ISSN 0439-755X
CN 11-1911/B
主办:中国心理学会
   中国科学院心理研究所
出版:科学出版社

心理学报 ›› 2025, Vol. 57 ›› Issue (11): 2043-2059.doi: 10.3724/SP.J.1041.2025.2043 cstr: 32110.14.2025.2043

• 人工智能心理与治理专刊 • 上一篇    下一篇

人类对大语言模型的热情和能力感知

武月婷1, 王博2,3(), 包寒吴霜4, 李若男1, 吴怡1, 王嘉琪1, 程诚3, 杨丽3,5()   

  1. 1 天津大学教育学院, 天津 300354
    2 天津大学智能与计算学部, 天津 300354
    3 天津大学应用心理研究所, 天津 300354
    4 华东师范大学心理与认知科学学院, 上海 200062
    5 天津市自杀心理与行为研究实验室, 天津 300354
  • 收稿日期:2024-02-06 发布日期:2025-09-24 出版日期:2025-11-25
  • 通讯作者: 王博, E-mail: bo_wang@tju.edu.cn;
    杨丽, E-mail: yangli@tju.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(62376188);国家社会科学基金一般项目(21BSH017);国家社会科学基金一般项目(22BSH163);2024年第一批天津市制造业高质量发展专项建设智能化数字化应用场景—自主智能算力的通用大模型关键技术研究及产业化应用示范项目(24ZGNGX00020)

Humans perceive warmth and competence in large language models

WU Yueting1, WANG Bo2,3(), BAO Han Wu Shuang4, LI Ruonan1, WU Yi1, WANG Jiaqi1, CHENG Cheng3, YANG Li3,5()   

  1. 1 School of Education, Tianjin University, Tianjin 300354, China
    2 College of Intelligence and Computing, Tianjin University, Tianjin 300354, China
    3 Institute of Applied Psychology, Tianjin University, Tianjin 300354, China
    4 School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
    5 Laboratory of Suicidal Behavior Research, Tianjin University, Tianjin 300354, China
  • Received:2024-02-06 Online:2025-09-24 Published:2025-11-25

摘要:

随着大语言模型(Large Language Models, LLMs)能力的提升及其广泛应用, 社会正逐步从传统的人际交互转向融合人际交互、人机交互和机机交互的多层次互动结构。在人类与LLMs交互日益深入的背景下, 研究人类如何感知LLMs成为了重要议题。本研究通过三项研究系统考察人类对LLMs的感知模式。研究1发现, 与对人类的感知一致, 人类主要通过热情和能力两个维度感知LLMs。然而, 在一般情境下, 不同于对人类感知中的热情优先, 人类在对LLMs的感知中能力优先。研究2探讨了热情和能力在不同态度预测中的优先效应, 结果表明, 热情与能力均能正向预测人类对LLMs的持续使用意愿和喜爱度, 其中能力对持续使用意愿的预测效力更高, 而热情对喜爱度的预测效力更高。研究3进一步探索了人类对LLMs与对他人的感知差异, 结果显示, 人类对LLMs的热情评价与人类无显著差异, 但对LLMs的能力评价显著高于人类。本研究为理解人类对LLMs的感知提供了理论基础, 并为人工智能的设计优化及人机协作机制的研究提供了新的视角。

关键词: 大语言模型, 社会认知, 热情, 能力

Abstract:

The rapid development and application of Large Language Models (LLMs) have significantly enhanced their capabilities, influencing human-machine interactions in profound ways. As LLMs evolve, society is shifting from traditional interpersonal interactions to a multilayered structure integrating human-to-human, human-to-machine, and machine-to-machine interactions. In this context, understanding how humans perceive and evaluate LLMs—and whether this follows the Big Two model of warmth and competence in interpersonal perception—has become critical. This study examines human perceptions of LLMs through three progressive empirical studies.

Participants with prior LLM experience were recruited for the studies. Study 1 comprised two sub-studies: Study 1a (N = 207) used a free-response task, asking participants to describe their impressions of LLMs using at least three words, which were analyzed using the Semi-Automated Dictionary Creation for Analyzing Text to identify key dimensions of perception. Study 1b (N = 219) involved a lexical rating task, in which participants rated the applicability of selected evaluation words to LLMs. Study 2 (N = 178) used a questionnaire, in which participants rated a familiar LLM and provided feedback on their willingness to continue using it and their liking of it. Study 3 (N = 207) employed a questionnaire survey to assess participants’ ratings of warmth and competence for both humans and LLMs.

Study 1 found that humans primarily perceive LLMs through warmth and competence, similar to how they perceive other humans. In general contexts, participants prioritized competence over warmth when evaluating LLMs, showing a significant priority effect (odds ratio = 2.88, z = 9.512, 95% CI [2.32, 3.59], p< 0.001). This contrasts with the typical warmth-priority effect in human-to-human perception. Study 2 investigated the relationship between perceptions of warmth and competence and human attitudes toward LLMs, specifically their emotional (e.g., liking) and functional (e.g., willingness to continue using) attitudes. Results showed that both dimensions positively predicted participants’ liking and willingness to continue using LLMs. Warmth had a stronger predictive effect on liking (warmth: β = 0.41, p< 0.001; competence: β = 0.27, p< 0.001), while competence had a stronger predictive effect on willingness to continue using (warmth: β = 0.19, p= 0.005; competence: β = 0.45, p< 0.001). This outcome suggests that the priority effect of warmth and competence shifts across attitude predictions. Study 3 examined specific LLMs ratings in terms of warmth and competence. Results showed no significant difference in warmth ratings between humans (M= 5.06, SD= 1.09) and LLMs (M= 5.11, SD= 1.23), t(206) = −0.60, p= 0.551. However, LLMs were rated significantly higher on competence (M= 5.16, SD= 1.20) than humans (M= 4.81, SD= 1.23), t(206) = −3.51, p< 0.001, Cohen’s d = −0.29.

This study makes two significant contributions to the field. First, it establishes a preliminary theoretical framework for understanding human perception of LLMs. Second, it offers new insights into human-machine interaction by emphasizing the importance of warmth and competence in shaping user attitudes. The findings have practical implications for AI design and policymaking, providing a framework for improving user acceptance, optimizing LLM design, and promoting responsible human-AI coexistence.

Key words: large language model, social cognition, warmth, competence

中图分类号: