[1] |
Allen R. J., Baddeley A. D., & Hitch G. J. (2006). Is the binding of visual features in working memory resource- demanding? Journal of Experimental Psychology: General, 135(2), 298-313. 2. 298
|
[2] |
Alvarez G. A., & Cavanagh P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111. https://doi.org/10.1111/j.0963-7214.2004.01502006. x
|
[3] |
Atkinson A. L., Berry E. D., Waterman A. H., Baddeley A. D., Hitch G. J., & Allen R. J. (2018). Are there multiple ways to direct attention in working memory? Annals of the New York Academy of Sciences, 1424(1), 115-126. 1111/nyas. 13634
|
[4] |
Awh E., Barton B., & Vogel E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628. https://doi.org/10.1111/j.1467-9280.2007.01949. x
|
[5] |
Bays P. M., & Husain M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321(5890), 851-851. 1158 023
|
[6] |
Brady T. F., & Alvarez G.A. (2015). No evidence for a fixed object limit in working memory: Spatial ensemble representations inflate estimates of working memory capacity for complex objects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41(3), 921-921.
|
[7] |
Brady T. F., Konkle T., & Alvarez G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138(4), 487-487.
|
[8] |
Brady T. F., Konkle T., & Alvarez G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11( 5), 1-34. https://doi.org/10.1167/11. 5. 4
|
[9] |
Brady T. F., Störmer V. S., & Alvarez G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7459-7459. 1073/pnas. 1520027113
|
[10] |
Brady T. F., & Tenenbaum J.B. (2013). A probabilistic model of visual working memory: Incorporating higher order regularities into working memory capacity estimates. Psychological Review, 120(1), 85-85.
|
[11] |
Cohen M. A., Konkle T., Rhee J. Y., Nakayama K., & Alvarez G. A. (2014). Processing multiple visual objects is limited by overlap in neural channels. Proceedings of the National Academy of Sciences of the United States of America, 111(24), 8955-8955. 1073/pnas. 1317860111
|
[12] |
Cowan N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87-87. org/10.1017/S0140525X01003922
|
[13] |
Curby K. M., & Gauthier I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620-620.
|
[14] |
Delorme A., & Makeig S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134 2003. 10. 009
|
[15] |
Ding X., Zhao Y., Wu F., Lu X., Gao Z., & Shen M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology: Human Perception and Performance, 41( 3), 850-865. https://doi.org/10.1037/xhp0000061
|
[16] |
Gao Z., Gao Q., Tang N., Shui R., & Shen M. (2016). Organization principles in visual working memory: Evidence from sequential stimulus display. Cognition, 146, 277-288. https://doi.org/10.1016/j.cognition. 2015. 10. 005
|
[17] |
Gao Z., Li J., Liang J., Chen H., Yin J., & Shen M. (2009). Storing fine detailed information in visual working memory -- Evidence from event-related potentials. Journal of Vision, 9( 7), 17. https://doi.org/10.1167/9. 7. 17
|
[18] |
Gao Z., Xu X., Chen Z., Yin J., Shen M., & Shui R. (2011). Contralateral delay activity tracks object identity information in visual short term memory. Brain Research, 1406, 30-42. https://doi.org/10.1016/j.brainres. 2011. 06. 049
|
[19] |
Jiang Y. V., Lee H. J., Asaad A., & Remington R. (2016). Similarity effects in visual working memory. Psychonomic Bulletin & Review, 23(2), 476-476.
|
[20] |
Jiang Y. V., Remington R. W., Asaad A., Lee H. J., & Mikkalson T. C. (2016). Remembering faces and scenes: The mixed-category advantage in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 42(9), 1399-1399.
|
[21] |
Kaiser D., Stein T., & Peelen M. V. (2014). Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 111(30), 11217-11217. org/10.1073/pnas.1400559111
|
[22] |
Kaiser D., Stein T., & Peelen M. V. (2015). Real-world spatial regularities affect visual working memory for objects. Psychonomic Bulletin & Review, 22(6), 1784-1784.
|
[23] |
Kang M. -S., & Woodman, G. F.(2014). The neurophysiological index of visual working memory maintenance is not due to load dependent eye movements. Neuropsychologia, 56, 63-72. https://doi.org/10.1016/j. neuropsychologia. 2013. 12. 028
|
[24] |
Lin P.-H., & Luck S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 356-356.
|
[25] |
Lopez-Calderon, J., & Luck, S. J.(2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8 2014. 00213
|
[26] |
Luck S. J., & Vogel E.K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-279.
|
[27] |
Luck S. J., & Vogel E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17 2013. 06. 006
|
[28] |
Luria R., Balaban H., Awh E., & Vogel E. K. (2016). The contralateral delay activity as a neural measure of visual working memory. Neuroscience and Biobehavioral Reviews, 62, 100-108. https://doi.org/10.1016/j.neubiorev. 2016. 01. 003
|
[29] |
Luria R., Sessa P., Gotler A., Jolicoeur P., & Dell'Acqua R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22 2009. 21214
|
[30] |
Luria R., & Vogel E. K. (2014). Come together, right now: Dynamic overwriting of an object's history through common fate. Journal of Cognitive Neuroscience, 26(8), 1819-1819.
|
[31] |
Mate J., & Baqués J. (2009). Short article: Visual similarity at encoding and retrieval in an item recognition task. Quarterly Journal of Experimental Psychology, 62( 7), 1277-1284. https://doi.org/10.1080/17470210802680769
|
[32] |
McCollough A. W., Machizawa M. G., & Vogel E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43(1), 77-77. 9452(08) 70447-7
|
[33] |
O'Donnell R. E., Clement A., & Brockmole J. R. (2018). Semantic and functional relationships among objects increase the capacity of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44( 7), 1151-1158. https://doi.org/10.1037/ xlm0000508
|
[34] |
Peirce J. W.(2007). PsychoPy--Psychophysics software in Python. Journal of Neuroscience Methods, 162( 1-2), 8-13. https://doi.org/10.1016/j.jneumeth. 2006. 11. 017
|
[35] |
Peterson D. J., Gözenman F., Arciniega H., & Berryhill M. E. (2015). Contralateral delay activity tracks the influence of Gestalt grouping principles on active visual working memory representations. Attention, Perception & Psychophysics, 77(7), 2270-2270.
|
[36] |
Qi S., Ding C., & Li H. (2014). Neural correlates of inefficient filtering of emotionally neutral distractors from working memory in trait anxiety. Cognitive, Affective & Behavioral Neuroscience, 14(1), 253-253.
|
[37] |
Quinlan P. T., & Cohen D.J. (2016). The precategorical nature of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(11), 1694-1694.
|
[38] |
Rudner M., Orfanidou E., Cardin V., Capek C. M., Woll B., & Rönnberg J. (2016). Preexisting semantic representation improves working memory performance in the visuospatial domain. Memory & Cognition, 44(4), 608-608. org/10.3758/s13421-016-0585-z
|
[39] |
Sims C. R., Jacobs R. A., & Knill D. C. (2012). An ideal observer analysis of visual working memory. Psychological Review, 119(4), 807-807.
|
[40] |
Son G., Oh B.-I., Kang M.-S., & Chong S. C. (2020). Similarity-based clusters are representational units of visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46( 1), 46-59. https://doi. org/10.1037/xlm0000722
|
[41] |
Song J.-H., & Jiang Y. (2006). Visual working memory for simple and complex features: An fMRI study. NeuroImage, 30 2005. 10. 006
|
[42] |
Vogel E. K., & Machizawa M.G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-748.
|
[43] |
Vogel E. K., McCollough A. W., & Machizawa M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-500.
|
[44] |
Vogel E. K., Woodman G. F., & Luck S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-92. 1. 92
|
[45] |
Westfall J. (2015). PANGEA: Power analysis for general ANOVA designs. Unpublished manuscript. Retrieved from
|
[46] |
Williams M., & Woodman G. F. (2012). Directed forgetting and directed remembering in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38(5), 1206-1206. 1037/ a0027389
|
[47] |
Wong J. H., Peterson M. S., & Thompson J. C. (2008). Visual working memory capacity for objects from different categories: A face-specific maintenance effect. Cognition, 108 2008. 06. 006
|
[48] |
Zhang Q., Li S., Wang X., & Che X. (2015). The effects of direction similarity in visual working memory: Behavioural and event-related potential studies. Quarterly Journal of Experimental Psychology, 69 2015. 1100206
|