., & Hommel B . ( 2012). Reward valence modulates conflict-driven attentional adaptation: Electrophysiological evidence. Biological Psychology, 90( 3), 234-241.
doi: 10.1016/j.biopsycho.2012.03.018 URL pmid: 22504294 |
[42] |
Verbruggen F., Chambers C. D., & Logan G. D . ( 2013). Fictitious inhibitory differences: How skewness and slowing distort the estimation of stopping latencies. Psychological Science, 24( 3), 352-362.
doi: 10.1177/0956797612457390 URL |
[43] |
Wang X. P., Zhao X. Y., Xue G., & Chen A. T . ( 2016). Alertness function of thalamus in conflict adaptation. Neuroimage, 132, 274-282.
doi: 10.1016/j.neuroimage.2016.02.048 URL pmid: 26908318 |
[44] |
Westbrook A., & Braver T.S . ( 2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89( 4), 695-710.
doi: 10.1016/j.neuron.2015.12.029 URL pmid: 26889810 |
[45] |
Xu K. Z., Anderson B. A., Emeric E. E., Sali A. W., Stuphorn V., Yantis S., & Courtney S. M . ( 2017). Neural basis of cognitive control over movement inhibition: Human fMRI and primate electrophysiology evidence. Neuron, 96( 6), 1447-1458.
doi: 10.1016/j.neuron.2017.11.010 URL pmid: 29224723 |
[1] | 张弘弛, 成旋, 毛伟宾. 奖赏预测误差对时间顺序记忆和来源记忆的影响[J]. 心理学报, 2023, 55(7): 1049-1062. |
[2] | 龙翼婷, 姜英杰, 崔璨, 岳阳. 奖赏预测误差对项目和联结记忆影响的分离:元记忆的作用[J]. 心理学报, 2023, 55(6): 877-891. |
[3] | 姜英杰, 马潇潇, 姜元涛, 任吉梅, 龙翼婷. 编码后奖赏影响基于议程的学习:奖赏预期和结果的作用[J]. 心理学报, 2023, 55(4): 542-555. |
[4] | 潘玥安, 姜云鹏, 郭茂杰, 吴瑕. 不确定性和预期有效性对运动方向感知决策的影响[J]. 心理学报, 2022, 54(6): 595-603. |
[5] | 陈莉, 石晓柯, 李维娜, 胡妍. 基于不同冲突水平的认知控制对性别刻板印象表达的影响[J]. 心理学报, 2022, 54(6): 628-645. |
[6] | 李建花, 解佳佳, 庄锦英. 生理周期对情景记忆的影响[J]. 心理学报, 2022, 54(5): 466-480. |
[7] | 贾世伟, 齐丛丛, 陈乐乐, 任衍具. 工作记忆负荷对反馈加工过程的影响: 来自脑电研究的证据[J]. 心理学报, 2022, 54(3): 248-258. |
[8] | 吴建校, 曹碧华, 陈云, 李子夏, 李富洪. 认知控制的层级性:来自任务切换的脑电证据*[J]. 心理学报, 2022, 54(10): 1167-1180. |
[9] | 张孟可, 李晴, 尹首航, 陈安涛. 冲突水平的变化诱发冲突适应[J]. 心理学报, 2021, 53(2): 128-138. |
[10] | 黄月胜, 张豹, 范兴华, 黄杰. 无关工作记忆表征的负性情绪信息能否捕获视觉注意?一项眼动研究[J]. 心理学报, 2021, 53(1): 26-37. |
[11] | 侯璐璐, 陈莅蓉, 周仁来. 经前期综合征与奖赏进程失调——来自脑电的证据[J]. 心理学报, 2020, 52(6): 742-757. |
[12] | 李琎, 孙宇, 杨子鹿, 钟毅平. 社会价值取向对自我社会奖赏加工的影响——来自ERPs的证据[J]. 心理学报, 2020, 52(6): 786-800. |
[13] | 孙岩, 吕娇娇, 兰帆, 张丽娜. 自我关注重评和情境关注重评情绪调节策略及对随后认知控制的影响[J]. 心理学报, 2020, 52(12): 1393-1406. |
[14] | 杨玲, 王斌强, 耿银凤, 姚东伟, 曹华, 张建勋, 许琼英. 虚拟和真实金钱奖赏幅度对海洛因戒断者风险决策的影响[J]. 心理学报, 2019, 51(4): 507-516. |
[15] | 崔诣晨, 王沛, 崔亚娟. 知觉冲突印象形成的认知控制策略:以刻板化信息与反刻板化信息为例 *[J]. 心理学报, 2019, 51(10): 1157-1170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||