Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (7): 1251-1263.doi: 10.3724/SP.J.1042.2021.01251
• Regular Articles • Previous Articles Next Articles
Received:
2020-10-18
Online:
2021-07-15
Published:
2021-05-24
Contact:
HU Jinsheng
E-mail:hu_jinsheng@126.com
CLC Number:
WANG Zhengyu, HU Jinsheng. How does sleep affect creative problem-solving: An interpretation based on memory reorganization[J]. Advances in Psychological Science, 2021, 29(7): 1251-1263.
[1] | Alger, S. E., & Payne, J. D. (2016). The differential effects of emotional salience on direct associative and relational memory during a nap. Cognitive, Affective & Behavioral Neuroscience, 16(6), 1150-1163. |
[2] |
Batterink, L. J., Creery, J. D., & Paller, K. A. (2016). Phase of spontaneous slow oscillations during sleep influences memory-related processing of auditory cues. The Journal of Neuroscience, 36(4), 1401-1409.
doi: 10.1523/JNEUROSCI.3175-15.2016 pmid: 26818525 |
[3] |
Beda, Z., & Smith, S. M. (2018). Chasing red herrings: Memory of distractors causes fixation in creative problem solving. Memory & Cognition, 46(5), 671-684.
doi: 10.3758/s13421-018-0799-3 URL |
[4] |
Beijamini, F., Pereira, S. I. R., Cini, F. A., & Louzada, F. M. (2014). After being challenged by a video game problem, sleep increases the chance to solve it. PLoS One, 9(1), e84342.
doi: 10.1371/journal.pone.0084342 URL |
[5] |
Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research, 76(2), 192-203.
doi: 10.1007/s00426-011-0335-6 pmid: 21541757 |
[6] |
Brodt, S., Pöhlchen, D., Täumer, E., Gais, S., & Schönauer, M. (2018). Incubation, not sleep, aids problem-solving. Sleep, 41(10). doi: 10.1093/sleep/zsy155.
doi: 10.1093/sleep/zsy155 |
[7] | Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., & Mednick, S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10130-10134. |
[8] |
Cherdieu, M., Reynaud, E., Uhlrich, J., Versace, R., & Mazza, S. (2014). Does age worsen sleep-dependent memory consolidation? Journal of Sleep Research, 23(1), 53-60.
doi: 10.1111/jsr.12100 pmid: 24251387 |
[9] |
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458-465.
doi: 10.1016/j.cognition.2010.03.007 pmid: 20334856 |
[10] |
Cohen-Zion, M., Shabi, A., Levy, S., Glasner, L., & Wiener, A. (2016). Effects of partial sleep deprivation on information processing speed in adolescence. Journal of the International Neuropsychological Society, 22(4), 388-398.
doi: 10.1017/S1355617716000072 URL |
[11] |
Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2014). Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. The Journal of Neuroscience, 34(48), 15870-15876.
doi: 10.1523/JNEUROSCI.1011-14.2014 pmid: 25429129 |
[12] |
Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2016). Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. PLOS Biology, 14(5), e1002451.
doi: 10.1371/journal.pbio.1002451 URL |
[13] |
Debarnot, U., Rossi, M., Faraguna, U., Schwartz, S., & Sebastiani, L. (2017). Sleep does not facilitate insight in older adults. Neurobiology of Learning and Memory, 140, 106-113.
doi: S1074-7427(16)30312-4 pmid: 28219752 |
[14] |
Dörner, D., & Funke, J. (2017). Complex problem solving: What it is and what it is not. Frontiers in Psychology, 8, 1153.
doi: 10.3389/fpsyg.2017.01153 URL |
[15] |
Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2013). Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex, 23(10), 2467-2478.
doi: 10.1093/cercor/bhs244 URL |
[16] |
Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2016). Cross- modal transfer of statistical information benefits from sleep. Cortex, 78, 85-99.
doi: S0010-9452(16)30024-7 pmid: 27017231 |
[17] |
Fogel, S. M., Albouy, G., Vien, C., Popovicci, R., King, B. R., Hoge, R., ... Doyon, J. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Human Brain Mapping, 35(8), 3625-3645.
doi: 10.1002/hbm.v35.8 URL |
[18] |
Hennies, N., Lambon Ralph, M. A., Durrant, S. J., Cousins, J. N., & Lewis, P. A. (2017). Cued memory reactivation during SWS abolishes the beneficial effect of sleep on abstraction. Sleep, 40(8). doi: 10.1093/sleep/zsx102.
doi: 10.1093/sleep/zsx102 |
[19] |
Hołda, M., Głodek, A., Dankiewicz-Berger, M., Skrzypińska, D., & Szmigielska, B. (2020). Ill-defined problem solving does not benefit from daytime napping. Frontiers in Psychology, 11, 559.
doi: 10.3389/fpsyg.2020.00559 URL |
[20] | Huber, R., Mäki, H., Rosanova, M., Casarotto, S., Canali, P., Casali, A. G., ... Massimini, M. (2013). Human cortical excitability increases with time awake. Cerebral Cortex, 23(2), 1-7. |
[21] | Huguet, M., Payne, J. D., Kim, S. Y., & Alger, S. E. (2019). Overnight sleep benefits both neutral and negative direct associative and relational memory. Cognitive, Affective, & Behavioral Neuroscience, 19(6), 1391-1403. |
[22] |
Kattner, F., Samaan, L., & Schubert, T. (2019). Cross-modal transfer after auditory task-switching training. Memory & Cognition, 47(5), 1044-1061.
doi: 10.3758/s13421-019-00911-x URL |
[23] | Kirov, R., Kolev, V., Verleger, R., & Yordanova, J. (2015). Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Frontiers in Psychology, 6, 1354. |
[24] |
Kralik, J. D., Mao, T., Cheng, Z., & Ray, L. E. (2016). Modeling incubation and restructuring for creative problem solving in robots. Robotics and Autonomous Systems, 86, 162-173.
doi: 10.1016/j.robot.2016.08.025 URL |
[25] |
Kuhn, M., Wolf, E., Maier, J. G., Mainberger, F., Feige, B., Schmid, H., ... Nissen, C. (2016). Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nature Communication, 7, 12455.
doi: 10.1038/ncomms12455 URL |
[26] |
Landmann, N., Kuhn, M., Maier, J.-G., Feige, B., Spiegelhalder, K., Riemann, D., & Nissen, C. (2016). Sleep strengthens but does not reorganize memory traces in a verbal creativity task. Sleep, 39(3), 705-713.
doi: 10.5665/sleep.5556 pmid: 26518596 |
[27] |
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K., ... Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541.
doi: 10.1016/j.smrv.2014.03.005 pmid: 24813468 |
[28] | Larson-Prior, L. J., Azhar, G., Davila, D. G., Jun, S.-R., Kemp, A. S., Nookaew, I., ... Wassenaar, T. M. (2017). Neurobiology of sleep and microbiomics in aging. OBM Neurobiology, 1(2), 003. |
[29] |
Lau, H., Tucker, M. A., & Fishbein, W. (2010). Daytime napping: Effects on human direct associative and relational memory. Neurobiology of Learning and Memory, 93(4), 554-560.
doi: 10.1016/j.nlm.2010.02.003 pmid: 20176120 |
[30] |
Lavoie, C. J., Zeidler, M. R., & Martin, J. L. (2018). Sleep and aging. Sleep Science and Practice, 2, 3.
doi: 10.1186/s41606-018-0021-3 URL |
[31] |
Lehmann, M., Schreiner, T., Seifritz, E., & Rasch, B. (2016). Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Scientific Reports, 6, 39229.
doi: 10.1038/srep39229 URL |
[32] |
Lewis, P. A., Knoblich, G., & Poe, G. (2018). How memory replay in sleep boosts creative problem-solving. Trends in Cognitive Sciences, 22(6), 491-503.
doi: 10.1016/j.tics.2018.03.009 URL |
[33] |
Llewellyn, S., & Hobson, J. A. (2015). Not only... But also: REM sleep creates and NREM stage 2 instantiates landmark junctions in cortical memory networks. Neurobiology of Learning and Memory, 122, 69-87.
doi: 10.1016/j.nlm.2015.04.005 pmid: 25921620 |
[34] |
Lo, J. C., Ong, J. L., Leong, R. L. F., Gooley, J. J., & Chee, M. W. L. (2016). Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep, 39(3), 687-698.
doi: 10.5665/sleep.5552 URL |
[35] |
Lowe, C. J., Safati, A., & Hall, P. A. (2017). The neurocognitive consequences of sleep restriction: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 80, 586-604.
doi: 10.1016/j.neubiorev.2017.07.010 URL |
[36] |
Luo, J., & Niki, K. (2003). Function of hippocampus in "insight" of problem solving. Hippocampus, 13(3), 316-323.
doi: 10.1002/(ISSN)1098-1063 URL |
[37] |
Lv, K. (2015). The involvement of working memory and inhibition functions in the different phases of insight problem solving. Memory & Cognition, 43(5), 709-722.
doi: 10.3758/s13421-014-0498-7 URL |
[38] |
Martinsen, Ø.L., & Furnham, A. (2019). Cognitive style and competence motivation in creative problem solving. Personality and Individual Differences, 139, 241-246.
doi: 10.1016/j.paid.2018.11.023 |
[39] |
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457.
doi: 10.1037/0033-295X.102.3.419 pmid: 7624455 |
[40] | Nere, A., Hashmi, A., Cirelli, C., & Tononi, G. (2013). Sleep- dependent synaptic down-selection (I): Modeling the benefits of sleep on memory consolidation and integration. Frontiers in Neurology, 4, 143. |
[41] |
Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Sciences, 14(2), 88-100.
doi: 10.1016/j.tics.2009.12.001 URL |
[42] | Nizet, L., Montana, X., Lanquart, J.-P., & Loas, G. (2018). Research into an association between anhedonia and decreased REM latency in moderately to severely depressed patients. Sleep Disorders, doi: 10.1155/2018/1636574. |
[43] |
Öllinger, M., Jones, G., & Knoblich, G. (2014). The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem. Psychological Research, 78(2), 266-275.
doi: 10.1007/s00426-013-0494-8 pmid: 23708954 |
[44] |
Patrick, Y., Lee, A., Raha, O., Pillai, K., Gupta, S., Sethi, S., ... Moss, J. (2017). Effects of sleep deprivation on cognitive and physical performance in university students. Sleep and Biological Rhythms, 15(3), 217-225.
doi: 10.1007/s41105-017-0099-5 pmid: 28680341 |
[45] |
Payne, J. D., Kensinger, E. A., Wamsley, E. J., Spreng, R. N., Alger, S. E., Gibler, K., ... Stickgold, R. (2015). Napping and the selective consolidation of negative aspects of scenes. Emotion, 15(2), 176-186.
doi: 10.1037/a0038683 URL |
[46] |
Perdomo, V. L., Hofman, W. F., & Talamini, L. M. (2018). Sleep fosters insight into real-life problems. Archives Italiennes de Biologie, 156(3), 87-98.
doi: 10.12871/00039829201831 pmid: 30324605 |
[47] |
Perogamvros, L., & Schwartz, S. (2012). The roles of the reward system in sleep and dreaming. Neuroscience & Biobehavioral Reviews, 36(8), 1934-1951.
doi: 10.1016/j.neubiorev.2012.05.010 URL |
[48] | Power, A. E. (2004). Slow-wave sleep, acetylcholine, and memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 1795-1796. |
[49] |
Rauchs, G., Schabus, M., Parapatics, S., Bertran, F., Clochon, P., Hot, P., ... Anderer, P. (2008). Is there a link between sleep changes and memory in Alzheimer's disease? NeuroReport, 19(11), 1159-1162.
doi: 10.1097/WNR.0b013e32830867c4 URL |
[50] |
Ritter, S. M., Strick, M., Bos, M. W., van Baaren, R. B., & Dijksterhuis, A. (2012). Good morning creativity: Task reactivation during sleep enhances beneficial effect of sleep on creative performance. Journal of Sleep Research, 21(6), 643-647.
doi: 10.1111/jsr.2012.21.issue-6 URL |
[51] |
Sanders, K. E. G., Osburn, S., Paller, K. A., & Beeman, M. (2019). Targeted memory reactivation during sleep improves next-day problem solving. Psychological Science, 30(11), 1616-1624.
doi: 10.1177/0956797619873344 URL |
[52] |
Schönauer, M., Brodt, S., Pöhlchen, D., Breßmer, A., Danek, A. H., & Gais, S. (2018). Sleep does not promote solving classical insight problems and magic tricks. Frontiers in Human Neuroscience, 12, 72.
doi: 10.3389/fnhum.2018.00072 pmid: 29535620 |
[53] |
Schreiner, T., Lehmann, M., & Rasch, B. (2015). Auditory feedback blocks memory benefits of cueing during sleep. Nature Communications, 6, 8729.
doi: 10.1038/ncomms9729 pmid: 26507814 |
[54] |
Sio, U. N., Monaghan, P., & Ormerod, T. (2013). Sleep on it, but only if it is difficult: Effects of sleep on problem solving. Memory & Cognition, 41(2), 159-166.
doi: 10.3758/s13421-012-0256-7 URL |
[55] |
Staresina, B. P., Bergmann, T. O., Bonnefond, M., van der Meij, R., Jensen, O., Deuker, L., ... Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679-1686.
doi: 10.1038/nn.4119 URL |
[56] |
Sterpenich, V., Schmidt, C., Albouy, G., Matarazzo, L., Vanhaudenhuyse, A., Boveroux, P., ... Maquet, P. (2014). Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. Sleep, 37(6), 1061-1075.
doi: 10.5665/sleep.3762 pmid: 24882901 |
[57] |
Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1999). Sleep-induced changes in associative memory. Journal of Cognitive Neuroscience, 11(2), 182-193.
doi: 10.1162/089892999563319 URL |
[58] |
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356-14360.
doi: 10.1523/JNEUROSCI.3028-10.2010 pmid: 20980591 |
[59] |
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49-62.
doi: 10.1016/j.smrv.2005.05.002 URL |
[60] |
Verleger, R., Rose, M., Wagner, U., Yordanova, J., & Kolev, V. (2013). Insights into sleep's role for insight: Studies with the number reduction task. Advances in Cognitive Psychology, 9(4), 160-172.
doi: 10.2478/v10053-008-0143-8 pmid: 24605175 |
[61] |
Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427(6972), 352-355.
doi: 10.1038/nature02223 URL |
[62] |
Wang, M., Hao, N., Ku, Y., Grabner, R. H., & Fink, A. (2017). Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia, 99, 92-100.
doi: 10.1016/j.neuropsychologia.2017.03.001 URL |
[63] |
Wei, Y., Krishnan, G. P., & Bazhenov, M. (2016). Synaptic mechanisms of memory consolidation during sleep slow oscillations. The Journal of Neuroscience, 36(15), 4231-4247.
doi: 10.1523/JNEUROSCI.3648-15.2016 URL |
[64] |
Wei, Y., Krishnan, G. P., Komarov, M., & Bazhenov, M. (2018). Differential roles of sleep spindles and sleep slow oscillations in memory consolidation. Plos Computational Biology, 14(7), e1006322.
doi: 10.1371/journal.pcbi.1006322 URL |
[65] |
Wilhelm, I., Rose, M., Imhof, K. I., Rasch, B., Büchel, C., & Born, J. (2013). The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nature Neuroscience, 16(4), 391-393.
doi: 10.1038/nn.3343 URL |
[66] |
Yordanova, J., Kolev, V., Bruns, E., Kirov, R., & Verleger, R. (2017). Sleep spindles in the right hemisphere support awareness of regularities and reflect pre-sleep activations. Sleep, 40(11). doi: 10.1093/sleep/zsx151.
doi: 10.1093/sleep/zsx151 |
[67] | Yordanova, J., Kolev, V., Verleger, R., Bataghva, Z., Born, J., & Wagner, U. (2008). Shifting from implicit to explicit knowledge: Different roles of early- and late-night sleep. Learning & Memory, 15(7), 508-515. |
[68] |
Yordanova, J., Kolev, V., Wagner, U., Born, J., & Verleger, R. (2012). Increased alpha (8-12 Hz) activity during slow wave sleep as a marker for the transition from implicit knowledge to explicit insight. Journal of Cognitive Neuroscience, 24(1), 119-132.
doi: 10.1162/jocn_a_00097 URL |
[1] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[2] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[3] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[4] | QIAN Liu, Ru Taotao, LUO Xue, Niu Jiaxing, Ma Yongjun, ZHOU Guofu. Effect of sleep restriction on cognitive function and its underlying mechanism [J]. Advances in Psychological Science, 2020, 28(9): 1493-1507. |
[5] | PENG Jiaxi, ZHAO Lumimg, FANG Peng, CAO Yunfei, MIAO Danmin, XIAO Wei. The effect mechanism of sleep deprivation on risky decision making [J]. Advances in Psychological Science, 2020, 28(11): 1789-1799. |
[6] | LIU Xiaoting, ZHANG Lijin, ZHANG Ning. The effects of sleep quality on risk-taking behavior: Evidence and explanation [J]. Advances in Psychological Science, 2019, 27(11): 1875-1886. |
[7] | CHEN Qingwei, RU Taotao, LUO Xue, DONG Qiaoling, ZHAI Diguo, XIONG Xiao, ZHOU Guofu. The effects of digital media usage on sleep: Mechanisms and interventions [J]. Advances in Psychological Science, 2019, 27(1): 70-82. |
[8] | LIN Mengdi, YE Maolin, PENG Jian, YIN Kui, WANG Zhen. The employees’ sleep quality: A perspective of organizational behavior [J]. Advances in Psychological Science, 2018, 26(6): 1096-1110. |
[9] | SHI Jian, LONG Lirong. The depletion effects of sleep deprivation among employees: A new topic in organization and management research [J]. Advances in Psychological Science, 2018, 26(5): 896-909. |
[10] | SHENG Xiaotian, LIU Zihan, ZHANG Xichao, GUO Heng, DA Shu, ZHOU Shiyi. Sleep and work: The interactive mechanism [J]. Advances in Psychological Science, 2018, 26(10): 1844-1856. |
[11] | LI Aimei; TAN Lei; SUN Hailong; Xiong Guanxing; Pan Jiyang. The effect of sleep deprivation on risky choice: A dual-process models approach [J]. Advances in Psychological Science, 2016, 24(5): 804-814. |
[12] | LEI Xu; ZHAO Wenrui. Simultaneous EEG-fMRI studies of sleep-dependent memory consolidation [J]. Advances in Psychological Science, 2016, 24(3): 327-334. |
[13] | WANG Tianyu; WANG Mingyi. Understanding the Effects of Sleep on Children’s Executive Functions [J]. Advances in Psychological Science, 2015, 23(9): 1560-1567. |
[14] | GUI Wen-Jun; LEI Xu; YUAN Hong; GAO Dong; YU Jing. Sleep-dependent Memory Consolidation: The Effect of Aging [J]. Advances in Psychological Science, 2015, 23(9): 1568-1578. |
[15] | LEI Xu;LIU Huan;LI Hong. A Survey of Simultaneous EEG-fMRI on Sleep [J]. Advances in Psychological Science, 2013, 21(3): 448-457. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||