[1] Anobile G., Castaldi E., Maldonado Moscoso P. A., Arrighi R., & Burr D. (2021). Groupitizing improves estimation of numerosity of auditory sequences. Frontiers in Human Neuroscience, 15, 687321. http://doi.org/10.3389/fnhum.2021.687321
[2] Anobile G., Castaldi E., Moscoso P. A. M., Burr D. C., & Arrighi R. (2020). “Groupitizing”: A strategy for numerosity estimation. Scientific Reports, 10(1), 13436. http://doi.org/10.1038/s41598-020-68.111-1
[3] Arsalidou M., Pawliw-Levac M., Sadeghi M., & Pascual- Leone J. (2018). Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Developmental Cognitive Neuroscience, 30, 239-250. http://doi.org/10.1016/j.dcn.2017.08.002
[4] Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425-428. http://doi.org/10.1016/j.cub.2008.02.052
[5] Cai Y., Hofstetter S., Harvey B. M., & Dumoulin S. O. (2022). Attention drives human numerosity-selective responses. Cell Reports, 39(13), 111005. http://doi.org/10.1016/j.celrep.2022.111005
[6] Cai Y., Hofstetter S., van Dijk J., Zuiderbaan W., van der Zwaag W., Harvey B. M., & Dumoulin S. O. (2021). Topographic numerosity maps cover subitizing and estimation ranges. Nature Communications, 12(1), 3374. http://doi.org/10.1038/s41467-021-23785-7
[7] Cao M., Wang J., Dai Z., Cao X., Jiang L., Fan F., … He Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76-93. http://doi.org/10.1016/j.dcn.2013.11.004
[8] Caponi C., Maldonado M. P., Castaldi E., Arrighi R., & Grasso P. A. (2023). EEG signature of grouping strategies in numerosity perception. Frontiers in Neuroscience, 17, 1190317. http://doi.org/10.3389/fnins.2023.1190317
[9] Chen, L. (1982). Topological structure in visual perception. Science, 218, 699-700. http://doi.org/10.1126/science.7134969
[10] Chen, L. (2017). The three cornerstones of cognitive science. Fundamental Research, 31(3), 209-210. http://10.16262/j.cnki.1000-8217.2017.03.001
[陈霖. (2017). 认知科学的三大基石. 中国科学基金, 31(3), 209-210.]
[11] Cicchini G. M., Anobile G., Burr D. C., Marchesini P., & Arrighi R. (2023). The role of non-numerical information in the perception of temporal numerosity. Frontiers in Psychology, 14, 1197064. http://doi.org/10.3389/fpsyg.2023.1197064
[12] Ciccione, L., & Dehaene, S. (2020). Grouping mechanisms in numerosity perception. Open Mind, 4, 102-118. http://doi.org/10.1162/opmi_a_00037
[13] Czarnecka M., Raczy K., Szewczyk J., Paplinska M., Jednorog K., Marchewka A., … Szwed M. (2023). Overlapping but separate number representations in the intraparietal sulcus-Probing format- and modality- independence in sighted Braille readers. Cortex, 162, 65-80. http://doi.org/10.1016/j.cortex.2023.01.011
[14] Dehaene, S., & Changeux, J. (1993). Development of elementary numerical abilities: A neuronal model. Journal of Cognitive Neuroscience, 5, 390-407. http://doi.org/10.1162/jocn.1993.5.4.390
[15] Fornaciai, M., & Park, J. (2018). Early numerosity encoding in visual cortex is not sufficient for the representation of numerical magnitude. Journal of Cognitive Neuroscience, 30(12), 1788-1802. http://doi.org/10.1162/jocn_a_01320
[16] Grasso P. A., Anobile G., Arrighi R., Burr D. C., & Cicchini G. M. (2022). Numerosity perception is tuned to salient environmental features. iScience, 25(4), 104104. http://doi.org/https://doi.org/10.1016/j.isci.2022.104104
[17] Grotheer M., Herrmann K., & Kovács G. (2016). Neuroimaging evidence of a bilateral representation for visually presented numbers. The Journal of Neuroscience, 36(1), 88-97. http://doi.org/10.1523/JNEUROSCI.2129-15.2016
[18] Guillaume M., Roy E., Van Rinsveld A., Starkey G., Uncapher M., & Mccandliss B. (2022). Groupitizing reflects conceptual developments in math cognition and inequities in math achievement from childhood through adolescence. Child Development, 94(2), 335-347. http://doi.org/10.1111/cdev.13859
[19] Harvey B. M., Klein B. P., Petridou N., & Dumoulin S. O. (2013).Topographic representation of numerosity in the human parietal cortex. Science, 341(6150), 1123-1126. http://doi.org/10.1126/science.1239052
[20] He L., Zhang J., Zhou T., & Chen L. (2009). Connectedness affects dot numerosity judgment: Implications for configural processing. Psychonomic Bulletin & Review, 16(3), 509-517. http://doi.org/10.3758/PBR.16.3.509
[21] He L., Zhou K., Zhou T., He S., & Chen L. (2015). Topology-defined units in numerosity perception. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647-E5655. http://doi.org/10.1073/pnas.1512408112
[22] He, S. (2008). Holes, objects, and the left hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 105(4), 1103-1104. http://doi.org/10.1073/pnas.0710631105
[23] Kluth, T., & Zetzsche, C. (2016). Numerosity as a topological invariant. Journal of Vision, 16(3), 30. http://doi.org/10.1167/16.3.30
[24] Kragel P., Čeko M., Theriault J., Chen D., Satpute A., Wald L., … Wager T. (2021). A human colliculus-pulvinar- amygdala pathway encodes negative emotion. Neuron, 109(15), 2404-2412. http://doi.org/10.1016/j.neuron.2021.06.001
[25] Lan, Z., & Chen, L. (1998). An topological perception approach to the study of hemispheric asymmetry. Journal of Psychological Science, (3), 205-208. http://10.16719/j.cnki.1671-6981.1998.03.004
[兰哲, 陈霖. (1998). 拓扑性质知觉的大脑半球功能不对称性研究. 心理科学, (3), 205−208.]
[26] Liu W., Zhang Z., & Zhao Y. (2012). Numerosity adaptation effect on the basis of perceived numerosity. Acta Psychologica Sinica, 44(10), 1297-1308.
[刘炜, 张智君, 赵亚军. (2012). 基于数量感知的数量适应. 心理学报, 44(10), 1297-1308.]
[27] Luna D., Villalba-Garcia C., Montoro P. R., & Hinojosa J. A. (2016). Dominance dynamics of competition between intrinsic and extrinsic grouping cues. Acta Psychologica, 170, 146-154. http://doi.org/10.1016/j.actpsy.2016.07.001
[28] Luna, D., & Montoro, P. R. (2011). Interactions between intrinsic principles of similarity and proximity and extrinsic principle of common region in visual perception. Perception, 40(12), 1467-1477. http://doi.org/10.1068/p7086
[29] Maldonado Moscoso P. A., Castaldi E., Burr D. C., Arrighi R., & Anobile G. (2020). Grouping strategies in number estimation extend the subitizing range. Scientific Reports, 10, 14979. http://doi.org/10.1038/s41598-020-71871-5
[30] Maldonado M. P., Greenlee M. W., Anobile G., Arrighi R., Burr D. C., & Castaldi E. (2021). Groupitizing modifies neural coding of numerosity. Human Brain Mapping, 43, 915-928. http://doi.org/10.1002/hbm.25694
[31] Malone S. A., Pritchard V. E., Heron-Delaney M., Burgoyne K., Lervåg A., & Hulme C. (2019). The relationship between numerosity discrimination and arithmetic skill reflects the approximate number system and cannot be explained by inhibitory control. Journal of Experimental Child Psychology, 184, 220-231. http://doi.org/10.1016/j.jecp.2019.02.009
[32] Montoro P. R., Villalba-García C., Luna D., & Hinojosa J. A. (2017). Common region wins the competition between extrinsic grouping cues: Evidence from a task without explicit attention to grouping. Psychonomic Bulletin & Review, 24(6), 1856-1861. http://doi.org/10.3758/s13423-017-1254-3
[33] Palmer, S. E. (1992). Common region: A new principle of perceptual grouping. Cognitive Psychology, 24(3), 436- 447.
[34] Palmer, S. E., & Beck, D. M. (2007). The repetition discrimination task: An objective method for studying perceptual grouping. Perception & Psychophysics, 69(1), 68-78.
[35] Palmer, S., & Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin Review, 1, 29-55. http://doi.org/10.3758/BF03200760
[36] Pan Y., Yang H., Li M., Zhang J., & Cui L. (2021). Grouping strategies in numerosity perception between intrinsic and extrinsic grouping cues. Scientific Reports, 11(1), 17605. http://doi.org/10.1038/s41598-021-96944-x
[37] Pennock I. M. L., Schmidt T. T., Zorbek D., & Blankenburg F. (2021). Representation of visual numerosity information during working memory in humans: An fMRI decoding study. Human Brain Mapping, 42(9), 2778-2789. http://doi.org/10.1002/hbm.25402
[38] Piazza M., Mechelli A., Butterworth B., & Price C. J. (2002). Are subitizing and counting implemented as separate or functionally overlapping processes? Neuroimage, 15(2), 435-446. http://doi.org/10.1006/nimg.2001.0980
[39] Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. Neuroscientist, 15(3), 261-273. http://doi.org/10.1177/1073858409333073
[40] Polspoel B., Peters L., Vandermosten M., & De Smedt B. (2017). Strategy over operation: Neural activation in subtraction and multiplication during fact retrieval and procedural strategy use in children. Human Brain Mapping, 38(9), 4657-4670. http://doi.org/10.1002/hbm.23691
[41] Simon, T., & Vaishnavi, S. (1996). Subitizing and counting depend on different attentional mechanisms: Evidence from visual enumeration in afterimages. Perception & Psychophysics, 58(6), 915-926. http://doi.org/10.3758/BF03205493
[42] Skagenholt M., Skagerlund K., & Träff U. (2021). Neurodevelopmental differences in child and adult number processing: An fMRI-based validation of the triple code model. Developmental Cognitive Neuroscience, 48, 100933. http://doi.org/10.1016/j.dcn.2021.100933
[43] Starkey, G. S., & McCandliss, B. D. (2014). The emergence of “groupitizing” in children’s numerical cognition. Journal of Experimental Child Psychology, 126, 120-137. http://doi.org/10.1016/j.jecp.2014.03.006
[44] Tschentscher, N., & Hauk, O. (2014). How are things adding up? Neural differences between arithmetic operations are due to general problem solving strategies. Neuroimage, 92, 369-380. http://doi.org/10.1016/j.neuroimage.2014.01.061
[45] Tsouli A., Harvey B. M., Hofstetter S., Cai Y., van der Smagt, M. J., Te P. S., & Dumoulin S. O. (2022). The role of neural tuning in quantity perception. Trends in Cognitive Sciences, 26(1), 11-24. http://doi.org/10.1016/j.tics.2021.10.004
[46] Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488. https://doi.org/10.1016/j.tics.2003.09.002
[47] Wang B., Zhou T. G., Zhuo Y., & Chen L. (2007). Global topological dominance in the left hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 21014-21019. http://doi.org/10.1073/pnas.0709664104
[48] Wang L., Li M., Yang T., Wang L., & Zhou X. (2022). Mathematics meets science in the brain. Cerebral Cortex, 32(1), 123-136. http://doi.org/10.1093/cercor/bhab198
[49] Wang W., Zhou T., Chen L., & Huang Y. (2023). A subcortical magnocellular pathway is responsible for the fast processing of topological properties of objects: A transcranial magnetic stimulation study. Human Brain Mapping, 44(4), 1617-1628. http://doi.org/10.1002/hbm.26162
[50] Wege T., Trezise K., & Inglis M. (2021). Finding the subitizing in groupitizing: Evidence for parallel subitizing of dots and groups in grouped arrays. Psychonomic Bulletin & Review, 29. http://doi.org/10.3758/s13423-021-02015-7
[51] Whalen J., Gallistel C. R., & Gelman R. (2016). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10(2), 130-137. http://doi.org/10.1111/1467-9280.00120
[52] Wurm M. F., Tagliabue C. F., & Mazza V. (2021). Decoding location-specific and location-invariant stages of numerosity processing in subitizing. European Journal of Neuroscience, 54(3), 4971-4984.http://doi.org/10.1111/ejn.15352
[53] Yeo D., Wilkey E., & Price G. (2017). The search for the number form area: A functional neuroimaging meta- analysis. Neuroscience & Biobehavioral Reviews, 78, 145-160. http://doi.org/10.1016/j.neubiorev.2017.04.027
[54] Zhang D., Zhou L., Yang A., Li S., Chang C., Liu J., & Zhou K. (2023). A connectome-based neuromarker of nonverbal number acuity and arithmetic skills. Cerebral Cortex, 33(3), 881-894. http://doi.org/10.1093/cercor/bhac108
[55] Zhou K., Luo H., Zhou T., Zhuo Y., & Chen L. (2010). Topological change disturbs object continuity in attentive tracking. Proceedings of the National Academy of Sciences, 107(50), 21920-21924. http://doi.org/10.1073/pnas.1010919108
[56] Zhu, Y. (2005).Chen Lin’s theory of topological perception. Journal of Psychological Science, 28(5), 1031-1034. http://10.16719/j.cnki.1671-6981.2005.05.002
|