[1] |
Aben, B., Stapert, S., & Blokland, A. (2012). About the distinction between working memory and short-term memory. Frontiers in Psychology, 3,301. https://doi.org/10.3389/fpsyg.2012.00301
doi: 10.3389/fpsyg.2012.00301
URL
pmid: 22936922
|
[2] |
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559. https://doi.org/10.1126/science.1736359
doi: 10.1126/science.1736359
URL
pmid: 1736359
|
[3] |
Becker, M. W., Miller, J. R., & Liu, T. (2013). A severe capacity limit in the consolidation of orientation information into visual short-term memory. Attention, Perception, & Psychophysics, 75(3), 415-425. https://doi.org/10.3758/s13414-012-0410-0
doi: 10.3758/s13414-012-0410-0
URL
|
[4] |
Chota, S., & van der Stigchel, S. (2021). Dynamic and flexible transformation and reallocation of visual working memory representations. Visual Cognition, 29(7), 409-415. https://doi.org/10.1080/13506285.2021.1891168
doi: 10.1080/13506285.2021.1891168
URL
|
[5] |
de Vries, I. E. J., Slagter, H. A., & Olivers, C. N. L. (2020). Oscillatory control over representational states in working memory. Trends in Cognitive Sciences, 24(2), 150-162. https://doi.org/10.1016/j.tics.2019.11.006
doi: S1364-6613(19)30278-5
URL
pmid: 31791896
|
[6] |
Eriksson, J., Vogel, E. K., Lansner, A., Bergström, F., & Nyberg, L. (2015). Neurocognitive architecture of working memory. Neuron, 88(1), 33-46. https://doi.org/10.1016/j.neuron.2015.09.020
doi: 10.1016/j.neuron.2015.09.020
URL
pmid: 26447571
|
[7] |
Hao, R., Becker, M. W., Ye, C., Liu, Q., & Liu, T. (2018). The bandwidth of VWM consolidation varies with the stimulus feature: Evidence from event-related potentials. Journal of Experimental Psychology: Human Perception & Performance, 44(5), 767-777. https://doi.org/10.1037/xhp0000488
|
[8] |
Kamiński, J., & Rutishauser, U. (2020). Between persistently active and activity-silent frameworks:Novel vistas on the cellular basis of working memory. Annals of the New York Academy of Sciences, 1464(1), 64-75. https://doi.org/10.1111/nyas.14213
|
[9] |
LaRocque, J. J., Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2013). Decoding attended information in short-term memory: An EEG study. Journal of Cognitive Neuroscience, 25(1), 127-142. https://doi.org/10.1162/jocn_a_00305
doi: 10.1162/jocn_a_00305
URL
pmid: 23198894
|
[10] |
LaRocque, J. J., Lewis-Peacock, J. A., & Postle, B. R. (2014). Multiple neural states of representation in short-term memory? It’s a matter of attention. Frontiers in Human Neuroscience, 8, 5. https://doi.org/10.3389/fnhum.2014.00005
|
[11] |
Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle, B. R. (2012). Neural evidence for a distinction between short-term memory and the focus of attention. Journal of Cognitive Neuroscience, 24(1), 61-79. https://doi.org/10.1162/jocn_a_00140
|
[12] |
Li, Z., Liang, T., & Liu, Q. (2021). The storage resources of the active and passive states are independent in visual working memory. Cognition, 217,104911. https://doi.org/10.1016/j.cognition.2021.104911
doi: 10.1016/j.cognition.2021.104911
URL
|
[13] |
Li, Z., Zhang, J., Liang, T., Ye, C., & Liu, Q. (2020). Interval between two sequential arrays determines their storage state in visual working memory. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-64825-4
|
[14] |
Liu, T., & Becker, M. W. (2013). Serial consolidation of orientation information into visual short-term memory. Psychological Science, 24(6), 1044-1050. https://doi.org/10.1177/0956797612464381
doi: 10.1177/0956797612464381
URL
pmid: 23592650
|
[15] |
Love, J., Selker, R., Marsman, M., Jamil, T., Dropmann, D., Verhagen, J.,... Wagenmakers, E. J. (2019). JASP: Graphical statistical software for common statistical designs. Journal of Statistical Software, 88(1), 1-17. https://doi.org/10.18637/jss.v088.i02
|
[16] |
Mance, I., Becker, M. W., & Liu, T. (2012). Parallel consolidation of simple features into visual short-term memory. Journal of Experimental Psychology Human Perception & Performance, 38(2), 429-438. https://doi.org/10.1037/a0023925
|
[17] |
Manohar, S. G., Zokaei, N., Fallon, S. J., Vogels, T. P., & Husain, M. (2019). Neural mechanisms of attending to items in working memory. Neuroscience and Biobehavioral Reviews, 101,1-12. https://doi.org/10.1016/j.neubiorev.2019.03.017
doi: S0149-7634(19)30062-4
URL
pmid: 30922977
|
[18] |
McCabe, D. P. (2008). The role of covert retrieval in working memory span tasks: Evidence from delayed recall tests. Journal of Memory and Language, 58(2), 480-494. https://doi.org/10.1016/j.jml.2007.04.004
doi: 10.1016/j.jml.2007.04.004
URL
pmid: 19633737
|
[19] |
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 100(2), 463-475. https://doi.org/10.1016/j.neuron.2018.09.023
doi: S0896-6273(18)30825-0
URL
pmid: 30359609
|
[20] |
Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic theory of working memory. Science, 319(5869), 1543-1546. https://doi.org/10.1126/science.1150769
doi: 10.1126/science.1150769
URL
pmid: 18339943
|
[21] |
Muhle-Karbe, P. S., Myers, N. E., & Stokes, M. G. (2021). A hierarchy of functional states in working memory. Journal of Neuroscience, 41(20), 4461-4475. https://doi.org/10.1523/JNEUROSCI.3104-20.2021
doi: 10.1523/JNEUROSCI.3104-20.2021
URL
pmid: 33888611
|
[22] |
Nee, D. E., & Jonides, J. (2013). Trisecting representational states in short-term memory. Frontiers in Human Neuroscience, 7,796. https://doi.org/10.3389/fnhum.2013.00796
doi: 10.3389/fnhum.2013.00796
URL
pmid: 24324424
|
[23] |
Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning Memory and Cognition, 28(3), 411-421. https://doi.org/10.1037/0278-7393.28.3.411
doi: 10.1037/0278-7393.28.3.411
URL
|
[24] |
Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Sciences, 15(7), 327-334. https://doi.org/10.1016/j.tics.2011.05.004
doi: 10.1016/j.tics.2011.05.004
URL
pmid: 21665518
|
[25] |
Rose, N. S. (2020). The dynamic-processing model of working memory. Current Directions in Psychological Science, 29(4), 378-387. https://doi.org/10.1177/0963721420922185
doi: 10.1177/0963721420922185
URL
|
[26] |
Rose, N. S., Buchsbaum, B. R., & Craik, F. I. M. (2014). Short-term retention of a single word relies on retrieval from long-term memory when both rehearsal and refreshing are disrupted. Memory and Cognition, 42(5), 689-700. https://doi.org/10.3758/s13421-014-0398-x
doi: 10.3758/s13421-014-0398-x
URL
|
[27] |
Rose, N. S., Joshua, J. L., Adam, C. R., Olivia, G., Michael, J. S., Emma, E. M., & Bradley, R. P. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354(6316), 1136-1139. https://doi.org/10.1126/science.aah7011
URL
pmid: 27934762
|
[28] |
Scharff, A., & Palmer, J. (2008). Distinguishing serial and parallel models using variations of the simultaneous-sequential paradigm. Journal of Vision, 8(6), 981-981. https://doi.org/10.1167/8.6.981
doi: 10.1167/8.6.981
URL
|
[29] |
Shaffer, W., & Shiffrin, R. M. (1972). Rehearsal and storage of visual information. Journal of Experimental Psychology, 92(2), 292-296. https://doi.org/10.1037/h0032076
URL
pmid: 5058950
|
[30] |
Stokes, M. G. (2015). “Activity-silent” working memory in prefrontal cortex: A dynamic coding framework. Trends in Cognitive Sciences, 19(7), 394-405. https://doi.org/10.1016/j.tics.2015.05.004
doi: 10.1016/j.tics.2015.05.004
URL
pmid: 26051384
|
[31] |
Stokes, M. G., Muhle-Karbe, P. S., & Myers, N. E. (2020). Theoretical distinction between functional states in working memory and their corresponding neural states. Visual Cognition, 28(5-8), 420-432. https://doi.org/10.1080/13506285.2020.1825141
doi: 10.1080/13506285.2020.1825141
URL
pmid: 33223922
|
[32] |
Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception & Performance, 32(6), 1436-1451. https://doi.org/10.1037/0096-1523.32.6.1436
|
[33] |
Wolff, M. J., Ding, J., Myers, N. E., & Stokes, M. G. (2015). Revealing hidden states in visual working memory using electroencephalography. Frontiers in Systems Neuroscience, 9,123. https://doi.org/10.3389/fnsys.2015.00123
doi: 10.3389/fnsys.2015.00123
URL
pmid: 26388748
|
[34] |
Wolff, M. J., Jochim, J., Akyürek, E. G., & Stokes, M. G. (2017). Dynamic hidden states underlying working-memory-guided behavior. Nature neuroscience, 20(6), 864-871. https://doi.org/10.1038/nn.4546
doi: 10.1038/nn.4546
URL
pmid: 28414333
|
[35] |
Zhang, J., Ye, C., Sun, H. -J., Zhou, J., Liang, T., Li, Y., & Liu, Q. (2022). The passive state: A protective mechanism for information in working memory tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 48(9), 1235-1248. https://doi.org/10.1037/xlm0001092
doi: 10.1037/xlm0001092
URL
|