心理学报 ›› 2024, Vol. 56 ›› Issue (3): 339-351.doi: 10.3724/SP.J.1041.2024.00339
收稿日期:
2023-04-21
发布日期:
2023-12-11
出版日期:
2024-03-25
通讯作者:
郭磊, E-mail: 基金资助:
Received:
2023-04-21
Online:
2023-12-11
Published:
2024-03-25
摘要:
作答选择题可被看作从噪音中提取信号的过程, 研究提出了一种基于信号检测论的认知诊断模型(SDT-CDM)。新模型的优势在于:(1)无需对选项进行属性层面的编码。(2)能获得传统诊断模型无法提供的题目区分度和难度参数。(3)可以直接表达每个选项之间的合理性差异, 对题目性能刻画更加细微全面。两个模拟研究结果表明:(1)EM算法可以实现对新模型的参数估计过程, 便捷有效。(2) SDT-CDM具备良好性能, 分类准确性和参数估计精度较高以外, 还能提供选项层面的估计信息, 用于题目质量诊断与修订。(3)属性数量、题目质量与样本量等因素会影响SDT-CDM的表现。(4)与称名诊断模型NRDM相比, SDT-CDM在所有实验条件下对被试的分类准确性更高。实证研究表明:SDT-CDM比NRDM具有更好的模型数据拟合结果, 其分类准确性和一致性更高, 尤其当属性考察次数较少时具有很强的稳定性, 难度和区分度参数与IRT模型估计结果的相关性也更高, 值得推广。
中图分类号:
郭磊, 秦海江. (2024). 基于信号检测论的认知诊断评估:构建与应用. 心理学报, 56(3), 339-351.
GUO Lei, QIN Haijiang. (2024). Cognitive diagnostic assessment based on signal detection theory: Modeling and application. Acta Psychologica Sinica, 56(3), 339-351.
序号/题目编号 | A1 | A2 | A3 | A4 | A5 | A6 |
---|---|---|---|---|---|---|
1/M032679 | 0 | 0 | 0 | 1 | 1 | 0 |
2/M042024 | 0 | 1 | 0 | 0 | 0 | 0 |
3/M042016 | 1 | 0 | 0 | 0 | 0 | 0 |
4/M042077 | 1 | 0 | 1 | 0 | 0 | 0 |
5/M042235 | 0 | 0 | 1 | 0 | 0 | 0 |
6/M042150 | 0 | 0 | 0 | 1 | 0 | 0 |
7/M032352 | 1 | 0 | 0 | 0 | 0 | 1 |
8/M032738 | 0 | 0 | 1 | 0 | 0 | 0 |
9/M032295 | 0 | 0 | 1 | 0 | 0 | 0 |
10/M032331 | 0 | 0 | 0 | 1 | 1 | 0 |
11/M042041 | 0 | 1 | 0 | 0 | 0 | 0 |
12/M032047 | 1 | 0 | 0 | 0 | 0 | 0 |
13/M032398 | 0 | 0 | 0 | 1 | 0 | 0 |
14/M032424 | 0 | 1 | 1 | 0 | 0 | 0 |
表1 TIMSS 2011数学测验(选择题)的Q矩阵
序号/题目编号 | A1 | A2 | A3 | A4 | A5 | A6 |
---|---|---|---|---|---|---|
1/M032679 | 0 | 0 | 0 | 1 | 1 | 0 |
2/M042024 | 0 | 1 | 0 | 0 | 0 | 0 |
3/M042016 | 1 | 0 | 0 | 0 | 0 | 0 |
4/M042077 | 1 | 0 | 1 | 0 | 0 | 0 |
5/M042235 | 0 | 0 | 1 | 0 | 0 | 0 |
6/M042150 | 0 | 0 | 0 | 1 | 0 | 0 |
7/M032352 | 1 | 0 | 0 | 0 | 0 | 1 |
8/M032738 | 0 | 0 | 1 | 0 | 0 | 0 |
9/M032295 | 0 | 0 | 1 | 0 | 0 | 0 |
10/M032331 | 0 | 0 | 0 | 1 | 1 | 0 |
11/M042041 | 0 | 1 | 0 | 0 | 0 | 0 |
12/M032047 | 1 | 0 | 0 | 0 | 0 | 0 |
13/M032398 | 0 | 0 | 0 | 1 | 0 | 0 |
14/M032424 | 0 | 1 | 1 | 0 | 0 | 0 |
Model | 模型参数数量 | −2LL | AIC | BIC |
---|---|---|---|---|
SDT-CDM | 71 | 19965.49 | 20107.49 | 20169.54 |
NRDM | 87 | 20007.68 | 20181.68 | 20257.71 |
表2 模型数据相对拟合指标
Model | 模型参数数量 | −2LL | AIC | BIC |
---|---|---|---|---|
SDT-CDM | 71 | 19965.49 | 20107.49 | 20169.54 |
NRDM | 87 | 20007.68 | 20181.68 | 20257.71 |
评价 指标 | 模型 | 模式 | 属性 | |||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | |||
分类 准确性 | SDT-CDM | 0.608 | 0.864 | 0.918 | 0.932 | 0.884 | 0.819 | 0.953 |
NRDM | 0.437 | 0.895 | 0.907 | 0.930 | 0.875 | 0.780 | 0.770 | |
提升率 | 39.13% | −3.46% | 1.21% | 0.22% | 1.03% | 5.00% | 23.77% | |
分类 一致性 | SDT-CDM | 0.650 | 0.809 | 0.880 | 0.901 | 0.833 | 0.757 | 0.921 |
NRDM | 0.647 | 0.850 | 0.866 | 0.895 | 0.823 | 0.720 | 0.716 | |
提升率 | 0.46% | −4.82% | 1.62% | 0.67% | 1.22% | 5.14% | 28.63% |
表3 属性与模式水平的分类准确性和一致性
评价 指标 | 模型 | 模式 | 属性 | |||||
---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | |||
分类 准确性 | SDT-CDM | 0.608 | 0.864 | 0.918 | 0.932 | 0.884 | 0.819 | 0.953 |
NRDM | 0.437 | 0.895 | 0.907 | 0.930 | 0.875 | 0.780 | 0.770 | |
提升率 | 39.13% | −3.46% | 1.21% | 0.22% | 1.03% | 5.00% | 23.77% | |
分类 一致性 | SDT-CDM | 0.650 | 0.809 | 0.880 | 0.901 | 0.833 | 0.757 | 0.921 |
NRDM | 0.647 | 0.850 | 0.866 | 0.895 | 0.823 | 0.720 | 0.716 | |
提升率 | 0.46% | −4.82% | 1.62% | 0.67% | 1.22% | 5.14% | 28.63% |
SDT-CDM为真模型 | NRDM为真模型 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCCR | % | ACCR | % | PCCR | % | ACCR | % | ||||||
S | N | S | N | S | N | S | N | ||||||
AD | HO | 0.882 | 0.776 | 13.66 | 0.969 | 0.930 | 4.19 | 0.938 | 0.872 | 7.57 | 0.985 | 0.965 | 2.07 |
MV | 0.890 | 0.716 | 24.30 | 0.972 | 0.912 | 6.58 | 0.944 | 0.838 | 12.65 | 0.986 | 0.956 | 3.14 | |
K | 3 | 0.951 | 0.798 | 19.17 | 0.983 | 0.921 | 6.73 | 0.979 | 0.886 | 10.50 | 0.993 | 0.961 | 3.33 |
5 | 0.822 | 0.695 | 18.27 | 0.958 | 0.921 | 4.02 | 0.903 | 0.824 | 9.59 | 0.978 | 0.960 | 1.88 | |
J | 20 | 0.840 | 0.837 | 0.36 | 0.957 | 0.957 | 0.00 | 0.904 | 0.902 | 0.22 | 0.976 | 0.975 | 0.10 |
40 | 0.932 | 0.655 | 42.29 | 0.984 | 0.886 | 11.06 | 0.978 | 0.808 | 21.04 | 0.995 | 0.946 | 5.18 | |
IQ | H | 0.958 | 0.893 | 7.28 | 0.990 | 0.972 | 1.85 | 0.972 | 0.929 | 4.63 | 0.994 | 0.981 | 1.33 |
L | 0.815 | 0.599 | 36.06 | 0.951 | 0.870 | 9.31 | 0.910 | 0.781 | 16.52 | 0.977 | 0.939 | 4.05 | |
N | 1000 | 0.883 | 0.708 | 24.72 | 0.970 | 0.905 | 7.18 | 0.939 | 0.817 | 14.93 | 0.985 | 0.950 | 3.68 |
2000 | 0.889 | 0.784 | 13.39 | 0.972 | 0.937 | 3.74 | 0.943 | 0.893 | 5.60 | 0.986 | 0.971 | 1.54 | |
整体平均 | 0.886 | 0.746 | 18.77 | 0.971 | 0.921 | 5.43 | 0.941 | 0.855 | 10.06 | 0.985 | 0.960 | 2.60 |
表A1 SDT-CDM和NRDM分别为真模型时的PCCR和AACCR的均值结果
SDT-CDM为真模型 | NRDM为真模型 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PCCR | % | ACCR | % | PCCR | % | ACCR | % | ||||||
S | N | S | N | S | N | S | N | ||||||
AD | HO | 0.882 | 0.776 | 13.66 | 0.969 | 0.930 | 4.19 | 0.938 | 0.872 | 7.57 | 0.985 | 0.965 | 2.07 |
MV | 0.890 | 0.716 | 24.30 | 0.972 | 0.912 | 6.58 | 0.944 | 0.838 | 12.65 | 0.986 | 0.956 | 3.14 | |
K | 3 | 0.951 | 0.798 | 19.17 | 0.983 | 0.921 | 6.73 | 0.979 | 0.886 | 10.50 | 0.993 | 0.961 | 3.33 |
5 | 0.822 | 0.695 | 18.27 | 0.958 | 0.921 | 4.02 | 0.903 | 0.824 | 9.59 | 0.978 | 0.960 | 1.88 | |
J | 20 | 0.840 | 0.837 | 0.36 | 0.957 | 0.957 | 0.00 | 0.904 | 0.902 | 0.22 | 0.976 | 0.975 | 0.10 |
40 | 0.932 | 0.655 | 42.29 | 0.984 | 0.886 | 11.06 | 0.978 | 0.808 | 21.04 | 0.995 | 0.946 | 5.18 | |
IQ | H | 0.958 | 0.893 | 7.28 | 0.990 | 0.972 | 1.85 | 0.972 | 0.929 | 4.63 | 0.994 | 0.981 | 1.33 |
L | 0.815 | 0.599 | 36.06 | 0.951 | 0.870 | 9.31 | 0.910 | 0.781 | 16.52 | 0.977 | 0.939 | 4.05 | |
N | 1000 | 0.883 | 0.708 | 24.72 | 0.970 | 0.905 | 7.18 | 0.939 | 0.817 | 14.93 | 0.985 | 0.950 | 3.68 |
2000 | 0.889 | 0.784 | 13.39 | 0.972 | 0.937 | 3.74 | 0.943 | 0.893 | 5.60 | 0.986 | 0.971 | 1.54 | |
整体平均 | 0.886 | 0.746 | 18.77 | 0.971 | 0.921 | 5.43 | 0.941 | 0.855 | 10.06 | 0.985 | 0.960 | 2.60 |
序号 | 题号 | ||||||
---|---|---|---|---|---|---|---|
1 | M032679 | *−0.915 (2.874) | −0.510 (0.465) | 1.365 (0.080) | 3.759 (2.936) | −2.280 | 1.479 |
2 | M042024 | 2.878 (0.020) | *3.372 (0.016) | 3.180 (0.015) | 4.070 (0.015) | 0.192 | 4.263 |
3 | M042016 | *0.896 (0.091) | 0.235 (0.125) | −0.033 (0.164) | 2.361 (0.115) | 0.661 | 3.022 |
4 | M042077 | 1.133 (0.073) | 0.155 (0.142) | *0.787 (0.133) | 3.091 (0.148) | −0.346 | 2.745 |
5 | M042235 | −0.376 (0.285) | −0.326 (0.293) | 0.198 (0.197) | 3.037 (0.088) | −0.198 | 2.839 |
6 | M042150 | −0.526 (0.343) | *1.474 (0.061) | 1.565 (0.052) | 0.884 (0.055) | −0.091 | 0.793 |
7 | M032352 | 0.870 (0.129) | 0.963 (0.113) | *−0.841 (3.999) | 7.216 (4.044) | −1.804 | 5.412 |
8 | M032738 | −1.125 (0.502) | −0.884 (0.391) | −0.885 (0.411) | 2.796 (0.125) | 0.884 | 3.680 |
9 | M032295 | *2.486 (0.053) | 1.706 (0.075) | 1.224 (0.108) | 4.471 (0.046) | 0.780 | 5.251 |
10 | M032331 | −0.932 (0.268) | *−1.055 (0.653) | −0.253 (0.119) | 2.460 (0.944) | −1.055 | 1.405 |
11 | M042041 | 1.369 (0.069) | 1.391 (0.065) | *2.227 (0.045) | 3.454 (0.059) | 0.836 | 4.290 |
12 | M032047 | 1.326 (0.054) | *0.765 (0.093) | 0.043 (0.132) | 0.971 (0.097) | −0.561 | 0.410 |
13 | M032398 | 0.806 (0.077) | *0.673 (0.102) | 0.644 (0.078) | 1.123 (0.101) | −0.133 | 0.990 |
14 | M032424 | 0.441 (0.099) | 0.026 (0.157) | *0.262 (0.182) | 2.561 (0.247) | −0.178 | 2.382 |
表A2 SDT-CDM模型合理性、区分度和易度参数估计结果
序号 | 题号 | ||||||
---|---|---|---|---|---|---|---|
1 | M032679 | *−0.915 (2.874) | −0.510 (0.465) | 1.365 (0.080) | 3.759 (2.936) | −2.280 | 1.479 |
2 | M042024 | 2.878 (0.020) | *3.372 (0.016) | 3.180 (0.015) | 4.070 (0.015) | 0.192 | 4.263 |
3 | M042016 | *0.896 (0.091) | 0.235 (0.125) | −0.033 (0.164) | 2.361 (0.115) | 0.661 | 3.022 |
4 | M042077 | 1.133 (0.073) | 0.155 (0.142) | *0.787 (0.133) | 3.091 (0.148) | −0.346 | 2.745 |
5 | M042235 | −0.376 (0.285) | −0.326 (0.293) | 0.198 (0.197) | 3.037 (0.088) | −0.198 | 2.839 |
6 | M042150 | −0.526 (0.343) | *1.474 (0.061) | 1.565 (0.052) | 0.884 (0.055) | −0.091 | 0.793 |
7 | M032352 | 0.870 (0.129) | 0.963 (0.113) | *−0.841 (3.999) | 7.216 (4.044) | −1.804 | 5.412 |
8 | M032738 | −1.125 (0.502) | −0.884 (0.391) | −0.885 (0.411) | 2.796 (0.125) | 0.884 | 3.680 |
9 | M032295 | *2.486 (0.053) | 1.706 (0.075) | 1.224 (0.108) | 4.471 (0.046) | 0.780 | 5.251 |
10 | M032331 | −0.932 (0.268) | *−1.055 (0.653) | −0.253 (0.119) | 2.460 (0.944) | −1.055 | 1.405 |
11 | M042041 | 1.369 (0.069) | 1.391 (0.065) | *2.227 (0.045) | 3.454 (0.059) | 0.836 | 4.290 |
12 | M032047 | 1.326 (0.054) | *0.765 (0.093) | 0.043 (0.132) | 0.971 (0.097) | −0.561 | 0.410 |
13 | M032398 | 0.806 (0.077) | *0.673 (0.102) | 0.644 (0.078) | 1.123 (0.101) | −0.133 | 0.990 |
14 | M032424 | 0.441 (0.099) | 0.026 (0.157) | *0.262 (0.182) | 2.561 (0.247) | −0.178 | 2.382 |
序号/题号 | KS | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|
1/M032679 | P(00) | 0.372* | 0.307 | 0.001 | 0.321 |
P(10) | 0.824* | 0.050 | 0.092 | 0.035 | |
P(01) | 0.372* | 0.136 | 0.329 | 0.164 | |
P(11) | 0.824* | 0.050 | 0.092 | 0.035 | |
2/M042024 | P(0) | 0.259 | 0.388* | 0.339 | 0.015 |
P(1) | 0.017 | 0.967* | 0.012 | 0.004 | |
3/M042016 | P(0) | 0.495* | 0.201 | 0.148 | 0.157 |
P(1) | 0.916* | 0.025 | 0.017 | 0.043 | |
4/M042077 | P(00) | 0.447 | 0.141 | 0.279* | 0.133 |
P(10) | 0.721 | 0.104 | 0.001* | 0.176 | |
P(01) | 0.375 | 0.002 | 0.467* | 0.155 | |
P(11) | 0.064 | 0.001 | 0.936* | 0.001 | |
5/M042235 | P(0) | 0.192 | 0.195 | 0.345 | 0.267* |
P(1) | 0.010 | 0.020 | 0.068 | 0.902* | |
6/M042150 | P(0) | 0.050 | 0.428* | 0.443 | 0.079 |
P(1) | 0.022 | 0.646* | 0.332 | 0.001 | |
7/M032352 | P(00) | 0.395 | 0.448 | 0.001* | 0.157 |
P(10) | 0.009 | 0.014 | 0.957* | 0.02 | |
P(01) | 0.001 | 0.102 | 0.846* | 0.052 | |
P(11) | 0.009 | 0.014 | 0.957* | 0.02 | |
8/M032738 | P(0) | 0.142 | 0.190 | 0.187 | 0.481* |
P(1) | 0.011 | 0.019 | 0.036 | 0.935* | |
9/M032295 | P(0) | 0.564* | 0.242 | 0.149 | 0.044 |
P(1) | 0.991* | 0.009 | 0.001 | 0.001 | |
10/M032331 | P(00) | 0.750 | 0.097* | 0.153 | 0.001 |
P(10) | 0.092 | 0.387* | 0.228 | 0.293 | |
P(01) | 0.142 | 0.154* | 0.276 | 0.428 | |
P(11) | 0.092 | 0.387* | 0.228 | 0.293 | |
11/M042041 | P(0) | 0.222 | 0.227 | 0.498* | 0.053 |
P(1) | 0.017 | 0.010 | 0.960* | 0.012 | |
12/M032047 | P(0) | 0.284 | 0.117* | 0.138 | 0.461 |
P(1) | 0.539 | 0.034* | 0.032 | 0.395 | |
13/M032398 | P(0) | 0.288 | 0.249* | 0.132 | 0.332 |
P(1) | 0.592 | 0.132* | 0.031 | 0.245 | |
14/M032424 | P(00) | 0.192 | 0.257 | 0.217* | 0.334 |
P(10) | 0.156 | 0.587 | 0.257* | 0.001 | |
P(01) | 0.197 | 0.395 | 0.216* | 0.192 | |
P(11) | 0.056 | 0.822 | 0.033* | 0.089 |
表A3 NRDM的模型参数估计结果(已转换为选择每个选项的概率值)
序号/题号 | KS | C1 | C2 | C3 | C4 |
---|---|---|---|---|---|
1/M032679 | P(00) | 0.372* | 0.307 | 0.001 | 0.321 |
P(10) | 0.824* | 0.050 | 0.092 | 0.035 | |
P(01) | 0.372* | 0.136 | 0.329 | 0.164 | |
P(11) | 0.824* | 0.050 | 0.092 | 0.035 | |
2/M042024 | P(0) | 0.259 | 0.388* | 0.339 | 0.015 |
P(1) | 0.017 | 0.967* | 0.012 | 0.004 | |
3/M042016 | P(0) | 0.495* | 0.201 | 0.148 | 0.157 |
P(1) | 0.916* | 0.025 | 0.017 | 0.043 | |
4/M042077 | P(00) | 0.447 | 0.141 | 0.279* | 0.133 |
P(10) | 0.721 | 0.104 | 0.001* | 0.176 | |
P(01) | 0.375 | 0.002 | 0.467* | 0.155 | |
P(11) | 0.064 | 0.001 | 0.936* | 0.001 | |
5/M042235 | P(0) | 0.192 | 0.195 | 0.345 | 0.267* |
P(1) | 0.010 | 0.020 | 0.068 | 0.902* | |
6/M042150 | P(0) | 0.050 | 0.428* | 0.443 | 0.079 |
P(1) | 0.022 | 0.646* | 0.332 | 0.001 | |
7/M032352 | P(00) | 0.395 | 0.448 | 0.001* | 0.157 |
P(10) | 0.009 | 0.014 | 0.957* | 0.02 | |
P(01) | 0.001 | 0.102 | 0.846* | 0.052 | |
P(11) | 0.009 | 0.014 | 0.957* | 0.02 | |
8/M032738 | P(0) | 0.142 | 0.190 | 0.187 | 0.481* |
P(1) | 0.011 | 0.019 | 0.036 | 0.935* | |
9/M032295 | P(0) | 0.564* | 0.242 | 0.149 | 0.044 |
P(1) | 0.991* | 0.009 | 0.001 | 0.001 | |
10/M032331 | P(00) | 0.750 | 0.097* | 0.153 | 0.001 |
P(10) | 0.092 | 0.387* | 0.228 | 0.293 | |
P(01) | 0.142 | 0.154* | 0.276 | 0.428 | |
P(11) | 0.092 | 0.387* | 0.228 | 0.293 | |
11/M042041 | P(0) | 0.222 | 0.227 | 0.498* | 0.053 |
P(1) | 0.017 | 0.010 | 0.960* | 0.012 | |
12/M032047 | P(0) | 0.284 | 0.117* | 0.138 | 0.461 |
P(1) | 0.539 | 0.034* | 0.032 | 0.395 | |
13/M032398 | P(0) | 0.288 | 0.249* | 0.132 | 0.332 |
P(1) | 0.592 | 0.132* | 0.031 | 0.245 | |
14/M032424 | P(00) | 0.192 | 0.257 | 0.217* | 0.334 |
P(10) | 0.156 | 0.587 | 0.257* | 0.001 | |
P(01) | 0.197 | 0.395 | 0.216* | 0.192 | |
P(11) | 0.056 | 0.822 | 0.033* | 0.089 |
序号 | 题号 | |||
---|---|---|---|---|
1 | M032679 | 0.999 (0.175) | 0.665 (0.193) | −0.664 (0.225) |
2 | M042024 | 1.000 | - | - |
3 | M042016 | 1.000 | - | - |
4 | M042077 | 0.001 (0.461) | 0.125 (0.133) | 0.875 (0.528) |
5 | M042235 | 1.000 | - | - |
6 | M042150 | 1.000 | - | - |
7 | M032352 | 0.001 (0.304) | 0.910 (0.108) | 0.090 (0.376) |
8 | M032738 | 1.000 | - | - |
9 | M032295 | 1.000 | - | - |
10 | M032331 | 0.001 (0.126) | 0.013 (0.111) | 0.987 (0.698) |
11 | M042041 | 1.000 | - | - |
12 | M032047 | 1.000 | - | - |
13 | M032398 | 1.000 | - | - |
14 | M032424 | 0.335 (0.421) | 0.270 (0.177) | 0.395 (0.448) |
表A4 SDT-CDM模型的属性主效应和交互效应参数估计结果
序号 | 题号 | |||
---|---|---|---|---|
1 | M032679 | 0.999 (0.175) | 0.665 (0.193) | −0.664 (0.225) |
2 | M042024 | 1.000 | - | - |
3 | M042016 | 1.000 | - | - |
4 | M042077 | 0.001 (0.461) | 0.125 (0.133) | 0.875 (0.528) |
5 | M042235 | 1.000 | - | - |
6 | M042150 | 1.000 | - | - |
7 | M032352 | 0.001 (0.304) | 0.910 (0.108) | 0.090 (0.376) |
8 | M032738 | 1.000 | - | - |
9 | M032295 | 1.000 | - | - |
10 | M032331 | 0.001 (0.126) | 0.013 (0.111) | 0.987 (0.698) |
11 | M042041 | 1.000 | - | - |
12 | M032047 | 1.000 | - | - |
13 | M032398 | 1.000 | - | - |
14 | M032424 | 0.335 (0.421) | 0.270 (0.177) | 0.395 (0.448) |
[1] |
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37 (1, Pt. 1), 29-51.
doi: 10.1007/BF02291411 URL |
[2] |
Bradshaw, L., & Templin, J. (2014). Combining item response theory and diagnostic classification models: A psychometric model for scaling ability and diagnosing misconceptions. Psychometrika, 79(3), 403-425.
doi: 10.1007/s11336-013-9350-4 pmid: 25205005 |
[3] | Chalmers, R,P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48(6), 1-29. |
[4] |
Chen, Y., Zhang, J., Yang, Y., & Lee, Y.-S. (2022). Latent space model for process data. Journal of Educational Measurement, 59(4), 517-535.
doi: 10.1111/jedm.v59.4 URL |
[5] |
Chiu, C.-Y. (2013). Statistical refinement of the Q-matrix in cognitive diagnosis. Applied Psychological Measurement, 37(8), 598-618.
doi: 10.1177/0146621613488436 URL |
[6] | Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York, NY: Erlbaum. |
[7] |
DiBello, L. V., Henson, R. A., & Stout, W. F. (2015). A family of generalized diagnostic classification models for multiple choice option-based scoring. Applied Psychological Measurement, 39(1), 62-79.
doi: 10.1177/0146621614561315 pmid: 29880994 |
[8] |
DeCarlo, L, T. (2021). A signal detection model for multiple- choice exams. Applied Psychological Measurement, 45(6), 423-440.
doi: 10.1177/01466216211014599 URL |
[9] |
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34(1), 115-130.
doi: 10.3102/1076998607309474 URL |
[10] |
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76(2), 179-199.
doi: 10.1007/s11336-011-9207-7 URL |
[11] |
Fang, G., Liu, J., & Ying, Z. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84, 19-40.
doi: 10.1007/s11336-018-09658-x pmid: 30673967 |
[12] |
Guo, L., Yuan, C. Y., & Bian, Y. F. (2013). Discussing the development tendency of cognitive diagnosis from the perspective of new models. Advances in Psychological Science, 21(12), 2256-2264.
doi: 10.3724/SP.J.1042.2013.02256 |
[ 郭磊, 苑春永, 边玉芳. (2013). 从新模型视角探讨认知诊断的发展趋势. 心理科学进展, 21(12), 2256-2264.]
doi: 10.3724/SP.J.1042.2013.02256 |
|
[13] |
Guo, L., Zheng, C., Bian, Y., Song, N., & Xia, L., (2016). New item selection methods in cognitive diagnostic computerized adaptive testing: Combining item discrimination indices. Acta Psychologica Sinica, 48(7), 903-914.
doi: 10.3724/SP.J.1041.2016.00903 |
[ 郭磊, 郑蝉金, 边玉芳, 宋乃庆, 夏凌翔. (2016). 认知诊断计算机化自适应测验中新的选题策略:结合项目区分度指标. 心理学报, 48(7), 903-914.] | |
[14] |
Guo, L., & Zhou, W. J. (2021). Nonparametric methods for cognitive diagnosis to multiple-choice test items. Acta Psychologica Sinica, 53(9), 1032-1043.
doi: 10.3724/SP.J.1041.2021.01032 |
[ 郭磊, 周文杰. (2021). 基于选项层面的认知诊断非参数方法. 心理学报, 53(9), 1032-1043.]
doi: 10.3724/SP.J.1041.2021.01032 |
|
[15] |
He, Q., Borgonovi, F., & Paccagnella, M. (2021). Leveraging process data to assess adults’ problem-solving skills: Using sequence mining to identify behavioral patterns across digital tasks. Computers & Education, 166: 104170.
doi: 10.1016/j.compedu.2021.104170 URL |
[16] |
Kelly, F. J. (1916). The kansas silent reading tests. Journal of Educational Psychology, 7(2), 63-80.
doi: 10.1037/h0073542 URL |
[17] | Lee, S. Y. (2017). Growth curve cognitive diagnosis models for longitudinal assessment (Unpublished doctorial dissertation). University of California, Berkeley. |
[18] |
Liu, Y. (2022). Standard errors and confidence intervals for cognitive diagnostic models: Parallel bootstrap methods. Acta Psychologica Sinica, 54(6), 703-724.
doi: 10.3724/SP.J.1041.2022.00703 |
[ 刘彦楼. (2022). 认知诊断模型的标准误与置信区间估计:并行自助法. 心理学报, 54(6), 703-724.]
doi: 10.3724/SP.J.1041.2022.00703 |
|
[19] |
Ma, W., & de la Torre, J. (2016). A sequential cognitive diagnosis model for polytomous responses. British Journal of Mathematical and Statistical Psychology, 69(3), 253-275.
doi: 10.1111/bmsp.2016.69.issue-3 URL |
[20] |
Ma, W., & de la Torre, J. (2020). An empirical Q-matrix validation method for the sequential generalized DINA model. British Journal of Mathematical and Statistical Psychology, 73(1), 142-163.
doi: 10.1111/bmsp.v73.1 URL |
[21] |
Ozaki, K. (2015). DINA models for multiple-choice items with few parameters: Considering incorrect answers. Applied Psychological Measurement, 39(6), 431-447.
doi: 10.1177/0146621615574693 pmid: 29881017 |
[22] |
Tang, X., Wang, Z., He, Q., Liu, J., & Ying, Z. (2020). Latent feature extraction for process data via multidimensional scaling. Psychometrika, 85, 378-397.
doi: 10.1007/s11336-020-09708-3 pmid: 32572672 |
[23] | Tang, X., Wang, Z., Liu, J., & Ying, Z. (2021). An exploratory analysis of the latent structure of process data via action sequence autoencoder. British Journal of Mathematical and Statistical Psychology, 74(1), 1-33. |
[24] | Templin, J., Henson, R., Rupp, A., Jang, E., & Ahmed, M. (2008). Cognitive diagnosis models for nominal response data. Annual Meeting of the National Council on Measurement in Education, New Brunswick, New Jersey. |
[25] | Thissen, D., & Steinberg, L. (1997). A response model for multiple-choice items. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 51-65). Springer. |
[26] | Wang, S., Yang, Y., Culpepper, S. A., & Douglas, J. A. (2018). Tracking skill acquisition with cognitive diagnosis models: A higher-order, hidden markov model with covariates. Journal of Educational and Behavioral Statistics, 43(1), 57-87. |
[27] |
Wang, W., Song, L., Chen, P., Meng, Y., & Ding, S. (2015). Attribute-level and pattern-level classification consistency and accuracy indices for cognitive diagnostic assessment. Journal of Educational Measurement, 52, 457-476.
doi: 10.1111/jedm.2015.52.issue-4 URL |
[28] | Wang, Y., Chiu, C.-Y., & Kohn, H. F. (2023). Nonparametric classification method for multiple-choice items in cognitive diagnosis. Journal of Educational and Behavioral Statistics, 48(2), 189-219. |
[29] | Xu, G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45(2), 675-707. |
[30] | Xu, X., Chang, H., & Douglas, J. (2003). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the annual meeting of National Council on Measurement in Education, Montreal, Quebec, Canada. |
[31] |
Zeng, Z., Gu, Y., & Xu, G. (2023). A tensor-EM method for large-scale latent class analysis with binary responses. Psychometrika, 88, 580-612.
doi: 10.1007/s11336-022-09887-1 |
[32] |
Zhan, P. D. (2022). Joint-cross-loading multimodal cognitive diagnostic modeling incorporating visual fixation counts. Acta Psychologica Sinica, 54(11), 1416-1432.
doi: 10.3724/SP.J.1041.2022.01416 |
[ 詹沛达. (2022). 引入眼动注视点的联合-交叉负载多模态认知诊断建模. 心理学报, 54(11), 1416-1432.]
doi: 10.3724/SP.J.1041.2022.01416 |
|
[33] | Zhan, P. D., Jiao, H., Liao, D. D., & Li, F. M. (2019). A longitudinal higher-order diagnostic classification model. Journal of Educational and Behavioral Statistics, 44(3), 251-281. |
[34] |
Zhan, P. D., & Qiao, X. (2022). Diagnostic classification analysis of problem-solving competence using process data: An item expansion method. Psychometrika, 87(4), 1529-547.
doi: 10.1007/s11336-022-09855-9 pmid: 35389193 |
[35] | Zhang, H. C., & Xu, J. P. (2015). Modern psychology and educational statistics (4th ed.). Beijing Normal University Press. |
[ 张厚粲, 徐建平. (2015). 现代心理与教育统计学(第4版). 北京师范大学出版社.] | |
[36] |
Zhang, S. S., & Chang, H. H. (2020). A multilevel logistic hidden markov model for learning under cognitive diagnosis. Behavior Research Methods, 52, 408-421.
doi: 10.3758/s13428-019-01238-w pmid: 31065938 |
[37] | Zheng, T. P., Zhou, W. J., & Guo, L. (2023). Cognitive diagnosis modelling based on response times. Journal of Psychological Science, 46(2), 478-490. |
[ 郑天鹏, 周文杰, 郭磊. (2023). 基于题目作答时间信息的认知诊断模型. 心理科学, 46(2), 478-490.] | |
[38] | Zhu, W., Ding, S., & Chen, X. (2006). Minimum chi-square/EM estimation under IRT. Acta Psychologica Sinica, 38(3), 453-460. |
[ 朱玮, 丁树良, 陈小攀. (2006). IRT中最小化χ2/EM参数估计方法. 心理学报, 38(3), 453-460.] |
[1] | 田亚淑, 詹沛达, 王立君. 联合作答精度和作答时间的概率态认知诊断模型[J]. 心理学报, 2023, 55(9): 1573-1586. |
[2] | 游晓锋, 杨建芹, 秦春影, 刘红云. 认知诊断测评中缺失数据的处理:随机森林阈值插补法[J]. 心理学报, 2023, 55(7): 1192-1206. |
[3] | 刘彦楼, 陈启山, 王一鸣, 姜晓彤. 模型参数点估计的可靠性:以CDM为例[J]. 心理学报, 2023, 55(10): 1712-1728. |
[4] | 刘彦楼, 吴琼琼. 认知诊断模型Q矩阵修正:完整信息矩阵的作用[J]. 心理学报, 2023, 55(1): 142-158. |
[5] | 孙小坚, 郭磊. 考虑题目选项信息的非参数认知诊断计算机自适应测验[J]. 心理学报, 2022, 54(9): 1137-1150. |
[6] | 李佳, 毛秀珍, 韦嘉. 一种简单有效的Q矩阵修正新方法[J]. 心理学报, 2022, 54(8): 996-1008. |
[7] | 刘彦楼. 认知诊断模型的标准误与置信区间估计:并行自助法[J]. 心理学报, 2022, 54(6): 703-724. |
[8] | 宋枝璘, 郭磊, 郑天鹏. 认知诊断缺失数据处理方法的比较:零替换、多重插补与极大似然估计法[J]. 心理学报, 2022, 54(4): 426-440. |
[9] | 詹沛达. 引入眼动注视点的联合-交叉负载多模态认知诊断建模[J]. 心理学报, 2022, 54(11): 1416-1423. |
[10] | 郭磊, 周文杰. 基于选项层面的认知诊断非参数方法[J]. 心理学报, 2021, 53(9): 1032-1043. |
[11] | 谭青蓉, 汪大勋, 罗芬, 蔡艳, 涂冬波. 一种高效的CD-CAT在线标定新方法:基于熵的信息增益与EM视角[J]. 心理学报, 2021, 53(11): 1286-1300. |
[12] | 罗芬, 王晓庆, 蔡艳, 涂冬波. 基于基尼指数的双目标CD-CAT选题策略[J]. 心理学报, 2020, 52(12): 1452-1465. |
[13] | 汪大勋, 高旭亮, 蔡艳, 涂冬波. 基于类别水平的多级计分认知诊断Q矩阵修正:相对拟合统计量视角[J]. 心理学报, 2020, 52(1): 93-106. |
[14] | 詹沛达, 于照辉, 李菲茗, 王立君. 一种基于多阶认知诊断模型测评科学素养的方法[J]. 心理学报, 2019, 51(6): 734-746. |
[15] | 高旭亮, 汪大勋, 王芳, 蔡艳, 涂冬波. 基于分部评分模型思路的多级评分认知诊断模型开发[J]. 心理学报, 2019, 51(12): 1386-1397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||