ISSN 0439-755X
CN 11-1911/B

心理学报 ›› 2015, Vol. 47 ›› Issue (7): 859-868.doi: 10.3724/SP.J.1041.2015.00859

• 论文 • 上一篇    下一篇



  1. (1东北师范大学心理学院,长春 130024) (2苏州大学心理学系,苏州 215123) (3江西师范大学心理学院,南昌 330027)
  • 收稿日期:2014-08-25 出版日期:2015-07-25 发布日期:2015-07-25
  • 通讯作者: 张明, E-mail:
  • 基金资助:

    国家自然科学基金项目(31371025)、中央高校基本科研业务费专项资金(14ZZ1202)、中国博士后科学基金项目(2014M551862 )和江西省博士后科研择优资助项目(2014KY53)资助。

Location-based Inhibition of Return along Depth Plane in Three-dimensional Space

WANG Aijun1; LI Biqin3; ZHANG Ming2   

  1. (1 School of Psychology, Northeast Normal University, Changchun 130024, China) (2 Department of Psychology, Soochow University, Suzhou 215123, China) (3 School of Psychology, Jiangxi Normal University, Nanchang 330027, China)
  • Received:2014-08-25 Online:2015-07-25 Published:2015-07-25
  • Contact: ZHANG Ming, E-mail:


采用虚拟现实技术,将Posner经典二维平面中的线索化范式应用到三维空间,通过两个实验操纵了注意沿着不同方向进行直线转移的方式,考察了注意在三维空间深度位置上进行定向/重定向而产生的晚期抑制效应(返回抑制,Inhibition of return)。结果发现:(1)无论注意沿着何种直线转移方式转移都在深度位置上发现了基于空间的返回抑制;(2)无效提示线索条件下,目标出现在三维空间近处空间时的反应显著快于目标出现在远处空间时的反应,导致了近远空间的返回抑制量存在差异。研究说明了返回抑制效应并不是“深度盲”。

关键词: 三维空间, 注意定向/重定向, 空间返回抑制


We live in a three-dimensional (3D) space and operate objects that lie at different depth plane in the space. It seems natural to assume that our visual system is able to direct attention to object located at different depths. Although it has been well documented that the human brain reconstructs a 3D world from two-dimensional (2D) retinal images by extracting 3D structures and depth positions of objects, it remains poorly understood how visuospatial attention is shifted in depth, especially in the later inhibitory phase (inhibition of return, IOR). In the present study, by constructing a virtual 3D environment and presenting the target either closer to or farther from the participants in an adapted version of the Posner spatial-cuing paradigm, we aimed to investigate the location-based IOR along depth plane in 3D space. The cue-target correspondence in depth of target (closer depth plane vs. farther depth plane) was crossed with the cue-target correspondence in cue validity (cued vs. uncued), forming a 2 by 2 factorial design in the two experiments. Attention was oriented and reoriented along the diagonal trajectory in experiment 1, dditionally, in order to further control for the confounding effect of attentional orienting/reorienting across hemispace, attention was oriented and reoriented along the straight trajectory in experiment 2. If the two experiments revealed different patterns of results, the hemispace, rather than the pure depth, might have caused the results. In contrast, if the patterns of results were similar in the two experiments, the result most likely be attributed to the depth. At the beginning of each trial, one of four locations in either the closer or farther depth plane was cued for 300 ms (The cue was uninformative for the coming target), and was followed by a 200 ms inter-stimulus interval. Subsequently, the spatial location of the central fixation cross was cued for 300 ms to attract attention away from the previous cued location either in the closer or farther depth plane. After another period of 150 or 250 ms, the target was presented for 250 ms at one of four locations of either the cued or the uncued location with equal probabilities. Results showed that RTs to targets at the cued location were significantly longer than RTs to targets at the uncued location in both closer, t (24) = 7.89, p < 0.001, and farther, t (24) = 5.68, p < 0.001, depth planes in experiment 1, i.e., typical IOR effect. IOR effects in closer depth plane (30 ms) were larger than in farther depth plane (15 ms). Similarly, in experiment 2, RTs to targets at the cued location were significantly longer than RTs to targets at the uncued location in both closer, t (25) = 8.27, p < 0.001, and farther, t (25) = 4.36, p < 0.001, depth planes. IOR effects in closer depth plane (27 ms) were larger than in farther depth plane (15 ms). Results of the two experiments showed similar pattern, suggesting that the location based IOR effect found in experiment 1 should be attributed to attentional orienting across depth rather than hemispace. In conclusion, attention could be oriented/reoriented effectively along depth plane in 3D space to induce location based inhibition of return, which was not “depth blindness”.

Key words: three-dimensional (3D) space, attentional orienting/reorienting, spatial inhibition of return (IOR)