[1] Appelbaum L. G., Boehler C. N., Davis L. A., Won R. J., & Woldorff M. G. (2014). The Dynamics of proactive and reactive cognitive control processes in the human Brain.Journal of Cognitive Neuroscience, 26(5), 1021-1038. [2] Augustinova M., Silvert L., Spatola N., & Ferrand L. (2018). Further investigation of distinct components of Stroop interference and of their reduction by short response- stimulus intervals.Acta Psychologica, 189, 54-62. [3] Burca M., Beaucousin V., Chausse P., Ferrand L., Parris B. A., & Augustinova M. (2021). Is there semantic conflict in the Stroop task?Experimental Psychology, 68(5), 274-283. [4] Chen, Q., & Zhou, X. L. (2013). Vision dominates at the preresponse level and audition dominates at the response level in cross-modal interaction: Behavioral and neural evidence.The Journal of Neuroscience, 33(17), 7109-7121. [5] Cohen, M. X., & Cavanagh, J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict.Frontiers in Psychology, 2, 30. [6] Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict- related theta-band power reflects neural oscillations that predict behavior.Journal of Neurophysiology, 110(12), 2752-2763. [7] De Cheveigné, A., & Arzounian, D. (2018). Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data.NeuroImage, 172, 903-912. [8] De Houwer, J. (2003). On the role of stimulus-response and stimulus-stimulus compatibility in the Stroop effect.Memory & Cognition, 31(3), 353-359. [9] Donohue S. E., Appelbaum L. G., Park C. J., Roberts K. C., & Woldorff M. G. (2013). Cross-modal stimulus conflict: The behavioral effects of stimulus input timing in a visual-auditory Stroop task.PloS One, 8(4), e62802. [10] Dugué, L., & VanRullen, R. (2017). Transcranial magnetic stimulation reveals intrinsic perceptual and attentional rhythms.Frontiers in Neuroscience, 11, 154. [11] Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37(1), 36-48. [12] Egner, T. (2008). Multiple conflict-driven control mechanisms in the human brain.Trends in Cognitive Sciences, 12(10), 374-380. [13] Fiebelkorn, I. C., & Kastner, S. (2019). A rhythmic theory of attention.Trends in Cognitive Sciences, 23(2), 87-101. [14] Fiebelkorn I. C., Saalmann Y. B., & Kastner S. (2013). Rhythmic sampling within and between objects despite sustained attention at a cued location. Current Biology, 23(24), 2553-2558. [15] Haciahmet C. C., Frings C., Beste C., Münchau A., & Pastötter B. (2023). Posterior delta/theta EEG activity as an early signal of Stroop conflict detection.Psychophysiology, 60(3), e14195. [16] Haciahmet C. C., Frings C., & Pastötter B. (2021). Target amplification and distractor inhibition: Theta oscillatory dynamics of selective attention in a flanker task.Cognitive, Affective, & Behavioral Neuroscience, 21(2), 355-371. [17] Helfrich R. F., Fiebelkorn I. C., Szczepanski S. M., Lin J. J., Parvizi J., Knight R. T., & Kastner S. (2018). Neural mechanisms of sustained attention are rhythmic.Neuron, 99(4), 854-865. [18] Ho H. T., Burr D. C., Alais D., & Morrone M. C. (2019). Auditory perceptual history is propagated through alpha oscillations.Current Biology, 29(24), 4208-4217. [19] Hommel, B. (2019). Theory of Event Coding (TEC) V2. 0: Representing and controlling perception and action.Attention, Perception, & Psychophysics, 81(7), 2139-2154. [20] Huang Y., Chen L., & Luo H. (2015). Behavioral oscillation in priming: Competing perceptual predictions conveyed in alternating theta-band rhythms.Journal of Neuroscience, 35(6), 2830-2837. [21] Jia J. R., Fan Y., & Luo H. (2022). Alpha-band phase modulates bottom-up feature processing.Cerebral Cortex, 32(6), 1260-1268. [22] Jia J. R., Liu L., Fang F., & Luo H. (2017). Sequential sampling of visual objects during sustained attention.PloS Biology, 15(6), e2001903. [23] Jiang J., Zhang Q. L., & Van Gaal S. (2015). EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.Scientific Reports, 5(1), 12008. [24] Kienitz R., Schmid M. C., & Dugué L. (2022). Rhythmic sampling revisited: Experimental paradigms and neural mechanisms.European Journal of Neuroscience, 55(11- 12), 3010-3024. [25] Landau, A. N., & Fries, P. (2012). Attention samples stimuli rhythmically.Current Biology, 22(11), 1000-1004. [26] Liu, L., & Luo, H. (2019). Behavioral oscillation in global/ local processing: Global alpha oscillations mediate global precedence effect.Journal of Vision, 19(5), 12. [27] Michel R., Dugué L., & Busch N. A. (2022). Distinct contributions of alpha and theta rhythms to perceptual and attentional sampling.European Journal of Neuroscience, 55(11-12), 3025-3039. [28] Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.Annual Review of Neuroscience, 24(1), 167-202. [29] Mo C., Lu J. S., Wu B. C., Jia J. R., Luo H., & Fang F. (2019). Competing rhythmic neural representations of orientations during concurrent attention to multiple orientation features. Nature Communications, 10(1), 5264. [30] Nieuwenhuis, S., & Yeung, N. (2005). Neural mechanisms of attention and control: Losing our inhibitions?Nature Neuroscience, 8(12), 1631-1633. [31] Nigbur R., Cohen M. X., Ridderinkhof K. R., & Stürmer B. (2012). Theta dynamics reveal domain-specific control over stimulus and response conflict.Journal of Cognitive Neuroscience, 24(5), 1264-1274. [32] Nigbur R., Ivanova G., & Stürmer B. (2011). Theta power as a marker for cognitive interference.Clinical Neurophysiology, 122(11), 2185-2194. [33] Plöchl M., Fiebelkorn I., Kastner S., & Obleser J. (2022). Attentional sampling of visual and auditory objects is captured by theta‐modulated neural activity.European Journal of Neuroscience, 55(11-12), 3067-3082. [34] Pomper, U., & Ansorge, U. (2021). Theta-rhythmic oscillation of working memory performance.Psychological Science, 32(11), 1801-1810. [35] Re D., Inbar M., Richter C. G., & Landau A. N. (2019). Feature-based attention samples stimuli rhythmically.Current Biology, 29(4), 693-699. [36] Senoussi M., Moreland J. C., Busch N. A., & Dugué L. (2019). Attention explores space periodically at the theta frequency.Journal of Vision, 19(5), 22. [37] Senoussi M., Verbeke P., Desender K., De Loof E., Talsma D., & Verguts T. (2022). Theta oscillations shift towards optimal frequency for cognitive control.Nature Human Behaviour, 6(7), 1000-1013. [38] Song K., Meng M., Chen L., Zhou K., & Luo H. (2014). Behavioral oscillations in attention: Rhythmic α pulses mediated through θ band.Journal of Neuroscience, 34(14), 4837-4844. [39] Stroop, J. R. (1935). Studies of interference in serial verbal reactions.Journal of Experimental Psychology, 18(6), 643-662. [40] Tomassini A., Ambrogioni L., Medendorp W. P., & Maris E. (2017). Theta oscillations locked to intended actions rhythmically modulate perception.Elife, 6, e25618. [41] van Veen, V., & Carter, C. S. (2005). Separating semantic conflict and response conflict in the Stroop task: A functional MRI study.NeuroImage, 27(3), 497-504. [42] Wang C., Li H., Jia L., Li F., & Wang J. (2020). Theta band behavioral fluctuations synchronized interpersonally during cooperation.Psychonomic Bulletin & Review, 27(3), 563-570. [43] Xu H. H., Yang G. C., Göschl F., Nolte G., Ren Q. Y., Li Z. H., .. & Liu X. (2024). Distinct and common mechanisms of cross-model semantic conflict and response conflict in an auditory relevant task. Cerebral Cortex, 34(3), bhae105. [44] Xu H. H., Yang G. C., Wu H. Y., Xiao J., Li Q., & Liu X. (2024). Distinct mechanisms underlying cross-modal semantic conflict and response conflict processing. Cerebral Cortex, 34(2), bhad539. [45] Yang Y., Qi Z. Y., Zhang K. H., & Luo W. B. (2019). Behavioral oscillations and their performance in attention and perception. Chinese Science Bulletin, 64(5), 546-554. [杨阳, 齐正阳, 张珂烨, 罗文波. (2019). 行为振荡:揭示心理过程动态变化的新现象.科学通报, 64(5), 546-554.] [46] Zhang, H., & Kornblum, S. (1998). The effects of stimulus- response mapping and irrelevant stimulus-response and stimulus-stimulus overlap in four-choice Stroop tasks with single-carrier stimuli.Journal of Experimental Psychology: Human Perception and Performance, 24(1), 3-19. [47] Zhang X. D., Zhang L. J., Ding Y. L., & Qu Z. (2021). Behavioral oscillations in attentional processing.Advances in Psychological Science, 29(3), 460-471. [章小丹, 张沥今, 丁玉珑, 曲折. (2021). 注意过程中的行为振荡现象.心理科学进展, 29(3), 460-471.] |