心理学报 ›› 2019, Vol. 51 ›› Issue (7): 759-771.doi: 10.3724/SP.J.1041.2019.00759
彭姓1, 常若松1, 李奇2, 王爱君3(), 唐晓雨1()
收稿日期:
2018-05-21
发布日期:
2019-05-22
出版日期:
2019-07-25
通讯作者:
王爱君,唐晓雨
E-mail:ajwang@suda.edu.cn;tangyu-2006@163.com
基金资助:
PENG Xing1, CHANG Ruosong1, LI Qi2, WANG Aijun3(), TANG Xiaoyu1()
Received:
2018-05-21
Online:
2019-05-22
Published:
2019-07-25
Contact:
WANG Aijun,TANG Xiaoyu
E-mail:ajwang@suda.edu.cn;tangyu-2006@163.com
摘要:
基于外源性线索-靶子范式, 采用2(线索-靶子间隔时间, stimulus onset asynchronies, SOA:400~600 ms、1000~1200 ms) × 3(目标刺激类型:视觉、听觉、视听觉) × 2(线索有效性:有效线索、无效线索)的被试内实验设计, 要求被试对目标刺激完成检测任务, 以考察视觉线索诱发的返回抑制(inhibition of return, IOR)对视听觉整合的调节作用, 从而为感知觉敏感度、空间不确定性及感觉通道间信号强度差异假说提供实验证据。结果发现:(1) 随SOA增长, 视觉IOR效应显著降低, 视听觉整合效应显著增强; (2) 短SOA (400~600 ms)时, 有效线索位置上的视听觉整合效应显著小于无效线索位置, 但长SOA (1000~1200 ms)时, 有效与无效线索位置上的视听觉整合效应并无显著差异。结果表明, 在不同SOA条件下, 视觉IOR对视听觉整合的调节作用产生变化, 当前结果支持感觉通道间信号强度差异假说。
中图分类号:
彭姓, 常若松, 李奇, 王爱君, 唐晓雨. (2019). 不同SOA下视觉返回抑制对视听觉整合的调节作用. 心理学报, 51(7), 759-771.
PENG Xing, CHANG Ruosong, LI Qi, WANG Aijun, TANG Xiaoyu. (2019). Visually induced inhibition of return affects the audiovisual integration under different SOA conditions. Acta Psychologica Sinica, 51(7), 759-771.
图1 实验示意图 注:图左为刺激呈现位置的示意图, 图右为单个试次的流程图。图右中视觉线索(白色正方形)呈现在左侧, 目标(视听觉)也呈现在左侧(即, 有效线索位置), 要求被试对目标刺激进行既快又准的检测反应。其中, 目标刺激(V/A/AV)分别代表视觉(visual)、听觉(auditory)和视听觉(audiovisual)通道目标。ISI是指刺激间时间间隔(inter-stimulus interval)。ITI是指试次间的时间间隔(inter-trial interval)。SOA的计算是由视觉线索时间(50 ms), 2个ISI时间(150~250 ms/450~550 ms)以及视觉中心线索时间(50 ms)相加而得, 因此SOA为400~600 ms/1000~1200 ms。
条件 | M | 95% CI | t | p | |
---|---|---|---|---|---|
下限 | 上限 | ||||
短SOA | |||||
Cueing effect (ms) | |||||
V | 38.77 | 31.54 | 46.00 | 11.09 | 0.000 |
A | 1.83 | -1.43 | 5.10 | 1.16 | 0.257 |
AV | 16.00 | 11.55 | 20.45 | 7.43 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -22.77 | -30.12 | -15.43 | -6.41 | 0.000 |
V vs. A | 36.94 | 28.53 | 45.34 | 9.09 | 0.000 |
AV vs. A | 14.17 | 9.06 | 19.28 | 5.74 | 0.000 |
rMRE对比(%) | |||||
无效vs.有效 | 3.20 | 1.53 | 4.87 | 3.97 | 0.001 |
pAUC对比(ms) | |||||
无效vs.有效 | -4.30 | -6.64 | -1.96 | -3.80 | 0.001 |
长SOA | |||||
Cueing effect (ms) | |||||
V | 26.98 | 19.42 | 34.54 | 7.38 | 0.000 |
A | 5.88 | 0.51 | 11.24 | 2.26 | 0.033 |
AV | 10.85 | 5.88 | 15.83 | 4.51 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -16.13 | -26.51 | -5.74 | -3.21 | 0.004 |
V vs. A | 21.10 | 14.24 | 27.97 | 6.36 | 0.000 |
AV vs. A | 4.98 | -2.88 | 12.84 | 1.31 | 0.203 |
rMRE对比(%) | |||||
无效 vs. 有效 | 0.4 | -1.78 | 2.59 | 0.38 | 0.706 |
pAUC对比(ms) | |||||
无效 vs. 有效 | 2.14 | -1.12 | 5.40 | 1.36 | 0.188 |
表1 不同SOA条件下Cueing effect、rMRE、pAUC结果对比
条件 | M | 95% CI | t | p | |
---|---|---|---|---|---|
下限 | 上限 | ||||
短SOA | |||||
Cueing effect (ms) | |||||
V | 38.77 | 31.54 | 46.00 | 11.09 | 0.000 |
A | 1.83 | -1.43 | 5.10 | 1.16 | 0.257 |
AV | 16.00 | 11.55 | 20.45 | 7.43 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -22.77 | -30.12 | -15.43 | -6.41 | 0.000 |
V vs. A | 36.94 | 28.53 | 45.34 | 9.09 | 0.000 |
AV vs. A | 14.17 | 9.06 | 19.28 | 5.74 | 0.000 |
rMRE对比(%) | |||||
无效vs.有效 | 3.20 | 1.53 | 4.87 | 3.97 | 0.001 |
pAUC对比(ms) | |||||
无效vs.有效 | -4.30 | -6.64 | -1.96 | -3.80 | 0.001 |
长SOA | |||||
Cueing effect (ms) | |||||
V | 26.98 | 19.42 | 34.54 | 7.38 | 0.000 |
A | 5.88 | 0.51 | 11.24 | 2.26 | 0.033 |
AV | 10.85 | 5.88 | 15.83 | 4.51 | 0.000 |
Cueing effect对比(ms) | |||||
AV vs. V | -16.13 | -26.51 | -5.74 | -3.21 | 0.004 |
V vs. A | 21.10 | 14.24 | 27.97 | 6.36 | 0.000 |
AV vs. A | 4.98 | -2.88 | 12.84 | 1.31 | 0.203 |
rMRE对比(%) | |||||
无效 vs. 有效 | 0.4 | -1.78 | 2.59 | 0.38 | 0.706 |
pAUC对比(ms) | |||||
无效 vs. 有效 | 2.14 | -1.12 | 5.40 | 1.36 | 0.188 |
[1] | Agusti A. I., Satorres E., Pitarque A., & Meléndez J. C . ( 2017). Effects of SOA and age on the inhibition of return in a localization task. Current Psychology, 1-6. |
[2] | Calvert G. A., Spence C.& Stein, B. E.. ,( 2004). The handbook of multisensory processes. MIT Press. |
[3] |
Carrasco M. , (2011). Visual attention: The past 25 years. Vision Research, 51( 13), 1484-1525.
doi: 10.1016/j.visres.2011.04.012 URL |
[4] |
Chica A. B., Bartolomeo P., & Lupiáñez J . ( 2013). Two cognitive and neural systems for endogenous and exogenous spatial attention. Behavioural Brain Research, 237( 1), 107-123.
doi: 10.1016/j.bbr.2012.09.027 URL |
[5] |
Chica A. B., Lupianez J., & Bartolomeo P . ( 2006). Dissociating inhibition of return from endogenous orienting of spatial attention: Evidence from detection and discrimination tasks. Cognitive Neuropsychology, 23( 7), 1015-1034.
doi: 10.1080/02643290600588277 URL |
[6] | Cohen J. , ( 1988). Statistical power analysis for the behavioral sciences (2nd Edition). . Erlbaum Associates. |
[7] |
Giard M.H., & Peronnet F. , ( 1999). Auditory-visual integration during multimodal object recognition in humans: A behavioral and electrophysiological study. Journal of Cognitive Neuroscience, 11( 5), 473-490.
doi: 10.1162/089892999563544 URL |
[8] |
Hershenson M. , ( 1962). Reaction time as a measure of intersensory facilitation. Journal of Experimental Psychology, 63( 3), 289-293.
doi: 10.1037/h0039516 URL |
[9] | Klein R. , ( 1988). Inhibitory tagging system facilitates visual search. Nature, 334( 6181), 430-431. |
[10] |
Klein R. . ( 2000). Inhibition of return. Trends in Cognitive Sciences, 4( 4), 138-147.
doi: 10.1016/S1364-6613(00)01452-2 URL |
[11] |
Koningsbruggen M. G., Gabay S., Sapir A., Henik A., & Rafal R. D . ( 2010). Hemispheric asymmetry in the remapping and maintenance of visual saliency maps: A TMS study. Journal of Cognitive Neuroscience, 22( 8), 1730-1738.
doi: 10.1162/jocn.2009.21356 URL |
[12] |
Laurienti P. J., Burdette J. H., Maldjian J. A., & Wallace M. T . ( 2006). Enhanced multisensory integration in older adults. Neurobiology of Aging, 27( 8), 1155-1163.
doi: 10.1016/j.neurobiolaging.2005.05.024 URL |
[13] |
Lippert M., Logothetis N. K., & Kayser C . ( 2007). Improvement of visual contrast detection by a simultaneous sound. Brain Research, 1173( 1173), 102-109.
doi: 10.1016/j.brainres.2007.07.050 URL |
[14] | Liu Q . ( 2010). The research on brain mechanism of the multisenory integration (Unpublished doctorial dissertation). Southwest University, China. |
[ 刘强 . ( 2010). 多感觉整合脑机制研究(博士学位论文). 西南大学.] | |
[15] | Lupiáñez J., Milán E. G., Tornay F. J., Madrid E., & Tudela P . ( 1997). Does IOR occur in discrimination tasks? Yes, it does, but later. Perception & Psychophysics, 59( 8), 1241-1254. |
[16] |
Lupiáñez J., Ruz M., Funes M. J., & Milliken B . ( 2007). The manifestation of attentional capture: Facilitation or IOR depending on task demands. Psychological Research, 71( 1), 77-91.
doi: 10.1007/s00426-005-0037-z URL |
[17] |
Macaluso E., Noppeney U., Talsma D., Vercillo T., Hartcher-O’Brien J., & Adam R . ( 2016). The curious Incident of attention in multisensory integration: Bottom- up vs. top-down. Multisensory Research, 29( 6-7), 557-583.
doi: 10.1163/22134808-00002528 URL |
[18] | Martínarévalo E., Chica A. B., & Lupiáñez J . ( 2015). No single electrophysiological marker for facilitation and inhibition of return: A review. Behavioural Brain Research, 300, 1-10. |
[19] | McDonald J. J., Tedersälejärvi W. A., Russo F. D., & Hillyard S. A . ( 2005). Neural basis of auditory-induced shifts in visual time-order perception. Nature Neuroscience, 8( 9), 1197-1202. |
[20] |
Miller J. , ( 1982). Divided attention: Evidence for coactivation with redundant signals. Cognitive Psychology, 14( 2), 247-279.
doi: 10.1016/0010-0285(82)90010-X URL |
[21] | Miller J. ( 1986). Time course of coactivation in bimodal divided attention. Perception & Psychophysics, 40( 5), 331-343. |
[22] |
Noesselt T., Tyll S., Boehler C. N., Budinger E., Heinze H. J., & Driver J . ( 2010). Sound-induced enhancement of low-intensity vision: Multisensory influences on human sensory-specific cortices and thalamic bodies relate to perceptual enhancement of visual detection sensitivity. Journal of Neuroscience, 30( 41), 13609-13623.
doi: 10.1523/JNEUROSCI.4524-09.2010 URL |
[23] |
Otto T. U., Dassy B., & Mamassian P . ( 2013). Principles of multisensory behavior. Journal of Neuroscience, 33( 17), 7463-7474.
doi: 10.1523/JNEUROSCI.4678-12.2013 URL |
[24] | Posner M.I., & Cohen Y. , ( 1984). Components of visual orienting. Attention and Performance X: Control of Language Processes, 32, 531-556. |
[25] |
Posner M. I., Rafal R. D., Choate L. S., & Vaughan J . ( 1985). Inhibition of return: Neural basis and function. Cognitive Neuropsychology, 2( 3), 211-228.
doi: 10.1080/02643298508252866 URL |
[26] |
Pratt J., & Fischer M.H . ( 2002). Examining the role of the fixation cue in inhibition of return. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 56( 4), 294-301.
doi: 10.1037/h0087405 URL |
[27] | Prime D. J., Visser T. A. W., & Ward L. M . ( 2006). Reorienting attention and inhibition of return. Perception & Psychophysics, 68( 8), 1310-1323. |
[28] |
Prime D.J., & Ward L.M . ( 2006). Cortical expressions of inhibition of return. Brain Research, 1072( 1), 161-174.
doi: 10.1016/j.brainres.2005.11.081 URL |
[29] |
Raab D.H . ( 1962). Statistical facilitation of simple reaction times. Transactions of the New York Academy of Sciences, 24( 5), 574-590.
doi: 10.1111/j.2164-0947.1962.tb01433.x URL |
[30] |
Reuter-Lorenz P. A., Jha A. P., & Rosenquist J. N . ( 1996). What is inhibited in inhibition of return? Journal of Experimental Psychology: Human Perception and Performance, 22( 2), 367-378.
doi: 10.1037/0096-1523.22.2.367 URL |
[31] |
Schmitt M., Postma A., & De H. E . ( 2000). Interactions between exogenous auditory and visual spatial attention. The Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 53( 1), 105-130.
doi: 10.1080/713755882 URL |
[32] |
Senkowski D., Saint-Amour D., Höfle M., & Foxe J. J . ( 2011). Multisensory interactions in early evoked brain activity follow the principle of inverse effectiveness. Neuroimage, 56( 4), 2200-2208.
doi: 10.1016/j.neuroimage.2011.03.075 URL |
[33] |
Slagter H. A., Prinssen S., Reteig L. C., & Mazaheri A . ( 2016). Facilitation and inhibition in attention: Functional dissociation of pre-stimulus alpha activity, P1, and N1 components. Neuroimage, 125( 6), 25-35.
doi: 10.1016/j.neuroimage.2015.09.058 URL |
[34] |
Spence C. , ( 2010). Crossmodal spatial attention. Annals of the New York Academy of Sciences, 1191( 1), 182-200.
doi: 10.1111/nyas.2010.1191.issue-1 URL |
[35] | Spence C., & Driver J. , ( 2004). Crossmodal space and crossmodal attention. Politics. |
[36] |
Spence C., Lloyd D., Mcglone F., Nicholls M. E. R., & Driver J . ( 2000). Inhibition of return is supramodal: A demonstration between all possible pairings of vision, touch, and audition. Experimental Brain Research, 134( 1), 42-48.
doi: 10.1007/s002210000442 URL |
[37] |
Stein B. E., London N., Wilkinson L. K., & Price D. D . ( 1996). Enhancement of perceived visual intensity by auditory stimuli: a psychophysical analysis. Journal of Cognitive Neuroscience, 8( 6), 497-506.
doi: 10.1162/jocn.1996.8.6.497 URL |
[38] |
Stein B.E., & Meredith M.A . ( 1993). The merging of the senses. Journal of Cognitive Neuroscience, 5( 3), 373-374.
doi: 10.1162/jocn.1993.5.3.373 URL |
[39] | Stein B.E., & Stanford T.R . ( 2008). Multisensory integration: Current issues from the perspective of the single neuron. Nature Reviews Neuroscience, 9( 4), 255-266. |
[40] | Talsma D., Doty T. J., & Woldorff M. G . ( 2007). Selective attention and audiovisual integration: Is attending to both modalities a prerequisite for early integration? Cerebral Cortex, 17( 3), 679-690. |
[41] |
Talsma D., Senkowski D., Soto-Faraco S., & Woldorff M. G . ( 2010). The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences, 14( 9), 400-410.
doi: 10.1016/j.tics.2010.06.008 URL |
[42] |
Talsma D., & Woldorff M.G . ( 2005). Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience, 17( 7), 1098-1114.
doi: 10.1162/0898929054475172 URL |
[43] | Tang X. Y., Wu J. L., & Shen Y . ( 2016). The interactions of multisensory integration with endogenous and exogenous attention. Neuroscience & Biobehavioral Reviews, 61, 208-224. |
[44] | Tang X. Y., Gao Y. L., Yang W. P., Ren Y. N., Wu J. L., Zhang M., Wu Q .(in press). Bimodal-divided attention attenuates visually induced inhibition of return with audiovisual targets. Experimental Brain Research. First online 15 Feb. 2019, |
[45] |
Tassinari G., Aglioti S., Chelazzi L., Peru A., & Berlucchi G . ( 1994). Do peripheral non-informative cues induce early facilitation of target detection? Vision Research, 34( 2), 179-189.
doi: 10.1016/0042-6989(94)90330-1 URL |
[46] |
Ulrich R., Miller J., & Schröter H . ( 2007). Testing the race model inequality: An algorithm and computer programs. Behavior Research Methods, 39( 2), 291-302.
doi: 10.3758/BF03193160 URL |
[47] |
van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065.
doi: 10.1037/0096-1523.34.5.1053 URL |
[48] |
van der Burg E., Talsma D., Olivers C. N. L., Hickey C., & Theeuwes J . ( 2011). Early multisensory interactions affect the competition among multiple visual objects. Neuroimage, 55( 3), 1208-1218.
doi: 10.1016/j.neuroimage.2010.12.068 URL |
[49] | van der Stoep N., van der Stigchel S& Nijboer, T. C. W. ., ( 2015). Erratum to: Exogenous spatial attention decreases audiovisual integration. Attention Perception & Psychophysics, 77( 1), 464-482. |
[50] | van der Stoep N., van der Stigchel S., Nijboer T. C., & Spence C . ( 2016). Visually induced inhibition of return affects the integration of auditory and visual information. Perception, 46( 1), 6-17. |
[51] |
Ward L. M., Mcdonald J. J., & Lin D . ( 2000). On asymmetries in cross-modal spatial attention orienting. Percept Psychophys, 62( 6), 1258-1264.
doi: 10.3758/BF03212127 URL |
[52] |
Wascher E., & Tipper S.P . ( 2004). Revealing effects of noninformative spatial cues: an EEG study of inhibition of return. Psychophysiology, 41( 5), 716-728.
doi: 10.1111/psyp.2004.41.issue-5 URL |
[53] | WEN Z. L., FAN X. T., YE B. J., & CHEN Y. S . ( 2016). Characteristics of an effect size and appropriateness of mediation effect size measures revisited. Acta Psychologica Sinica, 48( 4), 435-443. |
[ 温忠麟, 范息涛, 叶宝娟, 陈宇帅 . ( 2016). 从效应量应有的性质看中介效应量的合理性. 心理学报, 48( 4), 435-443.] | |
[54] | Yang W. P., Chu B. Q., Yang J. J., Yu Y. H., Wu J. L., & Yu S. Y . ( 2014). Elevated audiovisual temporal interaction in patients with migraine without aura. The Journal of Headache and Pain, 15( 1), 44. |
[55] |
Yang Z., & Mayer A.R . ( 2014). An event-related FMRI study of exogenous orienting across vision and audition. Human Brain Mapping, 35( 3), 964-974.
doi: 10.1002/hbm.22227 URL |
[1] | 祖光耀, 李舒淇, 张天阳, 王爱君, 张明. 返回抑制对视听跨通道对应的影响[J]. 心理学报, 2023, 55(8): 1220-1233. |
[2] | 高玉林, 唐晓雨, 刘思宇, 王爱君, 张明. 内源性空间线索有效性对老年人视听觉整合的影响[J]. 心理学报, 2023, 55(5): 671-684. |
[3] | 张明, 王婷婷, 吴晓刚, 张月娥, 王爱君. 面孔表情和声音情绪信息整合对返回抑制的影响[J]. 心理学报, 2022, 54(4): 331-342. |
[4] | 张明, 桑汉斌, 鲁柯, 王爱君. 试次历史对跨通道非空间返回抑制的影响[J]. 心理学报, 2021, 53(7): 681-693. |
[5] | 唐晓雨, 佟佳庚, 于宏, 王爱君. 内外源性空间注意对多感觉整合的影响[J]. 心理学报, 2021, 53(11): 1173-1188. |
[6] | 唐晓雨, 吴英楠, 彭姓, 王爱君, 李奇. 内源性空间线索有效性对视听觉整合的影响[J]. 心理学报, 2020, 52(7): 835-846. |
[7] | 唐晓雨, 孙佳影, 彭姓. 双通道分配性注意对视听觉返回抑制的影响[J]. 心理学报, 2020, 52(3): 257-268. |
[8] | 王爱君, 刘晓乐, 唐晓雨, 张 明. 三维空间中不同视野深度位置上的返回抑制[J]. 心理学报, 2017, 49(6): 723-732. |
[9] | 徐菊;胡媛艳;王双; 李艾苏;张明;张阳. 返回抑制训练效应的认知神经机制 ——来自ERP研究的证据[J]. 心理学报, 2016, 48(6): 658-670. |
[10] | 徐菊;马方圆;张明;张阳. 返回抑制和抑制标签在长时训练下的分离[J]. 心理学报, 2015, 47(8): 981-991. |
[11] | 王爱君;李毕琴;张明. 三维空间深度位置上基于空间的返回抑制[J]. 心理学报, 2015, 47(7): 859-868. |
[12] | 范海楠;许百华. 动态情景中颜色特征和身份特征在返回抑制中的作用[J]. 心理学报, 2014, 46(11): 1628-1638. |
[13] | 张瑜;郑希付;黄珊珊;李悦;杜晓芬;周薇. 不同线索下特质焦虑个体的返回抑制[J]. 心理学报, 2013, 45(4): 446-452. |
[14] | 徐丹妮;张佳悦;李先春. 面孔性别辨认中返回抑制效应的性别差异[J]. 心理学报, 2013, 45(2): 161-168. |
[15] | 王敬欣;贾丽萍;白学军;罗跃嘉. 返回抑制过程中情绪面孔加工优先:ERPs研究[J]. 心理学报, 2013, 45(1): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||