心理学报 ›› 2025, Vol. 57 ›› Issue (11): 2043-2059.doi: 10.3724/SP.J.1041.2025.2043 cstr: 32110.14.2025.2043
武月婷1, 王博2,3(
), 包寒吴霜4, 李若男1, 吴怡1, 王嘉琪1, 程诚3, 杨丽3,5(
)
收稿日期:2024-02-06
发布日期:2025-09-24
出版日期:2025-11-25
通讯作者:
王博, E-mail: bo_wang@tju.edu.cn;基金资助:
WU Yueting1, WANG Bo2,3(
), BAO Han Wu Shuang4, LI Ruonan1, WU Yi1, WANG Jiaqi1, CHENG Cheng3, YANG Li3,5(
)
Received:2024-02-06
Online:2025-09-24
Published:2025-11-25
摘要:
随着大语言模型(Large Language Models, LLMs)能力的提升及其广泛应用, 社会正逐步从传统的人际交互转向融合人际交互、人机交互和机机交互的多层次互动结构。在人类与LLMs交互日益深入的背景下, 研究人类如何感知LLMs成为了重要议题。本研究通过三项研究系统考察人类对LLMs的感知模式。研究1发现, 与对人类的感知一致, 人类主要通过热情和能力两个维度感知LLMs。然而, 在一般情境下, 不同于对人类感知中的热情优先, 人类在对LLMs的感知中能力优先。研究2探讨了热情和能力在不同态度预测中的优先效应, 结果表明, 热情与能力均能正向预测人类对LLMs的持续使用意愿和喜爱度, 其中能力对持续使用意愿的预测效力更高, 而热情对喜爱度的预测效力更高。研究3进一步探索了人类对LLMs与对他人的感知差异, 结果显示, 人类对LLMs的热情评价与人类无显著差异, 但对LLMs的能力评价显著高于人类。本研究为理解人类对LLMs的感知提供了理论基础, 并为人工智能的设计优化及人机协作机制的研究提供了新的视角。
中图分类号:
武月婷, 王博, 包寒吴霜, 李若男, 吴怡, 王嘉琪, 程诚, 杨丽. (2025). 人类对大语言模型的热情和能力感知. 心理学报, 57(11), 2043-2059.
WU Yueting, WANG Bo, BAO Han Wu Shuang, LI Ruonan, WU Yi, WANG Jiaqi, CHENG Cheng, YANG Li. (2025). Humans perceive warmth and competence in large language models. Acta Psychologica Sinica, 57(11), 2043-2059.
| 维度 | b | SE | z | p | 95% CI |
|---|---|---|---|---|---|
| 能力 | −0.98 | 0.06 | −15.11 | <0.001 | [−1.11, −0.85] |
| 热情 | −2.04 | 0.09 | −22.53 | <0.001 | [−2.22, −1.86] |
| 才智(Ability) | −1.14 | 0.07 | −16.87 | <0.001 | [−1.27, −1.01] |
| 自信(Assertiveness) | −3.14 | 0.15 | −21.69 | <0.001 | [−3.42, −2.85] |
| 道德(Morality) | −2.22 | 0.10 | −22.84 | <0.001 | [−2.41, −2.03] |
| 社会性(Sociability) | −3.63 | 0.18 | −19.94 | <0.001 | [−3.99, −3.27] |
| 地位(Status) | −2.83 | 0.13 | −22.47 | <0.001 | [−3.07, −2.58] |
| 外貌(Appearance) | −3.60 | 0.18 | −20.06 | <0.001 | [−3.95, −3.25] |
| 健康(Health) | −3.66 | 0.19 | −19.82 | <0.001 | [−4.02, −3.30] |
| 职业(Occupation) | −3.50 | 0.17 | −20.42 | <0.001 | [−3.84, −3.17] |
| 信念(Beliefs) | −4.03 | 0.22 | −18.29 | <0.001 | [−4.46, −3.59] |
| 异常行为(Deviance) | −4.18 | 0.24 | −17.61 | <0.001 | [−4.65, −3.72] |
| 情绪(Emotion) | −3.98 | 0.22 | −18.48 | <0.001 | [−4.40, −3.56] |
| 其他(Other) | −3.98 | 0.22 | −18.49 | <0.001 | [−4.40, −3.56] |
| 美貌(Beauty) | −5.13 | 0.38 | −13.57 | <0.001 | [−5.87, −4.39] |
| 地理(Geography) | −6.39 | 0.71 | −9.06 | <0.001 | [−7.77, −5.01] |
| 社会群体(Social groups) | −6.40 | 0.71 | −9.03 | <0.001 | [−7.78, −5.01] |
表1 二维模型以及子维度模型的固定效应汇总
| 维度 | b | SE | z | p | 95% CI |
|---|---|---|---|---|---|
| 能力 | −0.98 | 0.06 | −15.11 | <0.001 | [−1.11, −0.85] |
| 热情 | −2.04 | 0.09 | −22.53 | <0.001 | [−2.22, −1.86] |
| 才智(Ability) | −1.14 | 0.07 | −16.87 | <0.001 | [−1.27, −1.01] |
| 自信(Assertiveness) | −3.14 | 0.15 | −21.69 | <0.001 | [−3.42, −2.85] |
| 道德(Morality) | −2.22 | 0.10 | −22.84 | <0.001 | [−2.41, −2.03] |
| 社会性(Sociability) | −3.63 | 0.18 | −19.94 | <0.001 | [−3.99, −3.27] |
| 地位(Status) | −2.83 | 0.13 | −22.47 | <0.001 | [−3.07, −2.58] |
| 外貌(Appearance) | −3.60 | 0.18 | −20.06 | <0.001 | [−3.95, −3.25] |
| 健康(Health) | −3.66 | 0.19 | −19.82 | <0.001 | [−4.02, −3.30] |
| 职业(Occupation) | −3.50 | 0.17 | −20.42 | <0.001 | [−3.84, −3.17] |
| 信念(Beliefs) | −4.03 | 0.22 | −18.29 | <0.001 | [−4.46, −3.59] |
| 异常行为(Deviance) | −4.18 | 0.24 | −17.61 | <0.001 | [−4.65, −3.72] |
| 情绪(Emotion) | −3.98 | 0.22 | −18.48 | <0.001 | [−4.40, −3.56] |
| 其他(Other) | −3.98 | 0.22 | −18.49 | <0.001 | [−4.40, −3.56] |
| 美貌(Beauty) | −5.13 | 0.38 | −13.57 | <0.001 | [−5.87, −4.39] |
| 地理(Geography) | −6.39 | 0.71 | −9.06 | <0.001 | [−7.77, −5.01] |
| 社会群体(Social groups) | −6.40 | 0.71 | −9.03 | <0.001 | [−7.78, −5.01] |
| 维度 | 估计边际均值 | 95% CI 下限 | 95% CI 上限 |
|---|---|---|---|
| 能力(Competence) | 0.38 | 0.33 | 0.43 |
| 热情(Warmth) | 0.13 | 0.11 | 0.16 |
| 才智(Ability) | 0.32 | 0.28 | 0.37 |
| 自信(Assertiveness) | 0.04 | 0.03 | 0.06 |
| 道德(Morality) | 0.11 | 0.09 | 0.13 |
| 社会性(Sociability) | 0.03 | 0.02 | 0.04 |
| 地位(Status) | 0.06 | 0.05 | 0.08 |
| 职业(Occupation) | 0.03 | 0.02 | 0.04 |
| 外貌(Appearance) | 0.03 | 0.02 | 0.04 |
| 健康(Health) | 0.03 | 0.02 | 0.04 |
| 其他(Other) | 0.02 | 0.01 | 0.03 |
| 情绪(Emotion) | 0.02 | 0.01 | 0.03 |
| 信念(Beliefs) | 0.02 | 0.01 | 0.03 |
| 异常行为(Deviance) | 0.02 | 0.01 | 0.02 |
| 美貌(Beauty) | 0.01 | 0.00 | 0.01 |
| 地理(Geography) | 0.00 | 0.00 | 0.01 |
| 社会群体(Social groups) | 0.00 | 0.00 | 0.01 |
表2 被试描述词汇在SADCAT中各印象维度上的覆盖率
| 维度 | 估计边际均值 | 95% CI 下限 | 95% CI 上限 |
|---|---|---|---|
| 能力(Competence) | 0.38 | 0.33 | 0.43 |
| 热情(Warmth) | 0.13 | 0.11 | 0.16 |
| 才智(Ability) | 0.32 | 0.28 | 0.37 |
| 自信(Assertiveness) | 0.04 | 0.03 | 0.06 |
| 道德(Morality) | 0.11 | 0.09 | 0.13 |
| 社会性(Sociability) | 0.03 | 0.02 | 0.04 |
| 地位(Status) | 0.06 | 0.05 | 0.08 |
| 职业(Occupation) | 0.03 | 0.02 | 0.04 |
| 外貌(Appearance) | 0.03 | 0.02 | 0.04 |
| 健康(Health) | 0.03 | 0.02 | 0.04 |
| 其他(Other) | 0.02 | 0.01 | 0.03 |
| 情绪(Emotion) | 0.02 | 0.01 | 0.03 |
| 信念(Beliefs) | 0.02 | 0.01 | 0.03 |
| 异常行为(Deviance) | 0.02 | 0.01 | 0.02 |
| 美貌(Beauty) | 0.01 | 0.00 | 0.01 |
| 地理(Geography) | 0.00 | 0.00 | 0.01 |
| 社会群体(Social groups) | 0.00 | 0.00 | 0.01 |
| 词汇 | 全部(N = 219) | 男性(N = 134) | 女性(N = 85) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 因子1 | 因子2 | 共同度 | 因子1 | 因子2 | 共同度 | 因子1 | 因子2 | 共同度 | |
| 智能的 | 0.83 | 0.70 | 0.80 | 0.65 | 0.87 | 0.82 | |||
| 实用的 | 0.81 | 0.70 | 0.80 | 0.75 | 0.71 | 0.66 | |||
| 耐心的 | 0.78 | 0.70 | 0.72 | 0.76 | 0.71 | 0.56 | |||
| 高级的 | 0.78 | 0.64 | 0.73 | 0.53 | 0.79 | 0.75 | |||
| 快速的 | 0.77 | 0.75 | 0.78 | 0.62 | |||||
| 丰富的 | 0.77 | 0.70 | 0.69 | 0.49 | 0.80 | 0.71 | |||
| 信息多的 | 0.76 | 0.60 | 0.69 | 0.52 | 0.78 | 0.84 | |||
| 易用的 | −0.76 | 0.66 | −0.76 | 0.61 | |||||
| 有效率的 | 0.76 | 0.66 | 0.82 | 0.68 | |||||
| 全面的 | 0.76 | 0.63 | 0.73 | 0.55 | 0.79 | 0.67 | |||
| 好用的 | 0.75 | 0.65 | 0.78 | 0.61 | 0.75 | 0.62 | |||
| 博学的 | 0.74 | 0.60 | 0.77 | 0.60 | 0.71 | 0.57 | |||
| 有条不紊的 | 0.72 | 0.59 | 0.66 | 0.54 | 0.76 | 0.66 | |||
| 强大的 | 0.71 | 0.57 | 0.78 | 0.61 | |||||
| 理解的 | 0.70 | 0.58 | 0.72 | 0.55 | 0.70 | 0.51 | |||
| 成熟的 | 0.69 | 0.72 | 0.79 | 0.63 | |||||
| 活跃的 | 0.69 | 0.64 | 0.75 | 0.62 | 0.70 | 0.53 | |||
| 镇静的 | 0.66 | 0.50 | 0.52 | 0.52 | 0.66 | 0.47 | |||
| 简单的(R) | −0.65 | 0.46 | −0.67 | 0.45 | |||||
| 方便的 | 0.65 | 0.49 | 0.78 | 0.64 | |||||
| 神奇的 | 0.65 | 0.43 | 0.63 | 0.47 | |||||
| 开放的 | 0.64 | 0.59 | |||||||
| 准确的 | 0.59 | 0.61 | 0.50 | ||||||
| 按部就班的(R) | −0.56 | 0.47 | −0.71 | 0.65 | |||||
| 值得信赖的 | 0.54 | 0.58 | 0.62 | 0.48 | |||||
| 聪明的 | 0.83 | 0.79 | |||||||
| 有趣的 | 0.68 | 0.53 | |||||||
| 宽厚的 | 0.88 | 0.79 | 0.90 | 0.82 | 0.91 | 0.88 | |||
| 低落的(R) | 0.82 | 0.70 | 0.86 | 0.74 | 0.75 | 0.62 | |||
| 无恒心的(R) | 0.81 | 0.67 | 0.86 | 0.74 | 0.74 | 0.57 | |||
| 孤僻的(R) | −0.80 | 0.66 | −0.83 | 0.70 | −0.75 | 0.60 | |||
| 缄默的(R) | −0.75 | 0.58 | −0.76 | 0.58 | −0.66 | 0.51 | |||
| 狡猾的(R) | 0.73 | 0.57 | 0.64 | 0.47 | |||||
| 动摇的(R) | 0.70 | 0.53 | 0.74 | 0.57 | |||||
| 热情的 | 0.68 | 0.55 | 0.65 | 0.46 | 0.65 | 0.48 | |||
| 掩饰的(R) | 0.65 | 0.44 | 0.64 | 0.44 | |||||
| 奇怪的(R) | 0.62 | 0.41 | 0.70 | 0.54 | |||||
| 小心的 | −0.56 | 0.44 | −0.55 | 0.46 | |||||
| 特征值(旋转后) | 12.83 | 6.27 | 10.13 | 5.12 | 11.21 | 4.82 | |||
| 贡献率(旋转后) | 35.62 | 17.41 | 37.51 | 18.96 | 38.67 | 16.63 | |||
| 累计贡献率(旋转后) | 35.62 | 53.04 | 37.51 | 56.47 | 38.67 | 55.30 | |||
表3 探索性因子分析结果
| 词汇 | 全部(N = 219) | 男性(N = 134) | 女性(N = 85) | ||||||
|---|---|---|---|---|---|---|---|---|---|
| 因子1 | 因子2 | 共同度 | 因子1 | 因子2 | 共同度 | 因子1 | 因子2 | 共同度 | |
| 智能的 | 0.83 | 0.70 | 0.80 | 0.65 | 0.87 | 0.82 | |||
| 实用的 | 0.81 | 0.70 | 0.80 | 0.75 | 0.71 | 0.66 | |||
| 耐心的 | 0.78 | 0.70 | 0.72 | 0.76 | 0.71 | 0.56 | |||
| 高级的 | 0.78 | 0.64 | 0.73 | 0.53 | 0.79 | 0.75 | |||
| 快速的 | 0.77 | 0.75 | 0.78 | 0.62 | |||||
| 丰富的 | 0.77 | 0.70 | 0.69 | 0.49 | 0.80 | 0.71 | |||
| 信息多的 | 0.76 | 0.60 | 0.69 | 0.52 | 0.78 | 0.84 | |||
| 易用的 | −0.76 | 0.66 | −0.76 | 0.61 | |||||
| 有效率的 | 0.76 | 0.66 | 0.82 | 0.68 | |||||
| 全面的 | 0.76 | 0.63 | 0.73 | 0.55 | 0.79 | 0.67 | |||
| 好用的 | 0.75 | 0.65 | 0.78 | 0.61 | 0.75 | 0.62 | |||
| 博学的 | 0.74 | 0.60 | 0.77 | 0.60 | 0.71 | 0.57 | |||
| 有条不紊的 | 0.72 | 0.59 | 0.66 | 0.54 | 0.76 | 0.66 | |||
| 强大的 | 0.71 | 0.57 | 0.78 | 0.61 | |||||
| 理解的 | 0.70 | 0.58 | 0.72 | 0.55 | 0.70 | 0.51 | |||
| 成熟的 | 0.69 | 0.72 | 0.79 | 0.63 | |||||
| 活跃的 | 0.69 | 0.64 | 0.75 | 0.62 | 0.70 | 0.53 | |||
| 镇静的 | 0.66 | 0.50 | 0.52 | 0.52 | 0.66 | 0.47 | |||
| 简单的(R) | −0.65 | 0.46 | −0.67 | 0.45 | |||||
| 方便的 | 0.65 | 0.49 | 0.78 | 0.64 | |||||
| 神奇的 | 0.65 | 0.43 | 0.63 | 0.47 | |||||
| 开放的 | 0.64 | 0.59 | |||||||
| 准确的 | 0.59 | 0.61 | 0.50 | ||||||
| 按部就班的(R) | −0.56 | 0.47 | −0.71 | 0.65 | |||||
| 值得信赖的 | 0.54 | 0.58 | 0.62 | 0.48 | |||||
| 聪明的 | 0.83 | 0.79 | |||||||
| 有趣的 | 0.68 | 0.53 | |||||||
| 宽厚的 | 0.88 | 0.79 | 0.90 | 0.82 | 0.91 | 0.88 | |||
| 低落的(R) | 0.82 | 0.70 | 0.86 | 0.74 | 0.75 | 0.62 | |||
| 无恒心的(R) | 0.81 | 0.67 | 0.86 | 0.74 | 0.74 | 0.57 | |||
| 孤僻的(R) | −0.80 | 0.66 | −0.83 | 0.70 | −0.75 | 0.60 | |||
| 缄默的(R) | −0.75 | 0.58 | −0.76 | 0.58 | −0.66 | 0.51 | |||
| 狡猾的(R) | 0.73 | 0.57 | 0.64 | 0.47 | |||||
| 动摇的(R) | 0.70 | 0.53 | 0.74 | 0.57 | |||||
| 热情的 | 0.68 | 0.55 | 0.65 | 0.46 | 0.65 | 0.48 | |||
| 掩饰的(R) | 0.65 | 0.44 | 0.64 | 0.44 | |||||
| 奇怪的(R) | 0.62 | 0.41 | 0.70 | 0.54 | |||||
| 小心的 | −0.56 | 0.44 | −0.55 | 0.46 | |||||
| 特征值(旋转后) | 12.83 | 6.27 | 10.13 | 5.12 | 11.21 | 4.82 | |||
| 贡献率(旋转后) | 35.62 | 17.41 | 37.51 | 18.96 | 38.67 | 16.63 | |||
| 累计贡献率(旋转后) | 35.62 | 53.04 | 37.51 | 56.47 | 38.67 | 55.30 | |||
| 变量 | M | SD | 热情 | 能力 | 持续使用意愿 | 喜爱度 |
|---|---|---|---|---|---|---|
| 热情 | 5.21 | 1.24 | ||||
| 能力 | 5.24 | 1.18 | 0.30*** | |||
| 持续使用意愿 | 5.96 | 1.17 | 0.33*** | 0.50*** | ||
| 喜爱度 | 5.60 | 1.01 | 0.49*** | 0.39*** | 0.66*** |
表4 各变量的描述性统计与相关系数矩阵(N = 178)
| 变量 | M | SD | 热情 | 能力 | 持续使用意愿 | 喜爱度 |
|---|---|---|---|---|---|---|
| 热情 | 5.21 | 1.24 | ||||
| 能力 | 5.24 | 1.18 | 0.30*** | |||
| 持续使用意愿 | 5.96 | 1.17 | 0.33*** | 0.50*** | ||
| 喜爱度 | 5.60 | 1.01 | 0.49*** | 0.39*** | 0.66*** |
| 因变量 | 自变量 | b | SE | β | t | p | 95% CI |
|---|---|---|---|---|---|---|---|
| 持续使用意愿 | (截距) | 2.70 | 0.41 | - | 6.61 | < 0.001 | [1.90, 3.51] |
| 热情 | 0.18 | 0.06 | 0.19 | 2.87 | 0.005 | [0.06, 0.31] | |
| 能力 | 0.44 | 0.07 | 0.45 | 6.64 | < 0.001 | [0.31, 0.57] | |
| 喜爱度 | (截距) | 2.65 | 0.35 | - | 7.62 | < 0.001 | [1.96, 3.33] |
| 热情 | 0.34 | 0.05 | 0.41 | 6.23 | < 0.001 | [0.23, 0.44] | |
| 能力 | 0.23 | 0.06 | 0.27 | 4.05 | < 0.001 | [0.12, 0.34] |
表5 被试对LLMs的热情和能力评分与对LLMs的持续使用意愿和喜爱度的多元回归分析结果
| 因变量 | 自变量 | b | SE | β | t | p | 95% CI |
|---|---|---|---|---|---|---|---|
| 持续使用意愿 | (截距) | 2.70 | 0.41 | - | 6.61 | < 0.001 | [1.90, 3.51] |
| 热情 | 0.18 | 0.06 | 0.19 | 2.87 | 0.005 | [0.06, 0.31] | |
| 能力 | 0.44 | 0.07 | 0.45 | 6.64 | < 0.001 | [0.31, 0.57] | |
| 喜爱度 | (截距) | 2.65 | 0.35 | - | 7.62 | < 0.001 | [1.96, 3.33] |
| 热情 | 0.34 | 0.05 | 0.41 | 6.23 | < 0.001 | [0.23, 0.44] | |
| 能力 | 0.23 | 0.06 | 0.27 | 4.05 | < 0.001 | [0.12, 0.34] |
| 组别 | 维度 | t | p | df | 95% CI | Cohen's d |
|---|---|---|---|---|---|---|
| 全部(N = 207) | 热情 | 0.60 | 0.551 | 206.00 | [−0.12, 0.23] | 0.05 |
| 能力 | 3.51 | <0.001 | 206.00 | [0.15, 0.54] | 0.29 | |
| 男性(N = 124) | 热情 | 2.30 | 0.023 | 123.00 | [0.03, 0.40] | 0.21 |
| 能力 | 2.28 | 0.024 | 123.00 | [0.04, 0.53] | 0.25 | |
| 女性(N = 83) | 热情 | −1.15 | 0.255 | 82.00 | [−0.52, 0.14] | −0.15 |
| 能力 | 2.71 | 0.008 | 82.00 | [0.12, 0.77] | 0.34 |
表6 被试对LLMs (vs.对人类)的热情和能力评分的配对样本t检验结果
| 组别 | 维度 | t | p | df | 95% CI | Cohen's d |
|---|---|---|---|---|---|---|
| 全部(N = 207) | 热情 | 0.60 | 0.551 | 206.00 | [−0.12, 0.23] | 0.05 |
| 能力 | 3.51 | <0.001 | 206.00 | [0.15, 0.54] | 0.29 | |
| 男性(N = 124) | 热情 | 2.30 | 0.023 | 123.00 | [0.03, 0.40] | 0.21 |
| 能力 | 2.28 | 0.024 | 123.00 | [0.04, 0.53] | 0.25 | |
| 女性(N = 83) | 热情 | −1.15 | 0.255 | 82.00 | [−0.52, 0.14] | −0.15 |
| 能力 | 2.71 | 0.008 | 82.00 | [0.12, 0.77] | 0.34 |
| [1] | Abele, A. E., & Brack, S. (2013). Preference for other persons’ traits is dependent on the kind of social relationship. Social Psychology, 44(2), 84-94. |
| [2] | Abele, A. E., Bruckmüller, S., & Wojciszke, B. (2014). You are so kind - and I am kind and smart: Actor - observer differences in the interpretation of on-going behavior. Polish Psychological Bulletin; 45(4), 394-401. |
| [3] | Abele, A. E., Ellemers, N., Fiske, S. T., Koch, A., & Yzerbyt, V. (2021). Navigating the social world: Toward an integrated framework for evaluating self, individuals, and groups. Psychological Review, 128(2), 290-314. |
| [4] | Abele, A. E., Hauke, N., Peters, K., Louvet, E., Szymkow, A., & Duan, Y. (2016). Facets of the fundamental content dimensions: Agency with competence and assertiveness- communion with warmth and morality. Frontiers in Psychology, 7(1), Article 1810. |
| [5] |
Abele, A. E., & Wojciszke, B. (2007). Agency and communion from the perspective of self versus others. Journal of Personality and Social Psychology, 93(5), 751-763.
doi: 10.1037/0022-3514.93.5.751 pmid: 17983298 |
| [6] | Abele, A. E., & Wojciszke, B. (2014). Communal and agentic content in social cognition:A dual perspective model. In J. M.Olson & M. P.Zanna (Eds.), Advances in experimental social psychology (Vol 50, pp. 195-255). Elsevier Academic Press Inc. |
| [7] | Abele, A. E., & Wojciszke, B. (Eds). (2018). Agency and communion in social psychology. Routledge. |
| [8] | Bai, X., Ramos, M. R., & Fiske, S. T. (2020). As diversity increases, people paradoxically perceive social groups as more similar. Proceedings of the National Academy of Sciences, 117(23), 12741-12749. |
| [9] | Bartneck, C., Kulic, D., Croft, E., & Zoghbi, S. (2009). Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. International Journal of Social Robotics, 1(1), 71-81. |
| [10] | Bodroža, B., Dinić, B. M., & Bojić, L. (2024). Personality testing of large language models: Limited temporal stability, but highlighted prosociality. Royal Society Open Science, 11(10), 240180. |
| [11] | Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,... Amodei, D. (2020). Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems (pp. 1877-1901). Curran Associates Inc. |
| [12] | Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E.,... Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv. https://doi.org/10.48550/arXiv.2303.12712 |
| [13] | Carpinella, C. M., Wyman, A. B., Perez, M. A., & Stroessner, S. J. (2017, March). The Robotic Social Attributes Scale (RoSAS): Development and validation. In Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (pp. 254-262). ACM. |
| [14] |
Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276.
doi: 10.1207/s15327906mbr0102_10 pmid: 26828106 |
| [15] | Chi, O. H., Jia, S., Li, Y., & Gursoy, D. (2021). Developing a formative scale to measure consumers’ trust toward interaction with artificially intelligent (AI) social robots in service delivery. Computers in Human Behavior, 118, 106700. |
| [16] | Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis (2nd ed. pp. xii, 430). Lawrence Erlbaum Associates, Inc. |
| [17] | Costello, A. B., & Osborne, J. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10(1), Article 7. |
| [18] |
Cuddy, A. J. C., Fiske, S. T., & Glick, P. (2007). The BIAS map: Behaviors from intergroup affect and stereotypes. Journal of Personality and Social Psychology, 92(4), 631-648.
doi: 10.1037/0022-3514.92.4.631 pmid: 17469949 |
| [19] | Cuddy, A. J. C., Fiske, S. T., Kwan, V. S. Y., Glick, P., Demoulin, S., Leyens, J. P.,... Ziegler, R. (2009). Stereotype content model across cultures: Towards universal similarities and some differences. British Journal of Social Psychology, 48(1), 1-33. |
| [20] | Cuff, B. M. P., Brown, S. J., Taylor, L., & Howat, D. J. (2016). Empathy: A review of the concept. Emotion Review, 8(2), 144-153. |
| [21] | Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. |
| [22] | de Ruyter, B., Saini, P., Markopoulos, P., & van Breemen, A. (2005). Assessing the effects of building social intelligence in a robotic interface for the home. Interacting with Computers, 17(5), 522-541. |
| [23] | dos Santos, R. P. (2023). Enhancing physics learning with ChatGPT, Bing Chat, and Bard as agents-to-think-with: A comparative case study. arXiv. https://doi.org/10.48550/arXiv.2306.00724 |
| [24] | Durante, F., Fiske, S. T., Gelfand, M. J., Crippa, F., Suttora, C., Stillwell, A.,... Teymoori, A. (2017). Ambivalent stereotypes link to peace, conflict, and inequality across 38 nations. Proceedings of the National Academy of Sciences, 114(4), 669-674. |
| [25] |
Fiske, S. T. (1992). Thinking is for doing: Portraits of social cognition from daguerreotype to laserphoto. Journal of Personality and Social Psychology, 63(6), 877-889.
doi: 10.1037//0022-3514.63.6.877 pmid: 1460557 |
| [26] |
Fiske, S. T. (2018). Stereotype content: Warmth and competence endure. Current Directions in Psychological Science, 27(2), 67-73.
doi: 10.1177/0963721417738825 pmid: 29755213 |
| [27] |
Fiske, S. T., Cuddy, A. J. C., & Glick, P. (2007). Universal dimensions of social cognition: Warmth and competence. Trends in Cognitive Sciences, 11(2), 77-83.
doi: 10.1016/j.tics.2006.11.005 pmid: 17188552 |
| [28] |
Fiske, S. T., Cuddy, A. J. C., Glick, P., & Xu, J. (2002). A model of (often mixed) stereotype content: Competence and warmth respectively follow from perceived status and competition. Journal of Personality and Social Psychology, 82(6), 878-902.
pmid: 12051578 |
| [29] | Gray, H. M., Gray, K., & Wegner, D. M. (2007). Dimensions of mind perception. Science, 315(5812), 619. |
| [30] |
Gray, K., & Wegner, D. M. (2010). Blaming God for our pain: Human suffering and the divine mind. Personality and Social Psychology Review, 14(1), 7-16.
doi: 10.1177/1088868309350299 pmid: 19926831 |
| [31] | Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493-498. |
| [32] |
Heaven, P. C. L., Ciarrochi, J., Leeson, P., & Barkus, E. (2013). Agreeableness, conscientiousness, and psychoticism: Distinctive influences of three personality dimensions in adolescence. British Journal of Psychology, 104(4), 481-494.
doi: 10.1111/bjop.12002 pmid: 24094279 |
| [33] | Heflick, N. A., Goldenberg, J. L., Cooper, D. P., & Puvia, E. (2011). From women to objects: Appearance focus, target gender, and perceptions of warmth, morality and competence. Journal of Experimental Social Psychology, 47(3), 572-581. |
| [34] | Huang, J., Wang, W., Lam, M. H., Li, E. J., Jiao, W., & Lyu, M. R. (2023). Revisiting the reliability of psychological scales on large language models. arXiv. https://doi.org/10.48550/arXiv.2305.19926 |
| [35] | Jiang, G. Y., Xu, M. J., Zhu, S. C., Han, W. J., Zhang, C., & Zhu, Y. X. (2023, December). Evaluating and inducing personality in pre-trained language models. In Proceedings of the 37th International Conference on Neural Information Processing Systems. Neural Information Processing Systems (NIPS). |
| [36] | Kosinski, M. (2024). Evaluating large language models in theory of mind tasks. Proceedings of the National Academy of Sciences, 121(45), e2405460121. |
| [37] | Lee, Y. K., Suh, J., Zhan, H., Li, J. J., & Ong, D. C. (2024). Large language models produce responses perceived to be empathic. arXiv. https://doi.org/10.48550/arXiv.2403.18148 |
| [38] | Luo, J., & Dai, X. Y. (2018). Development of the Chinese Adjectives Scale of Big-Five Factor Personality Ⅳ: A Short Scale Version. Chinese Journal of Clinical Psychology, 26(4), 642-646. |
| [罗杰, 戴晓阳. (2018). 中文形容词大五人格量表的初步编制Ⅳ: 简式版的研制. 中国临床心理学杂志, 26(4), 642-646.] | |
| [39] | MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4(1), 84-99. |
| [40] | McKee, K. R., Bai, X. C. Z., & Fiske, S. T. (2023). Humans perceive warmth and competence in artificial intelligence. Iscience, 26(8), 107256. |
| [41] | Mirnig, N., Stollnberger, G., Miksch, M., Stadler, S., Giuliani, M., & Tscheligi, M. (2017). To err is robot: How humans assess and act toward an erroneous social robot. Frontiers in Robotics and AI, 4(1), Article 21. |
| [42] | Mohammad, Y., & Nishida, T. (2015). Why should we imitate robots? Effect of back imitation on judgment of imitative skill. International Journal of Social Robotics, 7(4), 497-512. |
| [43] | Mori, M. (1970). The uncanny valley. Energy, 7, 33-35. |
| [44] | Nicolas, G., Bai, X. C. Z., & Fiske, S. T. (2021). Comprehensive stereotype content dictionaries using a semi-automated method. European Journal of Social Psychology, 51(1), 178-196. |
| [45] | Nomura, T., Kanda, T., & Suzuki, T. (2006). Experimental investigation into influence of negative attitudes toward robots on human-robot interaction. Ai & Society, 20(2), 138-150. |
| [46] | Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P.,... Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35(27730-27744), Article 2011. |
| [47] | Scheunemann, M. M., Cuijpers, R. H., & Salge, C. (2020). Warmth and competence to predict human preference of robot behavior in physical human-robot interaction. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1340-1347). 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). |
| [48] | Sorin, V., Brin, D., Barash, Y., Konen, E., Charney, A., Nadkarni, G., & Klang, E. (2024). Large language models and empathy: Systematic review. Journal of Medical Internet Research, 26(10), Article e52597. |
| [49] |
Strachan, J. W. A., Albergo, D., Borghini, G., Pansardi, O., Scaliti, E., Gupta, S.,... Becchio, C. (2024). Testing theory of mind in large language models and humans. Nature Human Behaviour, 8(7), 1285-1295.
doi: 10.1038/s41562-024-01882-z pmid: 38769463 |
| [50] | Sundararajan, L., Wu, M. S., Ho, W.-T., Sun, J. C., Leung, C. P., & Rich, G. J. (2022). Expanding our kind: A pan-cultural study of the animistic principle of ontological parity. The Humanistic Psychologist, 50(3), 476-496. |
| [51] | Tae, M., & Lee, J. (2020). The effect of robot’s ice-breaking humor on likeability and future contact intentions. In Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction (pp. 462-464). ACM. |
| [52] | Uchronski, M. (2008). Agency and communion in spontaneous self-descriptions: Occurrence and situational malleability. European Journal of Social Psychology, 38(7), 1093-1102. |
| [53] | Venkatesh, V., & Morris, M. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115-139. |
| [54] | Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. |
| [55] | Wang, J., Ma, W., Sun, P., Zhang, M., & Nie, J.-Y. (2024). Understanding user experience in large language model interactions. arXiv. https://doi.org/10.48550/arXiv.2401.08329 |
| [56] |
Waytz, A., Cacioppo, J., & Epley, N. (2010). Who sees human? The stability and importance of individual differences in anthropomorphism. Perspectives on Psychological Science, 5(3), 219-232.
doi: 10.1177/1745691610369336 pmid: 24839457 |
| [57] | Waytz, A., & Young, L. (2014). Two motivations for two dimensions of mind. Journal of Experimental Social Psychology, 55, 278-283. |
| [58] | Webb, T., Holyoak, K. J., & Lu, H. J. (2023). Emergent analogical reasoning in large language models. Nature Human Behaviour, 7(9), 1526-1541. |
| [59] | Wojciszke, B., & Abele, A. E. (2008). The primacy of communion over agency and its reversals in evaluations. European Journal of Social Psychology, 38(7), 1139-1147. |
| [60] | Wu, X. Y., & Zhang, D. W. (2023). The impact mechanism of mobile visual search continuous behavior intention from academic new media users: Empirical analysis of UTAUT2-ECT integration model. Journal of Intelligence, 42(8), 164-176. |
| [武晓宇, 张大伟. (2023). 学术用户移动视觉搜索的持续使用意愿研究——基于UTAUT2-ECT整合模型的实证分析. 情报杂志, 42(8), 164-176.] | |
| [61] | Zhao, Y. K., Huang, Z., Seligman, M., & Peng, K. P. (2024). Risk and prosocial behavioural cues elicit human-like response patterns from AI chatbots. Scientific Reports, 14(1), Article 7095. |
| [62] | Zuo, B., Dai, T. T., Wen, F. F., & Suo, Y. X. (2015). The big two model in social cognition. Journal of Psychological Science, 38(4), 1019-1023. |
| [佐斌, 代涛涛, 温芳芳, 索玉贤. (2015). 社会认知内容的“大二”模型. 心理科学, 38(4), 1019-1023.] | |
| [63] | Zuo, B., Wen, F. F., Wu, Y., & Dai, T. T. (2018). Situational evolution of the relationship between warmth and competence in intergroup evaluation: Impact of evaluating intention and behavioral outcomes. ActaPsychologicaSinica, 50(10), 1180-1196. |
|
[佐斌, 温芳芳, 吴漾, 代涛涛. (2018). 群际评价中热情与能力关系的情境演变:评价意图与结果的作用. 心理学报, 50(10), 1180-1196.]
doi: 10.3724/SP.J.1041.2018.01180 |
| [1] | 焦丽颖, 李昌锦, 陈圳, 许恒彬, 许燕. 当AI“具有”人格:善恶人格角色对大语言模型道德判断的影响[J]. 心理学报, 2025, 57(6): 929-946. |
| [2] | 高承海, 党宝宝, 王冰洁, 吴胜涛. 人工智能的语言优势和不足:基于大语言模型与真实学生语文能力的比较[J]. 心理学报, 2025, 57(6): 947-966. |
| [3] | 章彦博, 黄峰, 莫柳铃, 刘晓倩, 朱廷劭. 基于大语言模型的自杀意念文本数据增强与识别技术[J]. 心理学报, 2025, 57(6): 987-1000. |
| [4] | 陈良勇, 曹仲怀, 万文海, 张玮婷. 好心没好报?主动帮助对同事关系的“双刃剑”影响[J]. 心理学报, 2025, 57(6): 1083-1097. |
| [5] | 由姗姗, 齐玥, 陈俊廷, 骆磊, 张侃. 人与AI对智能家居机器人的安全信任及其影响因素[J]. 心理学报, 2025, 57(11): 1951-1972. |
| [6] | 周子森, 黄琪, 谭泽宏, 刘睿, 曹子亨, 母芳蔓, 樊亚春, 秦绍正. 多模态大语言模型动态社会互动情景下的情感能力测评[J]. 心理学报, 2025, 57(11): 1988-2000. |
| [7] | 黄峰, 丁慧敏, 李思嘉, 韩诺, 狄雅政, 刘晓倩, 赵楠, 李林妍, 朱廷劭. 基于大语言模型的自助式AI心理咨询系统构建及其效果评估[J]. 心理学报, 2025, 57(11): 2022-2042. |
| [8] | 杨鑫超, 陈燕铃, 郑俊猛, 张荣祥, 牟晓, 徐强. 工作记忆负荷对社交焦虑个体注意偏向的调节作用: 来自稳态视觉诱发电位的证据[J]. 心理学报, 2025, 57(10): 1729-1744. |
| [9] | 董达, 陈巍. 人不是物:社会认知的稽古维新[J]. 心理学报, 2025, 57(1): 173-189. |
| [10] | 王雅婷, 陈志俊, 李锐, 周明建. 掌舵者力有余, 撑船者齐创新?领导资质过剩感对团队创造力的促进机制[J]. 心理学报, 2024, 56(3): 326-338. |
| [11] | 闫霄, 莫田甜, 周欣悦. 中西方文化差异对虚拟人道德责任判断的影响[J]. 心理学报, 2024, 56(2): 161-178. |
| [12] | 祝孝亮, 赵鑫. 执行功能在不同年级儿童数学能力中的作用[J]. 心理学报, 2023, 55(5): 696-710. |
| [13] | 邱天, 江南, 陆静怡. 切忌班门弄斧?低估在评价者擅长领域展现能力的好处[J]. 心理学报, 2023, 55(5): 766-780. |
| [14] | 蒋旭婷, 吴小玥, 范雪灵, 贺伟. 员工愤怒表达对领导力涌现的影响:温暖和能力感知的中介作用以及愤怒道歉的弥补作用[J]. 心理学报, 2023, 55(5): 812-830. |
| [15] | 王辉, 王颖, 季晓得, 纪铭. 辩证领导行为及其对企业创新能力和绩效的影响: 一项基于中国传统文化的领导行为探究[J]. 心理学报, 2023, 55(3): 374-389. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||