Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (7): 1239-1250.doi: 10.3724/SP.J.1042.2021.01239
• Regular Articles • Previous Articles Next Articles
WANG Lin, WANG Zhidan(), WANG Hongjing
Received:
2019-09-15
Online:
2021-07-15
Published:
2021-05-24
Contact:
WANG Zhidan
E-mail:zwang19@jsnu.edu.cn
CLC Number:
WANG Lin, WANG Zhidan, WANG Hongjing. The neural mechanisms of developmental motor disorders in children with autism spectrum disorder[J]. Advances in Psychological Science, 2021, 29(7): 1239-1250.
[1] | 安楠. (2011). 运动对成长期骨骼肌神经肌肉接头N乙酰胆碱受体表达的影响. 体育科学, 31(11), 56-60. |
[2] | 董奇, 陶沙. (2011). 动作与心理发展. 北京: 北京师范大学出版社. |
[3] | 李澄宇, 杨天明, 顾勇, 王立平, 徐宁龙, 崔翯, 王佐仁. (2016). 脑认知的神经基础. 中国科学院院刊, 31(7), 755-764. |
[4] | 林冲宇, 翁旭初. (2006). 运动, 语言和学习: 小脑的功能磁共振成像研究. 心理科学进展, 14(4), 532-539. |
[5] | 杨叶红, 王树明. (2018). 动作技能学习神经生理机制研究. 武汉体育学院学报, 52(8), 85-89. |
[6] | 原雅青, 刘洋, 丁佳宁. (2019). 布尼氏动作熟练度测试(BOT-2)在智力障碍儿童动作发展评估中的应用及对我国的启示. 中国体育科技, 55(6), 14-20. |
[7] |
Adamaszek, M., D’Agata, F., Ferrucci, R., Habas, C., Keulen, S., Kirkby, K. C., ... Verhoeven, J. (2017). Consensus paper: Cerebellum and emotion. The Cerebellum, 16(2), 552-576.
doi: 10.1007/s12311-016-0815-8 URL |
[8] |
Al Sagheer, T., Haida, O., Balbous, A., Francheteau, M., Matas, E., Fernagut, P.-O., & Jaber, M. (2018). Motor impairments correlate with social deficits and restricted neuronal loss in an environmental model of autism. International Journal of Neuropsychopharmacology, 21(9), 871-882.
doi: 10.1093/ijnp/pyy043 URL |
[9] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5)(5th ed.). Washington, DC: American Psychiatric Publishing. |
[10] |
Anzulewicz, A., Sobota, K., & Delafield-Butt, J. T. (2016). Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. Scientific Reports, 6(1), 1-13.
doi: 10.1038/s41598-016-0001-8 URL |
[11] |
Azmitia, E. C., Singh, J. S., Hou, X. P., & Wegiel, J. (2011). Dystrophic serotonin axons in postmortem brains from young autism patients. The Anatomical Record, 294(10), 1653-1662.
doi: 10.1002/ar.21243 pmid: 21901837 |
[12] |
Bacqué-Cazenave, J., Bharatiya, R., Barrière, G., Delbecque, J.-P., Bouguiyoud, N., di Giovanni, G., ... de Deurwaerdère, P. (2020). Serotonin in animal cognition and behavior. International Journal of Molecular Sciences, 21(5), 1649.
doi: 10.3390/ijms21051649 URL |
[13] |
Barbeau, E. B., Meilleur, A.-A.S., Zeffiro, T. A., & Mottron, L. (2015). Comparing motor skills in autism spectrum individuals with and without speech delay. Autism Research, 8(6), 682-693.
doi: 10.1002/aur.1483 pmid: 25820662 |
[14] | Barter, J. W., Li, S., Lu, D., Bartholomew, R. A., Rossi, M. A., Shoemaker, C. T., ... Yin, H. H. (2015a). Beyond reward prediction errors: The role of dopamine in movement kinematics. Frontiers in Integrative Neuroscience, 9, 39. |
[15] |
Barter, J. W., Li, S., Sukharnikova, T., Rossi, M. A., Bartholomew, R. A., & Yin, H. H. (2015b). Basal ganglia outputs map instantaneous position coordinates during behavior. Journal of Neuroscience, 35(6), 2703-2716.
doi: 10.1523/JNEUROSCI.3245-14.2015 URL |
[16] |
Berdel, B., & Moryś, J. (2000). Expression of calbindin-D28k and parvalbumin during development of rat’s basolateral amygdaloid complex. International Journal of Developmental Neuroscience, 18(6), 501-513.
pmid: 10884595 |
[17] |
Biffi, E., Costantini, C., Ceccarelli, S. B., Cesareo, A., Marzocchi, G. M., Nobile, M., ... Crippa, A. (2018). Gait pattern and motor performance during discrete gait perturbation in children with autism spectrum disorders. Frontiers in Psychology, 9, 2530.
doi: 10.3389/fpsyg.2018.02530 URL |
[18] |
Boeckers, T. M., Bockmann, J., Kreutz, M. R., & Gundelfinger, E. D. (2002). ProSAP/Shank proteins - A family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. Journal of Neurochemistry, 81(5), 903-910.
doi: 10.1046/j.1471-4159.2002.00931.x URL |
[19] |
Bojanek, E. K., Wang, Z., White, S. P., & Mosconi, M. W. (2020). Postural control processes during standing and step initiation in autism spectrum disorder. Journal of Neurodevelopmental Disorders, 12(1), 1.
doi: 10.1186/s11689-019-9305-x pmid: 31906846 |
[20] |
Bonnin, A., & Levitt, P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 197, 1-7.
doi: 10.1016/j.neuroscience.2011.10.005 pmid: 22001683 |
[21] |
Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136-144.
doi: 10.1016/j.brainres.2006.11.074 URL |
[22] |
Carper, R. A., Solders, S., Treiber, J. M., Fishman, I., & Müller, R. A. (2015). Corticospinal tract anatomy and functional connectivity of primary motor cortex in autism. Journal of the American Academy of Child & Adolescent Psychiatry, 54(10), 859-867.
doi: 10.1016/j.jaac.2015.07.007 URL |
[23] |
Casanova, M. F., El-Baz, A., Elnakib, A., Switala, A. E., Williams, E. L., Williams, D. L., ... Conturo, T. E. (2011). Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals. Autism, 15(2), 223-238.
doi: 10.1177/1362361310386506 pmid: 21363871 |
[24] |
Casanova, M. F., El-Baz, A., Mott, M., Mannheim, G., Hassan, H., Fahmi, R., ... Farag, A. (2009). Reduced gyral window and corpus callosum size in autism: Possible macroscopic correlates of a minicolumnopathy. Journal of Autism and Developmental Disorders, 39(5), 751-764.
doi: 10.1007/s10803-008-0681-4 pmid: 19148739 |
[25] |
Chen, H., Uddin, L. Q., Zhang, Y. X., Duan, X. J., & Chen, H. F. (2016). Atypical effective connectivity of thalamo-cortical circuits in autism spectrum disorder. Autism Research, 9(11), 1183-1190.
doi: 10.1002/aur.2016.9.issue-11 URL |
[26] |
Courchesne, E., Yeung-Courchesne, R., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318(21), 1349-1354.
pmid: 3367935 |
[27] |
Cupolillo, D., Hoxha, E., Faralli, A., de Luca, A., Rossi, F., Tempia, F., & Carulli, D. (2016). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychopharmacology, 41(6), 1457-1466.
doi: 10.1038/npp.2015.339 URL |
[28] |
Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28-30.
doi: 10.1038/nn1611 URL |
[29] |
da Silva, J. A., Tecuapetla, F., Paixão, V., & Costa, R. M. (2018). Dopamine neuron activity before action initiation gates and invigorates future movements. Nature, 554(7691), 244-248.
doi: 10.1038/nature25457 |
[30] | Davidovitch, M., Levit-Binnun, N., Golan, D., & Manning- Courtney, P. (2015). Late diagnosis of autism spectrum disorder after initial negative assessment by a multidisciplinary team. Journal of Developmental & Behavioral Pediatrics, 36(4), 227-234. |
[31] | Dewey, D., Cantell, M., & Crawford, S. G. (2007). Motor and gestural performance in children with autism spectrum disorders, developmental coordination disorder, and/or attention deficit hyperactivity disorder. Journal of the International Neuropsychological Society, 13(2), 246-256. |
[32] |
Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., ... Deen, B. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667.
doi: 10.1038/mp.2013.78 URL |
[33] | D'Mello, A. M., & Stoodley, C. J. (2015). Cerebro-cerebellar circuits in autism spectrum disorder. Frontiers in Neuroscience, 9, 408. |
[34] |
El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11(1), 189.
doi: 10.1186/s12974-014-0189-0 URL |
[35] |
Esposito, G., Venuti, P., Apicella, F., & Muratori, F. (2011). Analysis of unsupported gait in toddlers with autism. Brain and Development, 33(5), 367-373.
doi: 10.1016/j.braindev.2010.07.006 URL |
[36] | Fabbri-Destro, M., Gizzonio, V., & Avanzini, P. (2013). Autism, motor dysfunctions and mirror mechanism. Clinical Neuropsychiatry, 10(5), 177-187. |
[37] |
Fingher, N., Dinstein, I., Ben-Shachar, M., Haar, S., Dale, A. M., Eyler, L., ... Courchesne, E. (2017). Toddlers later diagnosed with autism exhibit multiple structural abnormalities in temporal corpus callosum fibers. Cortex, 97, 291-305.
doi: S0010-9452(17)30013-8 pmid: 28202133 |
[38] |
Fitzpatrick, P., Romero, V., Amaral, J. L., Duncan, A., Barnard, H., Richardson, M. J., & Schmidt, R. C. (2017). Social motor synchronization: Insights for understanding social behavior in autism. Journal of Autism and Developmental Disorders, 47(7), 2092-2107.
doi: 10.1007/s10803-017-3124-2 pmid: 28425022 |
[39] |
Floris, D. L., Barber, A. D., Nebel, M. B., Martinelli, M., Lai, M.-C., Crocetti, D., ... Mostofsky, S. H. (2016). Atypical lateralization of motor circuit functional connectivity in children with autism is associated with motor deficits. Molecular Autism, 7(1), 35.
doi: 10.1186/s13229-016-0096-6 URL |
[40] |
Fournier, K. A., Kimberg, C. I., Radonovich, K. J., Tillman, M. D., Chow, J. W., Lewis, M. H., ... Hass, C. J. (2010). Decreased static and dynamic postural control in children with autism spectrum disorders. Gait & Posture, 32(1), 6-9.
doi: 10.1016/j.gaitpost.2010.02.007 URL |
[41] |
Gaetz, W., Bloy, L., Wang, D. J., Port, R. G., Blaskey, L., Levy, S. E., & Roberts, T. P. L. (2014). GABA estimation in the brains of children on the autism spectrum: measurement precision and regional cortical variation. Neuroimage, 86, 1-9.
doi: 10.1016/j.neuroimage.2013.05.068 pmid: 23707581 |
[42] |
Gong, L. L., Liu, Y. J., Yi, L., Fang, J., Yang, Y. S., & Wei, K. L. (2020). Abnormal gait patterns in autism spectrum disorder and their correlations with social Impairments. Autism Research, 13(7).1215-1226.
doi: 10.1002/aur.v13.7 URL |
[43] | Green, D., Charman, T., Pickles, A., Chandler, S., Loucas, T., Simonoff, E., & Baird, G. (2009). Impairment in movement skills of children with autistic spectrum disorders. Developmental Medicine & Child Neurology, 51(4), 311-316. |
[44] |
Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Azuma, J., Matsuzaki, J., ... Taniike, M. (2013). Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. The Cerebellum, 12(5), 645-656.
doi: 10.1007/s12311-013-0475-x URL |
[45] |
Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Matsuzaki, J., Watanabe, Y., ... Taniike, M. (2014). Abnormal corpus callosum connectivity, socio-communicative deficits, and motor deficits in children with autism spectrum disorder: A diffusion tensor imaging study. Journal of Autism and Developmental Disorders, 44(9), 2209-2220.
doi: 10.1007/s10803-014-2096-8 pmid: 24710811 |
[46] |
Hirata, S., Okuzumi, H., Kitajima, Y., Hosobuchi, T., Nakai, A., & Kokubun, M. (2014). Relationship between motor skill and social impairment in children with autism spectrum disorders. International Journal of Developmental Disabilities, 60(4), 251-256.
doi: 10.1179/2047387713Y.0000000033 URL |
[47] |
Hocking, D. R., & Caeyenberghs, K. (2017). What is the nature of motor impairments in autism, are they diagnostically useful, and what are the implications for intervention? Current Developmental Disorders Reports, 4(2), 19-27.
doi: 10.1007/s40474-017-0109-y URL |
[48] |
Hough, L. H., & Segal, S. (2016). Effects of developmental hyperserotonemia on the morphology of rat dentate nuclear neurons. Neuroscience, 322, 178-194.
doi: 10.1016/j.neuroscience.2016.02.021 pmid: 26892293 |
[49] | Hussman, J. P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. Journal of Autism & Developmental Disorders, 31(2), 247-248. |
[50] |
Isenhower, R. W., Marsh, K. L., Richardson, M. J., Helt, M., Schmidt, R. C., & Fein, D. (2012). Rhythmic bimanual coordination is impaired in young children with autism spectrum disorder. Research in Autism Spectrum Disorders, 6(1), 25-31.
doi: 10.1016/j.rasd.2011.08.005 URL |
[51] |
Jaber, M. (2016). The cerebellum as a major player in motor disturbances related to autistic syndrome disorders. L'encephale, 43(2), 170-175.
doi: 10.1016/j.encep.2016.03.018 URL |
[52] |
Jeong, J.-W., Tiwari, V. N., Behen, M. E., Chugani, H. T., & Chugani, D. C. (2014). In vivo detection of reduced purkinje cell fibers with diffusion MRI tractography in children with autistic spectrum disorders. Frontiers in Human Neuroscience, 8, 110.
doi: 10.3389/fnhum.2014.00110 pmid: 24592234 |
[53] |
Jin, X., & Costa, R. M. (2015). Shaping action sequences in basal ganglia circuits. Current Opinion in Neurobiology, 33, 188-196.
doi: 10.1016/j.conb.2015.06.011 URL |
[54] |
Johnson, B. P., Phillips, J. G., Papadopoulos, N., Fielding, J., Tonge, B., & Rinehart, N. J. (2013). Understanding macrographia in children with autism spectrum disorders. Research in Developmental Disabilities, 34(9), 2917-2926.
doi: 10.1016/j.ridd.2013.06.003 pmid: 23816627 |
[55] |
Kaur, M., Srinivasan, S. M., & Bhat, A. N. (2018). Comparing motor performance, praxis, coordination, and interpersonal synchrony between children with and without autism spectrum disorder (ASD). Research in Developmental Disabilities, 72, 79-95.
doi: 10.1016/j.ridd.2017.10.025 URL |
[56] |
Keary, C. J., Minshew, N. J., Bansal, R., Goradia, D., Fedorov, S., Keshavan, M. S., & Hardan, A. Y. (2009). Corpus callosum volume and neurocognition in autism. Journal of Autism and Developmental Disorders, 39(6), 834-841.
doi: 10.1007/s10803-009-0689-4 URL |
[57] | Khalil, R., Tindle, R., Boraud, T., Moustafa, A. A., & Karim, A. A. (2018). Social decision making in autism: On the impact of mirror neurons, motor control, and imitative behaviors. CNS Neuroscience & Therapeutics, 24(8), 669-676. |
[58] | Kindregan, D., Gallagher, L., & Gormley, J. (2015). Gait deviations in children with autism spectrum disorders: A review. Autism Research and Treatment, 2015, 741480. |
[59] |
Lau, Y. C., Hinkley, L. B. N., Bukshpun, P., Strominger, Z. A., Wakahiro, M. L. J., Baron-Cohen, S., ... Marco, E. J. (2013). Autism traits in individuals with agenesis of the corpus callosum. Journal of Autism and Developmental Disorders, 43(5), 1106-1118.
doi: 10.1007/s10803-012-1653-2 URL |
[60] |
Leblond, C. S., Nava, C., Polge, A., Gauthier, J., Huguet, G., Lumbroso, S., ... Bourgeron, T. (2014). Meta-analysis of SHANK mutations in autism spectrum disorders: A gradient of severity in cognitive impairments. PLoS Genet, 10(9), e1004580.
doi: 10.1371/journal.pgen.1004580 URL |
[61] |
Lin, C. W., Lin, H. Y., Lo, Y. C., Chen, Y. J., Hsu, Y. C., Chen, Y. L., ... Gau, S. S. F. (2019). Alterations in white matter microstructure and regional volume are related to motor functions in boys with autism spectrum disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 90, 76-83.
doi: 10.1016/j.pnpbp.2018.11.008 URL |
[62] |
Liu, T., & Breslin, C. M. (2013). Fine and gross motor performance of the MABC-2 by children with autism spectrum disorder and typically developing children. Research in Autism Spectrum Disorders, 7(10), 1244-1249.
doi: 10.1016/j.rasd.2013.07.002 URL |
[63] |
Marko, M. K., Crocetti, D., Hulst, T., Donchin, O., Shadmehr, R., & Mostofsky, S. H. (2015). Behavioural and neural basis of anomalous motor learning in children with autism. Brain, 138(3), 784-797.
doi: 10.1093/brain/awu394 URL |
[64] |
Martineau, J., Cochin, S., Magne, R., & Barthelemy, C. (2008). Impaired cortical activation in autistic children: Is the mirror neuron system involved? International Journal of Psychophysiology, 68(1), 35-40.
doi: 10.1016/j.ijpsycho.2008.01.002 pmid: 18313160 |
[65] |
Masuda, F., Nakajima, S., Miyazaki, T., Yoshida, K., Tsugawa, S., Wada, M., ... Noda, Y. (2019). Motor cortex excitability and inhibitory imbalance in autism spectrum disorder assessed with transcranial magnetic stimulation: A systematic review. Translational Psychiatry, 9(1), 110.
doi: 10.1038/s41398-019-0444-3 pmid: 30846682 |
[66] |
McBride, K. L., Varga, E. A., Pastore, M. T., Prior, T. W., Manickam, K., Atkin, J. F., & Herman, G. E. (2010). Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly. Autism Research, 3(3), 137-141.
doi: 10.1002/aur.132 pmid: 20533527 |
[67] |
McCleery, J. P., Akshoomoff, N., Dobkins, K. R., & Carver, L. J. (2009). Atypical face versus object processing and hemispheric asymmetries in 10-month-old infants at risk for autism. Biological Psychiatry, 66(10), 950-957.
doi: 10.1016/j.biopsych.2009.07.031 URL |
[68] |
McNamara, I. M., Borella, A. W., Bialowas, L. A., & Whitaker-Azmitia, P. M. (2008). Further studies in the developmental hyperserotonemia model (DHS) of autism: social, behavioral and peptide changes. Brain Research, 1189, 203-214.
doi: 10.1016/j.brainres.2007.10.063 URL |
[69] |
Ming, X., Brimacombe, M., & Wagner, G. C. (2007). Prevalence of motor impairment in autism spectrum disorders. Brain and Development, 29(9), 565-570.
doi: 10.1016/j.braindev.2007.03.002 URL |
[70] |
Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056-2061.
pmid: 15596750 |
[71] | Moes, P., Schilmoeller, K., & Schilmoeller, G. (2009). Physical, motor, sensory and developmental features associated with agenesis of the corpus callosum. Child: Care, Health and Development, 35(5), 656-672. |
[72] |
Mosconi, M. W., Mohanty, S., Greene, R. K., Cook, E. H., Vaillancourt, D. E., & Sweeney, J. A. (2015). Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder. Journal of Neuroscience, 35(5), 2015-2025.
doi: 10.1523/JNEUROSCI.2731-14.2015 URL |
[73] |
Mostofsky, S. H., Powell, S. K., Simmonds, D. J., Goldberg, M. C., Caffo, B., & Pekar, J. J. (2009). Decreased connectivity and cerebellar activity in autism during motor task performance. Brain, 132(9), 2413-2425.
doi: 10.1093/brain/awp088 URL |
[74] |
Nair, A., Treiber, J. M., Shukla, D. K., Shih, P., & Müller, R. A. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: A study of functional and anatomical connectivity. Brain, 136(6), 1942-1955.
doi: 10.1093/brain/awt079 URL |
[75] |
Nayate, A., Bradshaw, J. L., & Rinehart, N. J. (2005). Autism and Asperger's disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Research Bulletin, 67(4), 327-334.
doi: 10.1016/j.brainresbull.2005.07.011 URL |
[76] |
Nebel, M. B., Eloyan, A., Nettles, C. A., Sweeney, K. L., Ament, K., Ward, R. E., ... Mostofsky, S. H. (2016). Intrinsic visual-motor synchrony correlates with social deficits in autism. Biological Psychiatry, 79(8), 633-641.
doi: 10.1016/j.biopsych.2015.08.029 URL |
[77] |
Nordahl, C. W., Iosif, A. M., Young, G. S., Perry, L. M., Dougherty, R., Lee, A., Amaral, D. G. (2015). Sex differences in the corpus callosum in preschool-aged children with autism spectrum disorder. Molecular Autism, 6(1), 26.
doi: 10.1186/s13229-015-0005-4 URL |
[78] |
Oldehinkel, M., Mennes, M., Marquand, A., Charman, T., Tillmann, J., Ecker, C., ... Zwiers, M. P. (2019). Altered connectivity between cerebellum, visual, and sensory-motor networks in autism spectrum disorder: Results from the EU-AIMS longitudinal European autism project. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(3), 260-270.
doi: 10.1016/j.bpsc.2018.11.010 URL |
[79] |
Paquet, A., Olliac, B., Bouvard, M. P., Golse, B., & Vaivre- Douret, L. (2016). The semiology of motor disorders in autism spectrum disorders as highlighted from a standardized neuro-psychomotor assessment. Frontiers in Psychology, 7, 1292.
doi: 10.3389/fpsyg.2016.01292 pmid: 27672371 |
[80] |
Paquet, A., Olliac, B., Golse, B., & Vaivre-Douret, L. (2019). Nature of motor impairments in autism spectrum disorder: A comparison with developmental coordination disorder. Journal of Clinical and Experimental Neuropsychology, 41(1), 1-14.
doi: 10.1080/13803395.2018.1483486 URL |
[81] | Paul, L. K., Brown, W. S., Adolphs, R., Tyszka, J. M., Richards, L. J., Mukherjee, P., & Sherr, E. H. (2007). Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity. Nature Reviews Neuroscience, 8(4), 287-299. |
[82] |
Peter, S., Brinke, M. M. T., Stedehouder, J., Reinelt, C. M., Wu, B., Zhou, H., ... de Zeeuw, C. I. (2016). Dysfunctional cerebellar purkinje cells contribute to autism-like behaviour in Shank2-deficient mice. Nature Communications, 7(1), 12627.
doi: 10.1038/ncomms12627 URL |
[83] |
Pizzarelli, R., & Cherubini, E. (2011). Alterations of GABAergic signaling in autism spectrum disorders. Neural Plasticity, 2011, 297153.
doi: 10.1155/2011/297153 pmid: 21766041 |
[84] |
Prigge, M. B. D., Lange, N., Bigler, E. D., Merkley, T. L., Neeley, E. S., Abildskov, T. J., ... Lainhart, J. E. (2013). Corpus callosum area in children and adults with autism. Research in Autism Spectrum Disorders, 7(2), 221-234.
pmid: 23130086 |
[85] |
Puts, N. A. J., Wodka, E. L., Harris, A. D., Crocetti, D., Tommerdahl, M., Mostofsky, S. H., & Edden, R. A. E. (2017). Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Research, 10(4), 608-619.
doi: 10.1002/aur.2017.10.issue-4 URL |
[86] | Qiu, A., Adler, M., Crocetti, D., Miller, M. I., & Mostofsky, S. H. (2010). Basal ganglia shapes predict social, communication, and motor dysfunctions in boys with autism spectrum disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49(6), 539-551.e4. |
[87] |
Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., & Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiological Reviews, 94(2), 655-706.
doi: 10.1152/physrev.00009.2013 URL |
[88] |
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131-141.
pmid: 8713554 |
[89] |
Schuetze, M., Park, M. T. M., Cho, I. Y., MacMaster, F. P., Chakravarty, M. M., & Bray, S. L. (2016). Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder. Neuropsychopharmacology, 41(11), 2627-2637.
doi: 10.1038/npp.2016.64 URL |
[90] |
Schwaller, B., Meyer, M., & Schiffmann, S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. The Cerebellum, 1(4), 241-258.
doi: 10.1080/147342202320883551 URL |
[91] |
Sheng, M. J., Lu, D., Shen, Z.-M., & Poo, M. M. (2019). Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proceedings of the National Academy of Sciences, 116(22), 11038-11047.
doi: 10.1073/pnas.1901712116 URL |
[92] |
Shmuelof, L., & Krakauer, J. W. (2011). Are we ready for a natural history of motor learning? Neuron, 72(3), 469-476.
doi: 10.1016/j.neuron.2011.10.017 pmid: 22078506 |
[93] |
Skefos, J., Cummings, C., Enzer, K., Holiday, J., Weed, K., Levy, E., ... Bauman, M. (2014). Regional alterations in purkinje cell density in patients with autism. PloS ONE, 9(2), e81255.
doi: 10.1371/journal.pone.0081255 URL |
[94] |
Soghomonian, J.-J., Zhang, K., Reprakash, S., & Blatt, G. J. (2017). Decreased parvalbumin mRNA levels in cerebellar purkinje cells in autism. Autism Research, 10(11), 1787-1796.
doi: 10.1002/aur.1835 URL |
[95] |
Stoit, A. M. B., van Schie, H. T., Slaats-Willemse, D. I. E., & Buitelaar, J. K. (2013). Grasping motor impairments in autism: Not action planning but movement execution is deficient. Journal of Autism and Developmental Disorders, 43(12),2793-2806.
doi: 10.1007/s10803-013-1825-8 URL |
[96] |
Stoodley, C. J. (2016). The cerebellum and neurodevelopmental disorders. The Cerebellum, 15(1), 34-37.
doi: 10.1007/s12311-015-0715-3 URL |
[97] |
Subramanian, K., Brandenburg, C., Orsati, F., Soghomonian, J. J., Hussman, J. P., & Blatt, G. J. (2017). Basal ganglia and autism-a translational perspective. Autism Research, 10(11), 1751-1775.
doi: 10.1002/aur.1837 pmid: 28730641 |
[98] |
Tărlungeanu, D. C., Deliu, E., Dotter, C. P., Kara, M., Janiesch, P. C., Scalise, M., ... Novarino, G. (2016). Impaired amino acid transport at the blood brain barrier is a cause of autism spectrum disorder. Cell, 167(6), 1481-1494.
doi: S0092-8674(16)31534-3 pmid: 27912058 |
[99] |
Umesawa, Y., Matsushima, K., Atsumi, T., Kato, T., Fukatsu, R., Wada, M., & Ide, M. (2020). Altered GABA concentration in brain motor area is associated with the severity of motor disabilities in individuals with autism spectrum disorder. Journal of Autism and Developmental Disorders, 50(8), 2710-2722.
doi: 10.1007/s10803-020-04382-x pmid: 31997060 |
[100] |
Uzunova, G., Pallanti, S., & Hollander, E. (2016). Excitatory/ inhibitory imbalance in autism spectrum disorders: Implications for interventions and therapeutics. The World Journal of Biological Psychiatry, 17(3), 174-186.
doi: 10.3109/15622975.2015.1085597 URL |
[101] |
Valenti, M., Pino, M. C., Mazza, M., Panzarino, G., Di Paolantonio, C., & Verrotti, A. (2020). Abnormal structural and functional connectivity of the corpus callosum in autism spectrum disorders: A review. Review Journal of Autism and Developmental Disorders, 7, 46-62.
doi: 10.1007/s40489-019-00176-9 URL |
[102] |
Vokaer, M., Bier, J. C., Elincx, S., Claes, T., Paquier, P., Goldman, S., ... Pandolfo, M. (2002). The cerebellum may be directly involved in cognitive functions. Neurology, 58(6), 967-970.
pmid: 11914419 |
[103] |
Wang, S. S. H., Kloth, A. D., & Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518-532.
doi: 10.1016/j.neuron.2014.07.016 URL |
[104] |
Wegiel, J., Flory, M., Kuchna, I., Nowicki, K., Ma, S. Y., Imaki, H., ... Brown, W. T. (2014). Stereological study of the neuronal number and volume of 38 brain subdivisions of subjects diagnosed with autism reveals significant alterations restricted to the striatum, amygdala and cerebellum. Acta Neuropathologica Communications, 2(1), 141.
doi: 10.1186/s40478-014-0141-7 URL |
[105] | Whyatt, C., & Craig, C. (2013). Sensory-motor problems in Autism. Frontiers in Integrative Neuroscience, 7, 51. |
[106] |
Wöhr, M., Orduz, D., Gregory, P., Moreno, H., Khan, U., Vörckel, K. J., ... Schwaller, B. (2015). Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Translational Psychiatry, 5(3), e525.
doi: 10.1038/tp.2015.19 URL |
[107] |
Wolff, J. J., Swanson, M. R., Elison, J. T., Gerig, G., Pruett, J. R., Styner, M. A., ... Network, I. (2017). Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecular Autism, 8(1), 8.
doi: 10.1186/s13229-017-0126-z URL |
[108] |
Woodward, N. D., Giraldo-Chica, M., Rogers, B., & Cascio, C. J. (2017). Thalamocortical dysconnectivity in autism spectrum disorder: An analysis of the Autism Brain Imaging Data Exchange. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(1), 76-84.
doi: 10.1016/j.bpsc.2016.09.002 URL |
[109] |
Xavier, J., Gauthier, S., Cohen, D., Zahoui, M., Chetouani, M., Villa, F., ... Anzalone, S. (2018). Interpersonal synchronization, motor coordination, and control are impaired during a dynamic imitation task in children with autism spectrum disorder. Frontiers in Psychology, 9, 1467.
doi: 10.3389/fpsyg.2018.01467 pmid: 30233439 |
[110] |
Yang, M., Bozdagi, O., Scattoni, M. L., Wöhr, M., Roullet, F. I., Katz, A. M., ... Crawley, J. N. (2012). Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. Journal of Neuroscience, 32(19), 6525-6541.
doi: 10.1523/JNEUROSCI.6107-11.2012 URL |
[1] | LIU Yu, BI Dandan, ZHAO Kaibin, SHI Yiming, Hanna Y. ADAMSEGED, JIN Zheng. Cognitive factors influencing picky eating behavior in children [J]. Advances in Psychological Science, 2025, 33(2): 305-321. |
[2] | LIU Yueyue, HE Wenguang. The cognitive mechanism and neural basis of written production in aging [J]. Advances in Psychological Science, 2024, 32(9): 1502-1513. |
[3] | LEI Yi, MEI Ying, Wang Jinxia, YUAN Zixin. Identifying the impact of unconscious fear on adolescent anxiety: Cognitive neural mechanisms and interventions [J]. Advances in Psychological Science, 2024, 32(8): 1221-1232. |
[4] | DING Ying, WANG Ziying, LI Weidong. Behavioral characteristics and neural mechanisms of pain processing in depression [J]. Advances in Psychological Science, 2024, 32(8): 1315-1327. |
[5] | ZHOU Jiawen, WANG Mingyi. Health risk behaviors among children and adolescents during the COVID-19 pandemic: A perspective from family risk [J]. Advances in Psychological Science, 2024, 32(8): 1328-1341. |
[6] | HE Ting, HU Huinan, QIAO Lu, YANG Liangliang, LI Mingying, LIN Xiuyun. How parental coping socialization influences the adjustment of children and adolescents: Perspectives from long-term and real-time timelines [J]. Advances in Psychological Science, 2024, 32(8): 1342-1353. |
[7] | ZENG Qinghe, CUI Xiaoyu, TANG Wei, LI Juan. The cognitive neural mechanisms of age-related decline in mnemonic discrimination and its application [J]. Advances in Psychological Science, 2024, 32(7): 1138-1151. |
[8] | LIU Hai-ning, DONG Xian-ling, LIU Hai-hon, LIU Yan-li, LI Xian-wen. Neural mechanisms and digital promotion of executive function in older adults with amnestic mild cognitive impairment [J]. Advances in Psychological Science, 2024, 32(6): 873-885. |
[9] | JIANG Ying, HU Jia, FENG Liangyu, REN Qidan. The effect of scarcity mindset on the executive function in children living in poverty and its mechanisms [J]. Advances in Psychological Science, 2024, 32(5): 728-737. |
[10] | WEN Siyan, YU Xuchen, JIN Lei, GONG Junru, ZHANG Xiaohan, SUN Jinglin, ZHANG Shan, LYU Houchao. A three-level meta-analysis of the relationship between family dysfunction and mental health of children and adolescents [J]. Advances in Psychological Science, 2024, 32(5): 771-789. |
[11] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
[12] | ZHENG Yuanxia, LIU Guoxiong, XIN Cong, CHENG Li. Judging a book by its cover: The influence of facial features on children’s trust judgments [J]. Advances in Psychological Science, 2024, 32(2): 300-317. |
[13] | ZHENG Hao, CHEN Rongrong, MAI Xiaoqin. The cognitive and neural mechanism of third-party punishment [J]. Advances in Psychological Science, 2024, 32(2): 398-412. |
[14] | SUN Lijun, YANG Yufang. The cognitive and neural mechanisms of metric structure in music: A predictive perspective [J]. Advances in Psychological Science, 2024, 32(10): 1567-1577. |
[15] | Yan Yang, Dingping Yang, Xinping Yu. Cognitive Function in Children with Strabismus [J]. Advances in Psychological Science, 2023, 31(suppl.): 44-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||