心理学报 ›› 2025, Vol. 57 ›› Issue (11): 2022-2042.doi: 10.3724/SP.J.1041.2025.2022 cstr: 32110.14.2025.2022
黄峰1,2,3, 丁慧敏4,5, 李思嘉6, 韩诺7,8, 狄雅政1,2, 刘晓倩1,2, 赵楠1,2, 李林妍3,9, 朱廷劭1,2(
)
收稿日期:2024-08-15
发布日期:2025-09-24
出版日期:2025-11-25
通讯作者:
朱廷劭, E-mail: tszhu@psych.ac.cn基金资助:
HUANG Feng1,2,3, DING Huimin4,5, LI Sijia6, HAN Nuo7,8, DI Yazheng1,2, LIU Xiaoqian1,2, ZHAO Nan1,2, LI Linyan3,9, ZHU Tingshao1,2(
)
Received:2024-08-15
Online:2025-09-24
Published:2025-11-25
摘要:
本研究旨在探讨不依赖真实案例数据的前提下, 基于大语言模型构建自助式AI心理咨询系统的技术可行性, 及其对普通人群心理健康状况的改善效果。研究分为两个阶段: 首先, 基于零样本学习和思维链提示策略构建了一个自助式AI心理咨询机器人系统; 随后, 通过招募202名参与者进行为期两周的随机对照试验, 评估了该系统的实际应用效果。实验1的结果表明, 经提示工程优化后的GPT-4o模型在规范性、专业度、情感理解与共情能力以及一致性与连贯性方面均有显著提升。实验2发现, 与控制组相比, 使用自助式AI心理咨询机器人的参与者在短期内的抑郁、焦虑和孤独感均有显著改善。特别是, 拟人化设计的AI咨询师在缓解孤独感方面表现出显著优势, 而非拟人化设计在减轻压力方面效果更为明显。此外, 焦虑症状的积极变化在一周后的随访中仍然保持, 而其他指标的改善效果则未能持续。本研究初步探索了基于大语言模型的自助式AI心理咨询对心理健康的积极影响, 揭示了不同AI设计对特定心理问题的差异化效果, 为未来研究和实践提供了参考。
中图分类号:
黄峰, 丁慧敏, 李思嘉, 韩诺, 狄雅政, 刘晓倩, 赵楠, 李林妍, 朱廷劭. (2025). 基于大语言模型的自助式AI心理咨询系统构建及其效果评估. 心理学报, 57(11), 2022-2042.
HUANG Feng, DING Huimin, LI Sijia, HAN Nuo, DI Yazheng, LIU Xiaoqian, ZHAO Nan, LI Linyan, ZHU Tingshao. (2025). Self-help AI psychological counseling system based on large language models and its effectiveness evaluation. Acta Psychologica Sinica, 57(11), 2022-2042.
| 评估维度 | GPT-4o | Claude 3 Opus | Yi-Large | F | η2p | 分析方法 |
|---|---|---|---|---|---|---|
| 规范性 | 2.36 (1.25) | 1.58 (0.91) | 1.53 (0.74) | 8.04** | 0.13 | 标准ANOVA |
| 专业度 | 1.67 (1.01) | 1.56 (0.81) | 1.44 (0.74) | 0.60 | 0.01 | 标准ANOVA |
| 情感理解与共情能力 | 2.53 (1.32) | 1.47 (0.74) | 2.36 (1.36) | 11.92*** | - | Welch ANOVA |
| 一致性与连贯性 | 2.17 (1.11) | 2.14 (1.20) | 1.44 (0.74) | 7.47** | - | Welch ANOVA |
| 总分 | 8.72 (4.03) | 6.75 (3.02) | 6.78 (2.90) | 4.09* | 0.07 | 标准ANOVA |
表1 备选基座模型在各评估维度上的描述性统计和方差分析结果
| 评估维度 | GPT-4o | Claude 3 Opus | Yi-Large | F | η2p | 分析方法 |
|---|---|---|---|---|---|---|
| 规范性 | 2.36 (1.25) | 1.58 (0.91) | 1.53 (0.74) | 8.04** | 0.13 | 标准ANOVA |
| 专业度 | 1.67 (1.01) | 1.56 (0.81) | 1.44 (0.74) | 0.60 | 0.01 | 标准ANOVA |
| 情感理解与共情能力 | 2.53 (1.32) | 1.47 (0.74) | 2.36 (1.36) | 11.92*** | - | Welch ANOVA |
| 一致性与连贯性 | 2.17 (1.11) | 2.14 (1.20) | 1.44 (0.74) | 7.47** | - | Welch ANOVA |
| 总分 | 8.72 (4.03) | 6.75 (3.02) | 6.78 (2.90) | 4.09* | 0.07 | 标准ANOVA |
| 评估维度 | 模型比较 | 均值差异 | 95% CI | 事后检验方法 |
|---|---|---|---|---|
| GPT-4o vs. Claude 3 Opus | 0.78** | [0.23, 1.33] | Tukey HSD | |
| 规范性 | GPT-4o vs. Yi-Large | 0.83** | [0.28, 1.39] | Tukey HSD |
| Claude 3 Opus vs. Yi-Large | −0.06 | [−0.61, 0.50] | Tukey HSD | |
| GPT-4o vs. Claude 3 Opus | 1.06*** | [0.55, 1.56] | Games-Howell | |
| 情感理解与共情能力 | GPT-4o vs. Yi-Large | 0.17 | [−0.46, 0.80] | Games-Howell |
| Claude 3 Opus vs. Yi-Large | −0.89** | [−1.40, −0.37] | Games-Howell | |
| GPT-4o vs. Claude 3 Opus | −0.03 | [−0.57, 0.52] | Games-Howell | |
| 一致性与连贯性 | GPT-4o vs. Yi-Large | 0.72** | [0.28, 1.17] | Games-Howell |
| Claude 3 Opus vs. Yi-Large | 0.69** | [0.23, 1.16] | Games-Howell | |
| GPT-4o vs. Claude 3 Opus | 1.97* | [0.09, 3.85] | Tukey HSD | |
| 总分 | GPT-4o vs. Yi-Large | 1.94* | [0.06, 3.82] | Tukey HSD |
| Claude 3 Opus vs. Yi-Large | 0.03 | [−1.85, 1.91] | Tukey HSD |
表2 基座模型间两两比较的Tukey HSD事后检验结果
| 评估维度 | 模型比较 | 均值差异 | 95% CI | 事后检验方法 |
|---|---|---|---|---|
| GPT-4o vs. Claude 3 Opus | 0.78** | [0.23, 1.33] | Tukey HSD | |
| 规范性 | GPT-4o vs. Yi-Large | 0.83** | [0.28, 1.39] | Tukey HSD |
| Claude 3 Opus vs. Yi-Large | −0.06 | [−0.61, 0.50] | Tukey HSD | |
| GPT-4o vs. Claude 3 Opus | 1.06*** | [0.55, 1.56] | Games-Howell | |
| 情感理解与共情能力 | GPT-4o vs. Yi-Large | 0.17 | [−0.46, 0.80] | Games-Howell |
| Claude 3 Opus vs. Yi-Large | −0.89** | [−1.40, −0.37] | Games-Howell | |
| GPT-4o vs. Claude 3 Opus | −0.03 | [−0.57, 0.52] | Games-Howell | |
| 一致性与连贯性 | GPT-4o vs. Yi-Large | 0.72** | [0.28, 1.17] | Games-Howell |
| Claude 3 Opus vs. Yi-Large | 0.69** | [0.23, 1.16] | Games-Howell | |
| GPT-4o vs. Claude 3 Opus | 1.97* | [0.09, 3.85] | Tukey HSD | |
| 总分 | GPT-4o vs. Yi-Large | 1.94* | [0.06, 3.82] | Tukey HSD |
| Claude 3 Opus vs. Yi-Large | 0.03 | [−1.85, 1.91] | Tukey HSD |
| 评估维度 | 简单指令 | 提示工程 | t | d | 置信区间 |
|---|---|---|---|---|---|
| 规范性 | 2.36(1.05) | 4.17(0.97) | 7.68*** | 1.28 | [1.33, 2.28] |
| 专业度 | 1.67(0.89) | 2.56(1.08) | 3.04** | 0.51 | [0.30, 1.48] |
| 情感理解与共情能力 | 2.53(1.18) | 4.08(0.87) | 6.38*** | 1.06 | [1.06, 2.05] |
| 一致性与连贯性 | 2.17(1.03) | 3.86(0.76) | 6.83*** | 1.14 | [1.19, 2.20] |
| 总分 | 8.72(3.63) | 14.67(3.20) | 6.35*** | 1.06 | [4.04, 7.85] |
表3 基于提示工程优化前后的GPT-4o表现比较
| 评估维度 | 简单指令 | 提示工程 | t | d | 置信区间 |
|---|---|---|---|---|---|
| 规范性 | 2.36(1.05) | 4.17(0.97) | 7.68*** | 1.28 | [1.33, 2.28] |
| 专业度 | 1.67(0.89) | 2.56(1.08) | 3.04** | 0.51 | [0.30, 1.48] |
| 情感理解与共情能力 | 2.53(1.18) | 4.08(0.87) | 6.38*** | 1.06 | [1.06, 2.05] |
| 一致性与连贯性 | 2.17(1.03) | 3.86(0.76) | 6.83*** | 1.14 | [1.19, 2.20] |
| 总分 | 8.72(3.63) | 14.67(3.20) | 6.35*** | 1.06 | [4.04, 7.85] |
| 测量时间点 | 变量 | M | SD | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|
| T1 (n = 202) | 1. 年龄 | 24.06 | 4.05 | - | ||||
| 2. 性别 | 0.50 | 0.50 | −0.03 | - | ||||
| 3. 抑郁 | 5.41 | 4.52 | −0.00 | 0.04 | - | |||
| 4. 焦虑 | 4.69 | 4.02 | −0.08 | 0.00 | 0.76*** | - | ||
| 5. 压力 | 6.52 | 4.34 | 0.02 | −0.03 | 0.74*** | 0.82*** | - | |
| 6. 孤独感 | 6.76 | 2.67 | 0.08 | 0.04 | 0.66*** | 0.62*** | 0.67*** | |
| T2 (n = 180) | 1. 年龄 | 23.81 | 3.67 | - | ||||
| 2. 性别 | 0.50 | 0.50 | −0.00 | - | ||||
| 3. 抑郁 | 2.98 | 4.07 | −0.05 | 0.01 | - | |||
| 4. 焦虑 | 2.48 | 3.20 | −0.10 | −0.03 | 0.71*** | - | ||
| 5. 压力 | 5.45 | 3.98 | −0.05 | −0.07 | 0.69*** | 0.73*** | - | |
| 6. 孤独感 | 4.77 | 2.47 | 0.12 | 0.02 | 0.51*** | 0.57*** | 0.40*** | |
| T3 (n = 153) | 1. 年龄 | 23.74 | 3.81 | - | ||||
| 2. 性别 | 0.51 | 0.50 | −0.01 | - | ||||
| 3. 抑郁 | 5.19 | 3.59 | −0.08 | 0.08 | - | |||
| 4. 焦虑 | 2.43 | 3.08 | −0.15 | −0.02 | 0.74*** | - | ||
| 5. 压力 | 5.76 | 3.84 | 0.01 | −0.07 | 0.74*** | 0.77*** | - | |
| 6. 孤独感 | 6.69 | 1.99 | 0.15 | 0.01 | 0.60*** | 0.56*** | 0.56*** |
表4 主要变量在各测量时间点的描述性统计及相关系数矩阵
| 测量时间点 | 变量 | M | SD | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|---|---|---|
| T1 (n = 202) | 1. 年龄 | 24.06 | 4.05 | - | ||||
| 2. 性别 | 0.50 | 0.50 | −0.03 | - | ||||
| 3. 抑郁 | 5.41 | 4.52 | −0.00 | 0.04 | - | |||
| 4. 焦虑 | 4.69 | 4.02 | −0.08 | 0.00 | 0.76*** | - | ||
| 5. 压力 | 6.52 | 4.34 | 0.02 | −0.03 | 0.74*** | 0.82*** | - | |
| 6. 孤独感 | 6.76 | 2.67 | 0.08 | 0.04 | 0.66*** | 0.62*** | 0.67*** | |
| T2 (n = 180) | 1. 年龄 | 23.81 | 3.67 | - | ||||
| 2. 性别 | 0.50 | 0.50 | −0.00 | - | ||||
| 3. 抑郁 | 2.98 | 4.07 | −0.05 | 0.01 | - | |||
| 4. 焦虑 | 2.48 | 3.20 | −0.10 | −0.03 | 0.71*** | - | ||
| 5. 压力 | 5.45 | 3.98 | −0.05 | −0.07 | 0.69*** | 0.73*** | - | |
| 6. 孤独感 | 4.77 | 2.47 | 0.12 | 0.02 | 0.51*** | 0.57*** | 0.40*** | |
| T3 (n = 153) | 1. 年龄 | 23.74 | 3.81 | - | ||||
| 2. 性别 | 0.51 | 0.50 | −0.01 | - | ||||
| 3. 抑郁 | 5.19 | 3.59 | −0.08 | 0.08 | - | |||
| 4. 焦虑 | 2.43 | 3.08 | −0.15 | −0.02 | 0.74*** | - | ||
| 5. 压力 | 5.76 | 3.84 | 0.01 | −0.07 | 0.74*** | 0.77*** | - | |
| 6. 孤独感 | 6.69 | 1.99 | 0.15 | 0.01 | 0.60*** | 0.56*** | 0.56*** |
| 变量 | (1) 抑郁模型 | (2) 焦虑模型 | (3) 压力模型 | (4) 孤独感模型 |
|---|---|---|---|---|
| 截距 | 5.86(1.77)*** | 7.09(1.42)*** | 7.28(1.71)*** | 5.97(0.89)*** |
| 控制变量 | ||||
| 年龄 | −0.03(0.07) | −0.10(0.06) | −0.01(0.07) | 0.04(0.03) |
| 性别(男) | 0.32(0.54) | −0.19(0.43) | −0.53(0.52) | 0.05(0.27) |
| 组别固定效应 | ||||
| F组 | 0.20(0.83) | 0.37(0.68) | −0.12(0.82) | −0.51(0.45) |
| M组 | 0.29(0.83) | −0.01(0.68) | −0.61(0.82) | −0.13(0.45) |
| R组 | 0.12(0.84) | −0.07(0.68) | 0.08(0.82) | −0.37(0.45) |
| 时间固定效应 | ||||
| T2 | −0.28(0.46) | 0.21(0.41) | −0.27(0.50) | 0.40(0.34) |
| T3 | 0.12(0.48) | −0.18(0.43) | −0.45(0.53) | 0.23(0.35) |
| 组别 × 时间交互效应 | ||||
| F组 × T2 | −2.66(0.63)*** | −3.51(0.57)*** | −0.59(0.69) | −3.47(0.47)*** |
| M组 × T2 | −3.25(0.63)*** | −3.28(0.57)*** | −0.46(0.69) | −3.85(0.47)*** |
| R组 × T2 | −2.48(0.63)*** | −2.75(0.57)*** | −2.07(0.69)** | −1.83(0.47)*** |
| F组 × T3 | −0.24(0.67) | −2.84(0.60)*** | −0.33(0.73) | −0.49(0.49) |
| M组 × T3 | −0.47(0.67) | −2.55(0.61)*** | −0.17(0.73) | −0.51(0.50) |
| R组 × T3 | 0.41(0.66) | −2.23(0.60)*** | −0.30(0.73) | 0.14(0.49) |
| 模型拟合指标 | ||||
| 边际 R2 | 0.10 | 0.16 | 0.03 | 0.27 |
| 条件 R2 | 0.77 | 0.73 | 0.69 | 0.64 |
表5 线性混合模型
| 变量 | (1) 抑郁模型 | (2) 焦虑模型 | (3) 压力模型 | (4) 孤独感模型 |
|---|---|---|---|---|
| 截距 | 5.86(1.77)*** | 7.09(1.42)*** | 7.28(1.71)*** | 5.97(0.89)*** |
| 控制变量 | ||||
| 年龄 | −0.03(0.07) | −0.10(0.06) | −0.01(0.07) | 0.04(0.03) |
| 性别(男) | 0.32(0.54) | −0.19(0.43) | −0.53(0.52) | 0.05(0.27) |
| 组别固定效应 | ||||
| F组 | 0.20(0.83) | 0.37(0.68) | −0.12(0.82) | −0.51(0.45) |
| M组 | 0.29(0.83) | −0.01(0.68) | −0.61(0.82) | −0.13(0.45) |
| R组 | 0.12(0.84) | −0.07(0.68) | 0.08(0.82) | −0.37(0.45) |
| 时间固定效应 | ||||
| T2 | −0.28(0.46) | 0.21(0.41) | −0.27(0.50) | 0.40(0.34) |
| T3 | 0.12(0.48) | −0.18(0.43) | −0.45(0.53) | 0.23(0.35) |
| 组别 × 时间交互效应 | ||||
| F组 × T2 | −2.66(0.63)*** | −3.51(0.57)*** | −0.59(0.69) | −3.47(0.47)*** |
| M组 × T2 | −3.25(0.63)*** | −3.28(0.57)*** | −0.46(0.69) | −3.85(0.47)*** |
| R组 × T2 | −2.48(0.63)*** | −2.75(0.57)*** | −2.07(0.69)** | −1.83(0.47)*** |
| F组 × T3 | −0.24(0.67) | −2.84(0.60)*** | −0.33(0.73) | −0.49(0.49) |
| M组 × T3 | −0.47(0.67) | −2.55(0.61)*** | −0.17(0.73) | −0.51(0.50) |
| R组 × T3 | 0.41(0.66) | −2.23(0.60)*** | −0.30(0.73) | 0.14(0.49) |
| 模型拟合指标 | ||||
| 边际 R2 | 0.10 | 0.16 | 0.03 | 0.27 |
| 条件 R2 | 0.77 | 0.73 | 0.69 | 0.64 |
| 变量 | 分组 | T1→T2 | 置信区间 | T1→T3 | 置信区间 |
|---|---|---|---|---|---|
| 抑郁 | C组 | 0.28(0.46) | [−0.80, 1.35] | −0.12(0.48) | [−1.25, 1.01] |
| F组 | 2.93(0.43)*** | [1.91, 3.95] | 0.11(0.46) | [−0.97, 1.20] | |
| M组 | 3.53(0.43)*** | [2.51, 4.54] | 0.35(0.46) | [−0.74, 1.44] | |
| R组 | 2.76(0.43)*** | [1.73, 3.78] | −0.53(0.46) | [−1.61, 0.55] | |
| 焦虑 | C组 | −0.21(0.41) | [−1.18, 0.77] | 0.18(0.44) | [−0.85, 1.20] |
| F组 | 3.30(0.39)*** | [2.37, 4.23] | 3.02(0.42)*** | [2.03, 4.01] | |
| M组 | 3.07(0.39)*** | [2.15, 3.99] | 2.73(0.42)*** | [1.73, 3.72] | |
| R组 | 2.54(0.39)*** | [1.62, 3.47] | 2.40(0.42)*** | [1.42, 3.38] | |
| 压力 | C组 | 0.27(0.50) | [−0.90, 1.45] | 0.45(0.52) | [−0.79, 1.68] |
| F组 | 0.86(0.48) | [−0.26, 1.98] | 0.78(0.51) | [−0.41, 1.96] | |
| M组 | 0.73(0.47) | [−0.38, 1.84] | 0.61(0.51) | [−0.59, 1.81] | |
| R组 | 2.35(0.48)*** | [1.23, 3.47] | 0.74(0.50) | [−0.44, 1.92] | |
| 孤独感 | C组 | −0.40(0.34) | [−1.20, 0.40] | −0.23(0.36) | [−1.07, 0.60] |
| F组 | 3.07(0.32)*** | [2.31, 3.83] | 0.25(0.34) | [−0.55, 1.06] | |
| M组 | 3.45(0.32)*** | [2.69, 4.20] | 0.28(0.35) | [−0.54, 1.09] | |
| R组 | 1.43(0.32)*** | [0.67, 2.20] | −0.38(0.34) | [−1.18, 0.43] |
表6 简单效应分析
| 变量 | 分组 | T1→T2 | 置信区间 | T1→T3 | 置信区间 |
|---|---|---|---|---|---|
| 抑郁 | C组 | 0.28(0.46) | [−0.80, 1.35] | −0.12(0.48) | [−1.25, 1.01] |
| F组 | 2.93(0.43)*** | [1.91, 3.95] | 0.11(0.46) | [−0.97, 1.20] | |
| M组 | 3.53(0.43)*** | [2.51, 4.54] | 0.35(0.46) | [−0.74, 1.44] | |
| R组 | 2.76(0.43)*** | [1.73, 3.78] | −0.53(0.46) | [−1.61, 0.55] | |
| 焦虑 | C组 | −0.21(0.41) | [−1.18, 0.77] | 0.18(0.44) | [−0.85, 1.20] |
| F组 | 3.30(0.39)*** | [2.37, 4.23] | 3.02(0.42)*** | [2.03, 4.01] | |
| M组 | 3.07(0.39)*** | [2.15, 3.99] | 2.73(0.42)*** | [1.73, 3.72] | |
| R组 | 2.54(0.39)*** | [1.62, 3.47] | 2.40(0.42)*** | [1.42, 3.38] | |
| 压力 | C组 | 0.27(0.50) | [−0.90, 1.45] | 0.45(0.52) | [−0.79, 1.68] |
| F组 | 0.86(0.48) | [−0.26, 1.98] | 0.78(0.51) | [−0.41, 1.96] | |
| M组 | 0.73(0.47) | [−0.38, 1.84] | 0.61(0.51) | [−0.59, 1.81] | |
| R组 | 2.35(0.48)*** | [1.23, 3.47] | 0.74(0.50) | [−0.44, 1.92] | |
| 孤独感 | C组 | −0.40(0.34) | [−1.20, 0.40] | −0.23(0.36) | [−1.07, 0.60] |
| F组 | 3.07(0.32)*** | [2.31, 3.83] | 0.25(0.34) | [−0.55, 1.06] | |
| M组 | 3.45(0.32)*** | [2.69, 4.20] | 0.28(0.35) | [−0.54, 1.09] | |
| R组 | 1.43(0.32)*** | [0.67, 2.20] | −0.38(0.34) | [−1.18, 0.43] |
图4 各组在不同时间点的心理健康指标变化趋势 注:图中数据点表示各组在不同时间点的估计边际均值, 误差线表示95%置信区间。所有模型均控制了年龄和性别。C组 = 对照组; F组 = 拟人化女性特征机器人组; M组 = 拟人化男性特征机器人组; R组 = 非拟人化机器人组。T1 = 前测调查; T2 = 后测调查; T3 = 随访调查。
| [1] | Alazraki, L., Ghachem, A., Polydorou, N., Khosmood, F., & Edalat, A. (2021, December 13-15). An empathetic AI coach for self-attachment therapy. 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI 2021), Atlanta, GA, United States. https://ieeexplore.ieee.org/abstract/document/9750315 |
| [2] | Baldazzi, T., Bellomarini, L., Ceri, S., Colombo, A., Gentili, A., & Sallinger, E. (2023). Fine-tuning large enterprise language models via ontological reasoning. ArXiv. https://doi.org/10.48550/arXiv.2306.10723 |
| [3] | Bao, H. -W. -S. (2024). BruceR: Broadly useful convenient and efficient R functions. https://doi.org/10.32614/CRAN.package.bruceR |
| [4] | Barish, G., Marlotte, L., Drayton, M., Mogil, C., & Lester, P. (2023,, August 3-5). Automatically enriching content for a behavioral health learning management system: A first look. The 9th World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2023), London, United Kingdom. https://doi.org/10.11159/cist23.125 |
| [5] | Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01 |
| [6] | Beck, A., LeBlanc, J. C., Morissette, K., Hamel, C., Skidmore, B., Colquhoun, H., … Stevens, A. (2021). Screening for depression in children and adolescents: A protocol for a systematic review update. Systematic Reviews, 10(1), 24. |
| [7] | Binz, M., & Schulz, E. (2022). Using cognitive psychology to understand GPT-3. Proceedings of the National Academy of Sciences of the United States of America, 120(6), Article e2218523120. https://doi.org/10.1073/pnas.2218523120 |
| [8] |
Breit, M., Scherrer, V., Tucker-Drob, E. M., & Preckel, F. (2024). The stability of cognitive abilities: A meta-analytic review of longitudinal studies. Psychological Bulletin, 150(4), 399-439. https://doi.org/10.1037/bul0000425
doi: 10.1037/bul0000425 URL pmid: 38330347 |
| [9] | Bruckner, T., Scheffler, R., Shen, G., Yoon, J., Chisholm, D., Morris, J., Fulton, B. D., Poz, M. D. D., & Saxena, S. (2011). The mental health workforce gap in low- and middle-income countries: A needs-based approach. Bulletin of the World Health Organization, 89(1), 184-194. https://doi.org/10.2471/BLT.10.082784 |
| [10] |
Cacioppo, S., Grippo, A. J., London, S., Goossens, L., & Cacioppo, J. T. (2015). Loneliness: Clinical import and interventions. Perspectives on Psychological Science, 10(2), 238-249. https://doi.org/10.1177/1745691615570616
doi: 10.1177/1745691615570616 URL pmid: 25866548 |
| [11] |
Castonguay, L. G., Eubanks, C. F., Goldfried, M. R., Muran, J. C., & Lutz, W. (2015). Research on psychotherapy integration: Building on the past, looking to the future. Psychotherapy Research, 25(3), 365-382. https://doi.org/10.1080/10503307.2015.1014010
doi: 10.1080/10503307.2015.1014010 URL pmid: 25800531 |
| [12] |
Cavanagh, J. F., & Allen, J. J. B. (2008). Multiple aspects of the stress response under social evaluative threat: An electrophysiological investigation. Psychoneuroendocrinology, 33(1), 41-53. https://doi.org/10.1016/j.psyneuen.2007.09.007
URL pmid: 17964737 |
| [13] | Cerf, V. G. (2023). Large language models. Communications of the ACM, 66(8), Article 7. https://doi.org/10.1145/3606337 |
| [14] | Chan, C., & Li, F. (2023). Developing a natural language- based AI-chatbot for social work training: An illustrative case study. China Journal of Social Work, 16(2), 121-136. https://doi.org/10.1080/17525098.2023.2176901 |
| [15] | Chen, Y., Xing, X., Lin, J., Zheng, H., Wang, Z., Liu, Q., & Xu, X. (2023, December 6-10). SoulChat: Improving llms’ empathy, listening, and comfort abilities through fine- tuning with multi-turn empathy conversations. Findings of the Association for Computational Linguistics: EMNLP 2023, Sentosa, Singapore. https://doi.org/10.18653/v1/2023.findings-emnlp.83 |
| [16] | Chiang, W. -L., Zheng, L., Sheng, Y., Angelopoulos, A. N., Li, T., Li, D., … Stoica, I. (2024). Chatbot arena: An open platform for evaluating llms by human preference. ArXiv. https://doi.org/10.48550/arXiv.2403.04132 |
| [17] | Craske, M. G., Hermans, D., & Vervliet, B. (2018). State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1742), Article 20170025. https://doi.org/10.1098/rstb.2017.0025 |
| [18] |
Craske, M. G., Meuret, A. E., Ritz, T., Treanor, M., Dour, H., & Rosenfield, D. (2019). Positive affect treatment for depression and anxiety: a randomized clinical trial for a core feature of anhedonia. Journal of Consulting and Clinical Psychology, 87(5), 457-471. https://doi.org/10.1037/ccp0000396
doi: 10.1037/ccp0000396 URL pmid: 30998048 |
| [19] |
Cuijpers, P., van Straten, A., Andersson, G., & van Oppen, P. (2008). Psychotherapy for depression in adults: A meta-analysis of comparative outcome studies. Journal of Consulting and Clinical Psychology, 76(6), 909-922. https://doi.org/10.1037/a0013075
doi: 10.1037/a0013075 URL pmid: 19045960 |
| [20] | De Oliveira, C., Saka, M., Bone, L., & Jacobs, R. (2023). The role of mental health on workplace productivity: A critical review of the literature. Applied Health Economics and Health Policy, 21(2), 167-193. https://doi.org/10.1007/s40258-022-00761-w |
| [21] |
Dickerson, S. S., Gruenewald, T. L., & Kemeny, M. E. (2004). When the social self is threatened: Shame, physiology, and health. Journal of Personality, 72(6), 1191-1216. https://doi.org/10.1111/j.1467-6494.2004.00295.x
doi: 10.1111/j.1467-6494.2004.00295.x URL pmid: 15509281 |
| [22] | Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., & Sarris, J. (2017). The efficacy of smartphone-based mental health interventions for depressive symptoms: A meta-analysis of randomized controlled trials. World Psychiatry, 16(3), 287-298. https://doi.org/10.1002/wps.20472 |
| [23] |
Folkman, S., Lazarus, R. S., Dunkel-Schetter, C., DeLongis, A., & Gruen, R. J. (1986). Dynamics of a stressful encounter: Cognitive appraisal, coping, and encounter outcomes. Journal of Personality and Social Psychology, 50(5), 992-1003. https://doi.org/10.1037/0022-3514.50.5.992
doi: 10.1037//0022-3514.50.5.992 URL pmid: 3712234 |
| [24] | Fox, J., & Weisberg, S. (2019). An R companion to applied regression (3 ed.). Sage. https://www.john-fox.ca/Companion/ |
| [25] | Giles, D. C. (2002). Parasocial interaction: A review of the literature and a model for future research. Media Psychology, 4(3), 279-305. https://doi.org/10.1207/S1532785XMEP0403_04 |
| [26] | Golden, A., & Aboujaoude, E. (2024). Describing the framework for AI tool assessment in mental health and applying it to a generative AI obsessive-compulsive disorder platform: Tutorial. JMIR Formative Research, 8(1), Article e62963. https://doi.org/10.2196/62963 |
| [27] | Gong, Y., Xie, X., Xu, R., & Luo, Y. (2010). Psychometric properties of the chinese versions of dass 21 in Chinese college students. Chinese Journal of Clinical Psychology, 18(4), 443-446. https://doi.org/10.16128/j.cnki.1005-3611.2010.04.020 |
| [龚栩, 谢熹瑶, 徐蕊, 罗跃嘉. (2010). 抑郁-焦虑-压力量表简体中文版(DASS-21) 在中国大学生中的测试报告. 中国临床心理学杂志, 18(4), 443-446. https://doi.org/10.16128/j.cnki.1005-3611.2010.04.020] | |
| [28] | Green, P., & MacLeod, C. J. (2016). SIMR: An R package for power analysis of generalized linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493-498. https://doi.org/10.1111/2041-210X.12504 |
| [29] |
Hardy, G., Woods, D., & Wall, T. (2003). The impact of psychological distress on absence from work. Journal of Applied Psychology, 88(2), 306-314. https://doi.org/10.1037/0021-9010.88.2.306
URL pmid: 12731714 |
| [30] | Hassanein, K., & Head, M. (2007). Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. International Journal of Human-Computer Studies, 65(8), 689-708. https://doi.org/10.1016/j.ijhcs.2006.11.018 |
| [31] |
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174-180. https://doi.org/10.1016/j.tics.2012.01.006
doi: 10.1016/j.tics.2012.01.006 URL pmid: 22336729 |
| [32] | Hofstede, G., Neuijen, B., Ohayv, D. D., & Sanders, G. (1990). Measuring organizational cultures: A qualitative and quantitative study across twenty cases. Administrative Science Quarterly, 35(2), 286-316. https://doi.org/10.2307/2393392 |
| [33] | Horton, D., & Wohl, R. R. (1956). Mass communication and para-social interaction. Psychiatry, 19(3), 215-229. https://doi.org/10.1080/00332747.1956.11023049 |
| [34] | Huang, F., Ding, H., Liu, Z., Wu, P., Zhu, M., Li, A., & Zhu, T. (2020). How fear and collectivism influence public's preventive intention towards COVID-19 infection: A study based on big data from the social media. BMC Public Health, 20(1), Article 1707. https://doi.org/10.1186/s12889-020-09674-6 |
| [35] | Huang, F., Li, S., Ding, H., Han, N., & Zhu, T. (2022). Does more moral equal less corruption? The different mediation of moral foundations between economic growth and corruption in China. Current Psychology, 42(30), 26125-26137. https://doi.org/10.1007/s12144-022-03735-2 |
| [36] | Huang, F., Sun, X., Mei, A., Wang, Y., Ding, H., & Zhu, T. (2025). LLM plus machine learning outperform expert rating to predict life satisfaction from self-statement text. IEEE Transactions on Computational Social Systems, 12(3), 1092-1099. https://doi.org/10.1109/tcss.2024.3475413 |
| [37] | Hughes, M. E., Waite, L. J., Hawkley, L. C., & Cacioppo, J. T. (2004). A short scale for measuring loneliness in large surveys: Results from two population-based studies. Social Psychology Quarterly, 26(6), 655-672. https://doi.org/10.1177/0164027504268574 |
| [38] | Hwang, K. -K. (1987). Face and Favor: The Chinese Power Game. American Journal of Sociology, 92(4), 944-974. https://doi.org/10.1086/228588 |
| [39] |
Ji, L. -J., Peng, K., & Nisbett, R. E. (2000). Culture, control, and perception of relationships in the environment. Journal of Personality and Social Psychology, 78(5), 943-955. https://doi.org/10.1037/0022-3514.78.5.943
doi: 10.1037//0022-3514.78.5.943 URL pmid: 10821200 |
| [40] | Ji, S., Zhang, T., Yang, K., Ananiadou, S., & Cambria, E. (2023). Rethinking large language models in mental health applications. ArXiv. https://doi.org/10.48550/arXiv.2311.11267 |
| [41] | Jiang, Q., Zhang, Y., & Pian, W. (2022). Chatbot as an emergency exist: Mediated empathy for resilience via human-AI interaction during the COVID-19 pandemic. Information Processing & Management, 59(6), Article 103074. https://doi.org/10.1016/j.ipm.2022.103074 |
| [42] | Jiang, Q., Zhao, F., Xie, X., Wang, X., Nie, J., Lei, L., & Wang, P. (2022). Difficulties in Emotion Regulation and Cyberbullying Among Chinese Adolescents: A Mediation Model of Loneliness and Depression [Article]. Journal of Interpersonal Violence, 37(1), 1105-1124. https://doi.org/10.1177/0886260520917517 |
| [43] | Kalyan, K. S. (2023). A survey of GPT-3 family large language models including ChatGPT and GPT-4. Natural Language Processing Journal, 6, 100048. https://doi.org/10.1016/j.nlp.2023.100048 |
| [44] | Karani, A., Deshpande, R., Jayswal, M., & Panda, R. (2021). Work-life balance and psychological distress: A structural equation modeling approach. Human Systems Management, 41(1), 1-15. https://doi.org/10.3233/HSM-201145 |
| [45] |
Karyotaki, E., Efthimiou, O., Miguel, C., Maas genannt Bermpohl, F., Furukawa, T. A., Cuijpers, P., & for Depression Collaboration, I. P. D. M.-A. (2021). Internet-based cognitive behavioral therapy for depression: A systematic review and individual patient data network meta-analysis. Jama Psychiatry, 78(4), 361-371. https://doi.org/10.1001/jamapsychiatry.2020.4364
doi: 10.1001/jamapsychiatry.2020.4364 URL pmid: 33471111 |
| [46] | Kojima, T., Gu, S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022, December 9). Large language models are zero-shot reasoners. Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans, LA, United States. https://proceedings.neurips.cc/paper_files/paper/2022/hash/8bb0d291acd4acf06ef112099c16f326-Abstract-Conference.html |
| [47] | Konya-Baumbach, E., Biller, M., & von Janda, S. (2022). Someone out there? A study on the social presence of anthropomorphized chatbots. Computers in Human Behavior, 139(1), Article 107513. https://doi.org/10.1016/j.chb.2022.107513 |
| [48] | Lee, J., Daeho, L., & Lee, J. -G. (2024). Influence of rapport and social presence with an AI psychotherapy chatbot on users’ self-disclosure. International Journal of Human- computer Interaction, 40(7), 1620-1631. https://doi.org/10.1080/10447318.2022.2146227 |
| [49] | Liu, X., Jiao, G., Zhou, F., Kendrick, K., Yao, D., Xiang, S., … Becker, B. (2024). A neural signature for the subjective experience of threat anticipation under uncertainty. Nature Communications, 15(1), Article 1544. https://doi.org/10.1101/2023.09.20.558716 |
| [50] |
Lovibond, P. F., & Lovibond, S. H. (1995). The structure of negative emotional states: Comparison of the depression anxiety stress scales (DASS) with the beck depression and anxiety inventories. Behaviour Research and Therapy, 33(3), 335-343. https://doi.org/10.1016/0005-7967(94)00075-U
doi: 10.1016/0005-7967(94)00075-u URL pmid: 7726811 |
| [51] | Lozano, A., Fleming, S. L., Chiang, C. -C., & Shah, N. (2023,, January 3-7). Clinfo.ai: An open source retrieval augmented large language model system for answering medical questions using scientific literature. Pacific Symposium on Biocomputing 2024, Kohala Coast, HI, United States. https://doi.org/10.1142/9789811286421_0002 |
| [52] | Lu, J., Xu, X., Huang, Y., Li, T., Ma, C., Xu, G.,... Zhang, N. (2021). Prevalence of depressive disorders and treatment in China: A cross-sectional epidemiological study. The Lancet Psychiatry, 8(11), 981-990. https://doi.org/10.1016/S2215-0366(21)00251-0 |
| [53] | Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., & Zhang, Y. (2025). An empirical study of catastrophic forgetting in large language models during continual fine-tuning. ArXiv. https://doi.org/10.48550/arXiv.2308.08747 |
| [54] | Ma, Z., Mei, Y., & Su, Z. (2024, November 11-15). Understanding the benefits and challenges of using large language model-based conversational agents for mental well-being support. AMIA 2023 Annual Symposium, New Orleans, LA, United States. https://pubmed.ncbi.nlm.nih.gov/38222348 |
| [55] | Ma, Z., Sansom, J., Peng, R., & Chai, J. (2023). Towards a holistic landscape of situated theory of mind in large language models. ArXiv. https://doi.org/10.48550/arXiv.2310.19619 |
| [56] | Martinengo, L., Lum, E., & Car, J. (2022). Evaluation of chatbot-delivered interventions for self-management of depression: Content analysis. Journal of Affective Disorders, 319(1), 598-607. https://doi.org/10.1016/j.jad.2022.09.028 |
| [57] | McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI Magazine, 27(4), 12-14. https://doi.org/10.1609/aimag.v27i4.1904 |
| [58] | Mitra, C., Huang, B., Darrell, T., & Herzig, R. (2024, June 17-21). Compositional chain-of-thought prompting for large multimodal models. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024), Seattle, WA, United States. https://arxiv.org/abs/2311.17076 |
| [59] | Morris, M. W., & Peng, K. (1994). Culture and cause: American and chinese attributions for social and physical events. Journal of Personality and Social Psychology, 67(6), 949-971. https://doi.org/10.1037/0022-3514.67.6.949 |
| [60] | Munnukka, J., Talvitie-Lamberg, K., & Maity, D. (2022). Anthropomorphism and social presence in human-virtual service assistant interactions: The role of dialog length and attitudes. Computers in Human Behavior, 135(1), Article 107343. https://doi.org/10.1016/j.chb.2022.107343 |
| [61] | National Health Commission of the People's Republic of China. (2019). Healthy China Action (2019—2030). https://www.nhc.gov.cn/guihuaxxs/c100133/201907/2a6ed52f1c264203b5351bdbbadd2da8.shtml |
| [中华人民共和国国家卫生健康委员会. (2019). 健康中国行动(2019—2030年). https://www.nhc.gov.cn/guihuaxxs/c100133/201907/2a6ed52f1c264203b5351bdbbadd2da8.shtml] | |
| [62] | Noor, N., Hill, S., & Troshani, I. (2021). Artificial intelligence service agents: Role of parasocial relationship. Journal of Computer Information Systems, 62(5), 1009-1023. https://doi.org/10.1080/08874417.2021.1962213 |
| [63] | Norcross, J. C., & Goldfried, M. R. (2019). Handbook of psychotherapy integration (Third ed.). New York: Oxford University Press. https://doi.org/10.1093/med-psych/9780190690465.001.0001 |
| [64] | Noukhovitch, M., Lavoie, S., Strub, F., & Courville, A. C. (2023, December 10-16). Language model alignment with elastic reset. Advances in Neural Information Processing Systems 2023, New Orleans, LA, United States. https://proceedings.neurips.cc/paper_files/paper/2023/hash/0a980183c520446f6b8afb6fa2a2c70e-Abstract-Conference.html |
| [65] | OpenAi, Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,... Zoph, B.(2024). GPT-4 technical report. ArXiv. https://doi.org/10.48550/arXiv.2303.08774 |
| [66] |
Păsărelu, C. R., Andersson, G., Bergman Nordgren, L., & Dobrean, A. (2017). Internet-delivered transdiagnostic and tailored cognitive behavioral therapy for anxiety and depression: A systematic review and meta-analysis of randomized controlled trials. Cognitive Behaviour Therapy, 46(1), 1-28. https://doi.org/10.1080/16506073.2016.1231219
URL pmid: 27712544 |
| [67] | Patel, V., Xiao, S., Chen, H., Hanna, F., Jotheeswaran, A., Luo, D., … Saxena, S. (2016). The magnitude of and health system responses to the mental health treatment gap in adults in India and China. The Lancet, 388(10063), 3074-3084. https://doi.org/10.1016/S0140-6736(16)00160-4 |
| [68] | Peng, K., Nisbett, R. E., & Wong, N. Y. C. (1997). Validity problems comparing values across cultures and possible solutions. Psychological Methods, 2(4), 329-344. https://doi.org/10.1037/1082-989X.2.4.329 |
| [69] | Perlman, D., & Peplau, L. A. (1981). Toward a social psychology of loneliness. Personal Relationships, 3, 31-56. |
| [70] |
Polinghorne, D. E., & Vernon, R. (2000). The psychotherapy relationship: Theory, research, and practice. Psychotherapy Research, 10(4), 494-497. https://doi.org/10.1080/10503307.2000.104.9620561
doi: 10.1080/10503307.2000.104.9620561 URL pmid: 21756120 |
| [71] | R, Core Team. (2025). R: A language and environment for statistical computing. https://cran.rstudio.com/manuals.html |
| [72] | Rafferty, A., & Minbashian, A. (2018). Cognitive beliefs and positive emotions about change: Relationships with employee change readiness and change-supportive behaviors. Human Relations, 72(10), 1623-1650. https://doi.org/10.1177/0018726718809154 |
| [73] | Sajja, R., Sermet, Y., Cwiertny, D., & Demir, I. (2023). Platform-independent and curriculum-oriented intelligent assistant for higher education. International Journal of Educational Technology in Higher Education, 20(1), Article 42. https://doi.org/10.1186/s41239-023-00412-7 |
| [74] | Saxena, S., Thornicroft, G., Knapp, M., & Whiteford, H. (2007). Resources for mental health: Scarcity, inequity, and inefficiency. The Lancet, 370(9590), 878-889. https://doi.org/10.1016/S0140-6736(07)61239-2 |
| [75] | Sezgin, E., Chekeni, F., Lee, J., & Keim, S. (2023). Clinical accuracy of large language models and Google search responses to postpartum depression questions: Cross- sectional study. Journal of Medical Internet Research, 25(1), Article e49240. https://doi.org/10.2196/49240 |
| [76] | Singla, D. R., Raviola, G., & Patel, V. (2018). Scaling up psychological treatments for common mental disorders: A call to action. World Psychiatry, 17(2), 226-227. https://doi.org/10.1002/wps.20532 |
| [77] |
Snippe, E., Elmer, T., Ceulemans, E., Smit, A., Lutz, W., & Helmich, M. (2024). The temporal order of emotional, cognitive, and behavioral gains in daily life during treatment of depression. Journal of Consulting and Clinical Psychology, 92(8), 466-478. https://doi.org/10.1037/ccp0000890
doi: 10.1037/ccp0000890 URL pmid: 38780574 |
| [78] | Stever, G. S. (2017). Parasocial theory: Concepts and measures. In The International Encyclopedia of Media Effects (pp. 1-12). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118783764.wbieme0069 |
| [79] | Sun, M., Zhou, H., Li, Y., Wang, J., Yang, W., Gong, Y., … Zhou, L. (2024). Professional characteristics, numbers, distribution and training of China's mental health workforce from 2000 to 2020: A scoping review. The Lancet Regional Health - Western Pacific, 45(1), Article 100992. https://doi.org/10.1016/j.lanwpc.2023.100992 |
| [80] | Toader, D., Boca, G., Toader, R., Macelaru, M., Toader, C., Ighian, D., & Rădulescu, A. (2019). The effect of social presence and chatbot errors on trust. Sustainability, 12(1), Article 256. https://doi.org/10.3390/su12010256 |
| [81] | Tukachinsky, R., Walter, N., & Saucier, C. J. (2020). Antecedents and effects of parasocial relationships: A meta-analysis. Journal of Communication, 70(6), 868-894. https://doi.org/10.1093/joc/jqaa034 |
| [82] | Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017, December 4-9). Attention is all you need. Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, United States. https://proceedings.neurips.cc/paper_files/paper/2017 |
| [83] | Wampold, B. E. (2015). How important are the common factors in psychotherapy? An update. World Psychiatry, 14(3), 270-277. https://doi.org/10.1002/wps.20238 |
| [84] | Webb, T., Holyoak, K. J., & Lu, H. (2023). Emergent analogical reasoning in large language models. Nature Human Behaviour, 7(9), 1526-1541. https://doi.org/10.1038/s41562-023-01659-w |
| [85] | Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., … Zhou, D. (2022, November 28-December 9). Chain- of-thought prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans, LA, United States. https://proceedings.neurips.cc/paper_files/paper/2022 |
| [86] | Wu, T., Terry, M., & Cai, C. J. (2022, April 30-May 5). AI chains: Transparent and controllable human-AI interaction by chaining large language model prompts. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, United States. https://dl.acm.org/doi/10.1145/3491102.3517582 |
| [87] | Xue, X., Zhang, D., Sun, C., Shi, Y., Wang, R., Tan, T., … Hu, M. (2024). Xiaoqing: A Q & A model for glaucoma based on LLMs. Computers in Biology and Medicine, 174(1), Article 108399. https://doi.org/10.1016/j.compbiomed.2024.108399 |
| [88] | You, Y., Tsai, C. -H., Li, Y., Ma, F., Heron, C., & Gui, X. (2023). Beyond self-diagnosis: How a chatbot-based symptom checker should respond. ACM Transactions on Computer-Human Interaction, 30(4), Article 64. https://doi.org/10.1145/3589959 |
| [89] | Yu, S., Kowitt, S., Fisher, E., & Li, G. (2018). Mental health in China: Stigma, family obligations, and the potential of peer support. Community Mental Health Journal, 54(1), 757-764. https://doi.org/10.1007/s10597-017-0182-z |
| [90] |
Zhang, Y., Huang, F., Mo, L., Liu, X., & Zhu, T. (2025). Suicidal ideation data augmentation and recognition technology based on large language models. Acta Psychologica Sinica, 57(6), 987-1000. https://doi.org/10.3724/SP.J.1041.2025.0987
doi: 10.3724/SP.J.1041.2025.0987 URL |
|
[章彦博, 黄峰, 莫柳铃, 刘晓倩, 朱廷劭. (2025). 基于大语言模型的自杀意念文本数据增强与识别技术. 心理学报, 57(6), 987-1000. https://doi.org/10.3724/SP.J.1041.2025.0987]
doi: 10.3724/SP.J.1041.2025.0987 URL |
| [1] | 胡小勇, 李穆峰, 李悦, 李凯, 喻丰. 人工智能决策的道德缺失效应及其机制与应对策略[J]. 心理学报, 2026, 58(1): 74-95. |
| [2] | 焦丽颖, 李昌锦, 陈圳, 许恒彬, 许燕. 当AI“具有”人格:善恶人格角色对大语言模型道德判断的影响[J]. 心理学报, 2025, 57(6): 929-946. |
| [3] | 高承海, 党宝宝, 王冰洁, 吴胜涛. 人工智能的语言优势和不足:基于大语言模型与真实学生语文能力的比较[J]. 心理学报, 2025, 57(6): 947-966. |
| [4] | 章彦博, 黄峰, 莫柳铃, 刘晓倩, 朱廷劭. 基于大语言模型的自杀意念文本数据增强与识别技术[J]. 心理学报, 2025, 57(6): 987-1000. |
| [5] | 王国轩, 龙立荣, 李绍龙, 孙芳, 望家晴, 黄世英子. 负面绩效反馈下员工绩效改进动机的人机比较[J]. 心理学报, 2025, 57(2): 298-314. |
| [6] | 吴胜涛, 彭凯平. 智能时代的人类优势与心理变革(代序)[J]. 心理学报, 2025, 57(11): 1879-1884. |
| [7] | 周详, 白博仁, 张婧婧, 刘善柔. 和而不同:生成式人工智能凸显下人类的社会创造策略[J]. 心理学报, 2025, 57(11): 1901-1913. |
| [8] | 李斌, 芮建禧, 俞炜楠, 李爱梅, 叶茂林. 当设计遇见AI:人工智能设计产品对消费者响应模式的影响[J]. 心理学报, 2025, 57(11): 1914-1932. |
| [9] | 由姗姗, 齐玥, 陈俊廷, 骆磊, 张侃. 人与AI对智能家居机器人的安全信任及其影响因素[J]. 心理学报, 2025, 57(11): 1951-1972. |
| [10] | 魏心妮, 喻丰, 彭凯平. 低可持续性降低人工智能的接受意愿[J]. 心理学报, 2025, 57(11): 1973-1987. |
| [11] | 周子森, 黄琪, 谭泽宏, 刘睿, 曹子亨, 母芳蔓, 樊亚春, 秦绍正. 多模态大语言模型动态社会互动情景下的情感能力测评[J]. 心理学报, 2025, 57(11): 1988-2000. |
| [12] | 武月婷, 王博, 包寒吴霜, 李若男, 吴怡, 王嘉琪, 程诚, 杨丽. 人类对大语言模型的热情和能力感知[J]. 心理学报, 2025, 57(11): 2043-2059. |
| [13] | 袁航, 罗思阳. 研究社会文化变迁的新视角——表征相似性分析:以老年人心理健康为例[J]. 心理学报, 2024, 56(7): 938-953. |
| [14] | 黄顺森, 来枭雄, 张彩, 赵心媚, 代欣然, 祁梦迪, 王欢蕾, 王文荣, 王耘. 青少年手机压力与心理健康的关系:基于多元宇宙样分析和密集追踪方法[J]. 心理学报, 2024, 56(6): 745-758. |
| [15] | 王晨, 陈为聪, 黄亮, 侯苏豫, 王益文. 机器人遵从伦理促进人机信任?决策类型反转效应与人机投射假说[J]. 心理学报, 2024, 56(2): 194-209. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||