Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (10): 1775-1784.doi: 10.3724/SP.J.1042.2023.01775
• Conceptual Framework • Next Articles
Received:
2023-03-06
Online:
2023-10-15
Published:
2023-07-25
CLC Number:
LIU Yong, CHEN Hong. Neural mechanism of food-related working memory in individuals with overweight/obesity and related intervention[J]. Advances in Psychological Science, 2023, 31(10): 1775-1784.
[1] | 库逸轩. (2019). 工作记忆的认知神经机制. 生理学报, 71(1), 173-185. |
[2] | 刘豫, 陈红, 李书慧, 罗念. (2017). 在线抑制控制训练对失败的限制性饮食者不健康食物选择的改善. 心理学报, 49(2), 219. |
[3] |
Allom, V., & Mullan, B. (2014). Individual differences in executive function predict distinct eating behaviours. Appetite, 80, 123-130. https://doi.org/10.1016/j.appet.2014.05.007
doi: 10.1016/j.appet.2014.05.007 URL pmid: 24845785 |
[4] |
Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553-573. https://doi.org/10.1037/0033-2909.130.4.553
doi: 10.1037/0033-2909.130.4.553 URL pmid: 15250813 |
[5] |
Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: An fmri study. Neuroimage, 52(4), 1696-1703. https://doi.org/10.1016/j.neuroimage.2010.05.059
doi: 10.1016/j.neuroimage.2010.05.059 URL pmid: 20510377 |
[6] |
Bonnefond, M., & Jensen, O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Current Biology, 22(20), 1969-1974. https://doi.org/10.1016/j.cub.2012.08.029
doi: 10.1016/j.cub.2012.08.029 URL pmid: 23041197 |
[7] |
Bruce, A. S., Lepping, R. J., Bruce, J. M., Cherry, J. B. C., Martin, L. E., Davis, A. M., ... Savage, C. R. (2013). Brain responses to food logos in obese and healthy weight children. The Journal of Pediatrics, 162(4), 759-764. https://doi.org/10.1016/j.jpeds.2012.10.003
doi: 10.1016/j.jpeds.2012.10.003 URL pmid: 23211928 |
[8] |
Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608. https://doi.org/10.1038/386604a0
doi: 10.1038/386604a0 URL |
[9] |
Delgado-Rodríguez, R., Versace, F., Hernández-Rivero, I., Guerra, P., Fernández-Santaella, M. C., & Miccoli, L. (2022). Food addiction symptoms are related to neuroaffective responses to preferred binge food and erotic cues. Appetite, 168, 105687. https://doi.org/10.1016/j.appet.2021.105687
doi: 10.1016/j.appet.2021.105687 URL |
[10] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
doi: 10.1146/annurev-psych-113011-143750 URL pmid: 23020641 |
[11] |
Dohle, S., Diel, K., & Hofmann, W. (2018). Executive functions and the self-regulation of eating behavior: A review. Appetite, 124, 4-9. https://doi.org/10.1016/j.appet.2017.05.041
doi: S0195-6663(17)30160-5 URL pmid: 28551113 |
[12] |
Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on Psychological Science, 13(2), 190-193. https://doi.org/10.1177/1745691617720478
doi: 10.1177/1745691617720478 URL pmid: 29592654 |
[13] |
Fu, Y., Zhou, Y., Zhou, J., Shen, M., & Chen, H. (2021). More attention with less working memory: The active inhibition of attended but outdated information. Science Advances, 7(47), eabj4985. https://doi.org/10.1126/sciadv.abj4985
doi: 10.1126/sciadv.abj4985 URL |
[14] |
Gazzaley, A., Cooney, J. W., Rissman, J., & D'esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 1298-1300. https://doi.org/10.1038/nn1543
doi: 10.1038/nn1543 URL pmid: 16158065 |
[15] |
Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution eeg mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374-385. https://doi.org/10.1093/cercor/7.4.374
URL pmid: 9177767 |
[16] |
Goldschmidt, A. B., O'Brien, S., Lavender, J. M., Pearson, C. M., Le, G. D., & Hunter, S. J. (2017). Executive functioning in a racially diverse sample of children who are overweight and at risk for eating disorders. Appetite, 124, 43-49. https://doi.org/10.1016/j.appet.2017.03.010
doi: 10.1016/j.appet.2017.03.010 URL |
[17] | Hasher, L., & Zacks, R. T. (1988). Working memory, comprehension, and aging: A review and a new view. Psychology Of Learning And Motivation, 22, 193-225. https://doi.org/10.1016/S0079-7421(08)60041-9 |
[18] |
Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W., & Schmitt, M. (2008). Working memory capacity and self-regulatory behavior: Toward an individual differences perspective on behavior determination by automatic versus controlled processes. Journal of Personality and Social Psychology, 95(4), 962-977. https://doi.org/10.1037/a0012705
doi: 10.1037/a0012705 URL pmid: 18808271 |
[19] |
Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174-180. https://doi.org/10.1016/j.tics.2012.01.006
doi: 10.1016/j.tics.2012.01.006 URL pmid: 22336729 |
[20] |
Houben, K., & Jansen, A. (2015). Chocolate equals stop. Chocolate-specific inhibition training reduces chocolate intake and go associations with chocolate. Appetite, 87, 318-323. https://doi.org/10.1016/j.appet.2015.01.005
doi: 10.1016/j.appet.2015.01.005 URL pmid: 25596041 |
[21] |
Janssen, L. K., Duif, I., van Loon, I., Wegman, J., de Vries, J. H. M., Cools, R., & Aarts, E. (2017). Loss of lateral prefrontal cortex control in food-directed attention and goal-directed food choice in obesity. Neuroimage, 146, 148-156. https://doi.org/10.1016/j.neuroimage.2016.11.015
doi: S1053-8119(16)30639-5 URL pmid: 27845255 |
[22] |
Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882. https://doi.org/10.1093/cercor/12.8.877
doi: 10.1093/cercor/12.8.877 URL pmid: 12122036 |
[23] |
Kaisari, P., Kumar, S., Hattersley, J., Dourish, C. T., Rotshtein, P., & Higgs, S. (2019). Top-down guidance of attention to food cues is enhanced in individuals with overweight/obesity and predicts change in weight at one-year follow up. International Journal of Obesity, 43(9), 1849-1858. https://doi.org/10.1038/s41366-018-0246-3
doi: 10.1038/s41366-018-0246-3 URL pmid: 30464229 |
[24] |
Killgore, W., Weber, M., Schwab, Z., Kipman, M., DelDonno, S., Webb, C., & Rauch, S. (2013). Cortico-limbic responsiveness to high-calorie food images predicts weight status among women. International Journal of Obesity, 37(11), 1435-1442. https://doi.org/10.1038/ijo.2013.26
doi: 10.1038/ijo.2013.26 URL pmid: 23459322 |
[25] |
Kong, F., Zhang, Y., & Chen, H. (2015). Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task. PLoS One, 10(7), e0133942. https://doi.org/10.1371/journal.pone.0133942
doi: 10.1371/journal.pone.0133942 URL |
[26] |
Kopell, N., Whittington, M. A., & Kramer, M. A. (2011). Neuronal assembly dynamics in the beta1 frequency range permits short-term memory. Proceedings of the National Academy of Sciences, 108(9), 3779-3784. https://doi.org/10.1073/pnas.1019676108
doi: 10.1073/pnas.1019676108 URL |
[27] |
Lamichhane, B., Westbrook, A., Cole, M. W., & Braver, T. S. (2020). Exploring brain-behavior relationships in the n-back task. Neuroimage, 212, 116683. https://doi.org/10.1016/j.neuroimage.2020.116683
doi: 10.1016/j.neuroimage.2020.116683 URL |
[28] |
Li, S., Cai, Y., Liu, J., Li, D., Feng, Z., Chen, C., & Xue, G. (2017). Dissociated roles of the parietal and frontal cortices in the scope and control of attention during visual working memory. Neuroimage, 149, 210-219. https://doi.org/10.1016/j.neuroimage.2017.01.061
doi: S1053-8119(17)30085-X URL pmid: 28131893 |
[29] |
Liu, Y., Gao, X., Zhao, J., Zhang, L., & Chen, H. (2020). Neurocognitive correlates of food-related response inhibition in overweight/obese adults. Brain Topography, 33(1), 101-111. https://doi.org/10.1007/s10548-019-00730-y
doi: 10.1007/s10548-019-00730-y URL pmid: 31564028 |
[30] |
Liu, Y., Quan, H., Song, S., Zhang, X., & Chen, H. (2019). Decreased conflict control in overweight Chinese females: Behavioral and event-related potentials evidence. Nutrients, 11(7), 1450. https://doi.org/10.3390/nu11071450
doi: 10.3390/nu11071450 URL |
[31] |
Liu, Y., Zhao, J., Zhang, X., Gao, X., & Chen, H. (2019). Overweight adults are more impulsive than normal weight adults: Evidence from erps during a chocolate-related delayed discounting task. Neuropsychologia, 133, 107181. https://doi.org/10.1016/j.neuropsychologia.2019.107181
doi: 10.1016/j.neuropsychologia.2019.107181 URL |
[32] |
Loeber, S., Grosshans, M., Korucuoglu, O., Vollmert, C., Vollstädt-klein, S., Schneider, S., ... Kiefer, F. (2012). Impairment of inhibitory control in response to food-associated cues and attentional bias of obese participants and normal-weight controls. International Journal of Obesity, 36(10), 1334-1339. http://doi.org/10.1038/ijo.2011.184
doi: 10.1038/ijo.2011.184 URL pmid: 21986703 |
[33] |
Lopez, R. B., Chen, P.-H. A., Huckins, J. F., Hofmann, W., Kelley, W. M., & Heatherton, T. F. (2017). A balance of activity in brain control and reward systems predicts self-regulatory outcomes. Social Cognitive and Affective Neuroscience, 12(5), 832-838. https://doi.org/10.1093/scan/nsx004
doi: 10.1093/scan/nsx004 URL pmid: 28158874 |
[34] |
Lopez, R. B., Hofmann, W., Wagner, D. D., Kelley, W. M., & Heatherton, T. F. (2014). Neural predictors of giving in to temptation in daily life. Psychological Science, 25(7), 1337-1344. https://doi.org/10.1177/0956797614531492
doi: 10.1177/0956797614531492 URL pmid: 24789842 |
[35] |
Lopez, R. B., Milyavskaya, M., Hofmann, W., & Heatherton, T. F. (2016). Motivational and neural correlates of self-control of eating: A combined neuroimaging and experience sampling study in dieting female college students. Appetite, 103, 192-199. https://doi.org/10.1016/j.appet.2016.03.027
doi: S0195-6663(16)30121-0 URL pmid: 27058281 |
[36] |
Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts during working memory readout suggest roles in its volitional control. Nature Communication, 9(1), 394. https://doi.org/10.1038/s41467-017-02791-8
doi: 10.1038/s41467-017-02791-8 URL |
[37] | Meng, X., Huang, D., Ao, H., Wang, X., & Gao, X. (2020). Food cue recruits increased reward processing and decreased inhibitory control processing in the obese/overweight: An activation likelihood estimation meta-analysis of fmri studies. Obesity Research & Clinical Practice, 14(2), 127-135. https://10.1016/j.orcp.2020.02.004 |
[38] |
Meule, A., Kübler, A., & Blechert, J. (2013). Time course of electrocortical food-cue responses during cognitive regulation of craving. Frontiers in Psychology, 4, 669. https://10.3389/fpsyg.2013.00669
doi: 10.3389/fpsyg.2013.00669 URL pmid: 24098290 |
[39] |
Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167-202. https://10.1146/annurev.neuro.24.1.167
doi: 10.1146/neuro.2001.24.issue-1 URL |
[40] |
Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working memory 2.0. Neuron, 100(2), 463-475. https://doi.org/10.1016/j.neuron.2018.09.023
doi: S0896-6273(18)30825-0 URL pmid: 30359609 |
[41] |
Murdaugh, D. L., Cox, J. E., Cook III, E. W., & Weller, R. E. (2012). fMRI reactivity to high-calorie food pictures predicts short-and long-term outcome in a weight-loss program. Neuroimage, 59(3), 2709-2721. https://doi.org/10.1016/j.neuroimage.2011.10.071
URL pmid: 22332246 |
[42] |
Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., ... Gakidou, E. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: A systematic analysis for the global burden of disease study 2013. The Lancet, 384(9945), 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8
doi: 10.1016/S0140-6736(14)60460-8 URL |
[43] |
Perlstein, W. M., Dixit, N. K., Carter, C. S., Noll, D. C., & Cohen, J. D. (2003). Prefrontal cortex dysfunction mediates deficits in working memory and prepotent responding in schizophrenia. Biological Psychiatry, 53(1), 25-38. https://doi.org/10.1016/S0006-3223(02)01675-X
doi: 10.1016/s0006-3223(02)01675-x URL pmid: 12513942 |
[44] |
Raghavachari, S., Kahana, M. J., Rizzuto, D. S., Caplan, J. B., Kirschen, M. P., Bourgeois, B., ... Lisman, J. E. (2001). Gating of human theta oscillations by a working memory task. Journal of Neuroscience, 21(9), 3175-3183. https://doi.org/10.1523/jneurosci.21-09-03175.2001
URL pmid: 11312302 |
[45] |
Rutters, F., Kumar, S., Higgs, S., & Humphreys, G. W. (2015). Electrophysiological evidence for enhanced representation of food stimuli in working memory. Experimental Brain Research, 233(2), 519-528. https://doi.org/10.1007/s00221-014-4132-5
doi: 10.1007/s00221-014-4132-5 URL pmid: 25354971 |
[46] |
Salazar, R., Dotson, N., Bressler, S., & Gray, C. (2012). Content-specific fronto-parietal synchronization during visual working memory. Science, 338(6110), 1097-1100. https://doi.org/10.1126/science.1224000
doi: 10.1126/science.1224000 URL pmid: 23118014 |
[47] |
Spitzer, B., Fleck, S., & Blankenburg, F. (2014). Parametric alpha-and beta-band signatures of supramodal numerosity information in human working memory. Journal of Neuroscience, 34(12), 4293-4302. https://doi.org/10.1523/jneurosci.4580-13.2014
doi: 10.1523/JNEUROSCI.4580-13.2014 URL |
[48] |
Stice, E., & Burger, K. (2019). Neural vulnerability factors for obesity. Clinical Psychology Review, 68, 38-53. https://doi.org/10.1016/j.cpr.2018.12.002
doi: S0272-7358(18)30162-4 URL pmid: 30587407 |
[49] |
Stingl, K. T., Kullmann, S., Ketterer, C., Heni, M., Häring, H.-U., Fritsche, A., & Preissl, H. (2012). Neuronal correlates of reduced memory performance in overweight subjects. NeuroImage, 60(1), 362-369. /https://doi.org/10.1016/j.neuroimage.2011.12.012
doi: 10.1016/j.neuroimage.2011.12.012 URL pmid: 22197786 |
[50] |
Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500-503. https://doi.org/10.1038/nature04171
doi: 10.1038/nature04171 URL |
[51] |
Whitelock, V., Nouwen, A., van den Akker, O., & Higgs, S. (2018). The role of working memory sub-components in food choice and dieting success. Appetite, 124, 24-32. https://doi.org/10.1016/j.appet.2017.05.043
doi: S0195-6663(17)30039-9 URL pmid: 28554850 |
[52] |
Wu, X., Nussbaum, M. A., & Madigan, M. L. (2016). Executive function and measures of fall risk among people with obesity. Perceptual And Motor Skills, 122(3), 825-839. https://doi.org/10.1177/0031512516646158
doi: 10.1177/0031512516646158 URL pmid: 27170627 |
[53] |
Yang, Y., Shields, G. S., Guo, C., & Liu, Y. (2018). Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neuroscience & Biobehavioral Reviews, 84, 225-244. https://doi.org/10.1016/j.neubiorev.2017.11.020
doi: 10.1016/j.neubiorev.2017.11.020 URL |
[54] |
Yang, Y., Shields, G. S., Wu, Q., Liu, Y., Chen, H., & Guo, C. (2019). Cognitive training on eating behaviour and weight loss: A meta-analysis and systematic review. Obesity Reviews, 20(11), 1628-1641. https://doi.org/10.1111/obr.12916
doi: 10.1111/obr.12916 URL pmid: 31353774 |
[55] |
Yau, P. L., Kang, E. H., Javier, D. C., & Convit, A. (2014). Preliminary evidence of cognitive and brain abnormalities in uncomplicated adolescent obesity. Obesity, 22(8), 1865-1871. https://doi.org/10.1002/oby.20801
doi: 10.1002/oby.20801 URL pmid: 24891029 |
[56] |
Yokum, S., Ng, J., & Stice, E. (2011). Attentional bias to food images associated with elevated weight and future weight gain: An fMRI study. Obesity, 19(9), 1775-1783. https://doi.org/10.1038/oby.2011.168
doi: 10.1038/oby.2011.168 URL pmid: 21681221 |
[57] | Zacks, T. R., & Hasher, L. (2006). Aging and long-term memory:Deficits are not inevitable. In E. Bialystok & F. I. M. Craik (Eds.), Lifespan cognition: Mechanisms of change (pp. 162-177). Oxford Academic. https://doi.org/ 10.1093/acprof:oso/9780195169539.003.0011 |
[58] |
Zhao, J., Long, Z., Li, Y., Qin, Y., & Liu, Y. (2022). Alteration of regional heterogeneity and functional connectivity for obese undergraduates: Evidence from resting-state fMRI. Brain Imaging and Behavior, 16(2), 627-636. https://doi.org/10.1007/s11682-021-00542-4
doi: 10.1007/s11682-021-00542-4 URL |
[1] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[2] | GUO Yuchen, LIU Yanbin, CHENG Yuan. Deterrence or signal? The function of third-party intervention [J]. Advances in Psychological Science, 2024, 32(1): 151-161. |
[3] | Kaiyue Wang, Jiehui Qian. Separate Stores of Absolute and Relative Depth in VWM [J]. Advances in Psychological Science, 2023, 31(suppl.): 73-73. |
[4] | Jiaqi Li, Ling Liu, Huan Luo. Probing Spatiotemporal Neural Dynamics of Working Memory Reactivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 74-74. |
[5] | Suqi Huang, Yiping Ge, Li Wang, Yi Jiang. Biological Motion Cues Modulate Visual Working Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 85-85. |
[6] | Yongyue Wang, Zhe Qu. The Influence of Dynamic Attention in Working Memory on Feature Binding [J]. Advances in Psychological Science, 2023, 31(suppl.): 91-91. |
[7] | Mengxuan Sun, Qi Zhang. Simultaneous or Switching? Electrophysiological Measures of the Mechanism During Multiple Object Searching in Real-world Scenes [J]. Advances in Psychological Science, 2023, 31(suppl.): 92-92. |
[8] | Shirong Wu, Zhe Qu. The Occurrence of Attentional White Bear Is Not Influenced by the Probe Task [J]. Advances in Psychological Science, 2023, 31(suppl.): 99-99. |
[9] | Wanru Li, Jia Yang, Pinglei Bao. The Neural Basis of Visual Working Memory of Real-World Object [J]. Advances in Psychological Science, 2023, 31(suppl.): 102-102. |
[10] | Yuanxiu Zhao, Yang Guo, Wenmin Li, Yuxuan Luo, Qikai Zhang, Mowei Shen. Cortical-layer Interplay Affects Working Memory-Perception Interaction: Evidence from Working Memory Load Impairing Visual Detection [J]. Advances in Psychological Science, 2023, 31(suppl.): 103-103. |
[11] | Yanming Wang, Huan Wang, Benedictor Alexander Nguchu, Du Zhang, Xiaoxiao Wang, Bensheng Qiu. Population Receptive Field and Top-down Information Transmission Properties in Sub-bundles of the Human Optic Radiation [J]. Advances in Psychological Science, 2023, 31(suppl.): 151-151. |
[12] | Gantian Huang, Longqian Liu, Ping Jiang. fMRI Study of Implicit Emotion Processing and Regulation Under High Working Memory Load Situations [J]. Advances in Psychological Science, 2023, 31(suppl.): 12-12. |
[13] | LIANG Yongyi, DENG Jiayin, YAN Ming, MA Jie, LI Aimei. The double-edged sword effects of team virtuality: A team development perspective [J]. Advances in Psychological Science, 2023, 31(9): 1583-1594. |
[14] | CUI Nan, WANG Jiuju, ZHAO Jing. Effectiveness and underlying mechanism of the intervention for children with comorbidity between attention deficit hyperactivity disorder and developmental dyslexia [J]. Advances in Psychological Science, 2023, 31(4): 622-630. |
[15] | ZHANG Ning, WANG Anran. Behavioral intervention strategies to nudge smoking cessation [J]. Advances in Psychological Science, 2023, 31(4): 684-696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||