Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (7): 1251-1263.doi: 10.3724/SP.J.1042.2021.01251
• Regular Articles • Previous Articles Next Articles
Received:
2020-10-18
Online:
2021-07-15
Published:
2021-05-24
Contact:
HU Jinsheng
E-mail:hu_jinsheng@126.com
CLC Number:
WANG Zhengyu, HU Jinsheng. How does sleep affect creative problem-solving: An interpretation based on memory reorganization[J]. Advances in Psychological Science, 2021, 29(7): 1251-1263.
[1] | Alger, S. E., & Payne, J. D. (2016). The differential effects of emotional salience on direct associative and relational memory during a nap. Cognitive, Affective & Behavioral Neuroscience, 16(6), 1150-1163. |
[2] |
Batterink, L. J., Creery, J. D., & Paller, K. A. (2016). Phase of spontaneous slow oscillations during sleep influences memory-related processing of auditory cues. The Journal of Neuroscience, 36(4), 1401-1409.
doi: 10.1523/JNEUROSCI.3175-15.2016 pmid: 26818525 |
[3] |
Beda, Z., & Smith, S. M. (2018). Chasing red herrings: Memory of distractors causes fixation in creative problem solving. Memory & Cognition, 46(5), 671-684.
doi: 10.3758/s13421-018-0799-3 URL |
[4] |
Beijamini, F., Pereira, S. I. R., Cini, F. A., & Louzada, F. M. (2014). After being challenged by a video game problem, sleep increases the chance to solve it. PLoS One, 9(1), e84342.
doi: 10.1371/journal.pone.0084342 URL |
[5] |
Born, J., & Wilhelm, I. (2012). System consolidation of memory during sleep. Psychological Research, 76(2), 192-203.
doi: 10.1007/s00426-011-0335-6 pmid: 21541757 |
[6] |
Brodt, S., Pöhlchen, D., Täumer, E., Gais, S., & Schönauer, M. (2018). Incubation, not sleep, aids problem-solving. Sleep, 41(10). doi: 10.1093/sleep/zsy155.
doi: 10.1093/sleep/zsy155 |
[7] | Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., & Mednick, S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10130-10134. |
[8] |
Cherdieu, M., Reynaud, E., Uhlrich, J., Versace, R., & Mazza, S. (2014). Does age worsen sleep-dependent memory consolidation? Journal of Sleep Research, 23(1), 53-60.
doi: 10.1111/jsr.12100 pmid: 24251387 |
[9] |
Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition, 115(3), 458-465.
doi: 10.1016/j.cognition.2010.03.007 pmid: 20334856 |
[10] |
Cohen-Zion, M., Shabi, A., Levy, S., Glasner, L., & Wiener, A. (2016). Effects of partial sleep deprivation on information processing speed in adolescence. Journal of the International Neuropsychological Society, 22(4), 388-398.
doi: 10.1017/S1355617716000072 URL |
[11] |
Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2014). Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence. The Journal of Neuroscience, 34(48), 15870-15876.
doi: 10.1523/JNEUROSCI.1011-14.2014 pmid: 25429129 |
[12] |
Cousins, J. N., El-Deredy, W., Parkes, L. M., Hennies, N., & Lewis, P. A. (2016). Cued reactivation of motor learning during sleep leads to overnight changes in functional brain activity and connectivity. PLOS Biology, 14(5), e1002451.
doi: 10.1371/journal.pbio.1002451 URL |
[13] |
Debarnot, U., Rossi, M., Faraguna, U., Schwartz, S., & Sebastiani, L. (2017). Sleep does not facilitate insight in older adults. Neurobiology of Learning and Memory, 140, 106-113.
doi: S1074-7427(16)30312-4 pmid: 28219752 |
[14] |
Dörner, D., & Funke, J. (2017). Complex problem solving: What it is and what it is not. Frontiers in Psychology, 8, 1153.
doi: 10.3389/fpsyg.2017.01153 URL |
[15] |
Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2013). Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cerebral Cortex, 23(10), 2467-2478.
doi: 10.1093/cercor/bhs244 URL |
[16] |
Durrant, S. J., Cairney, S. A., & Lewis, P. A. (2016). Cross- modal transfer of statistical information benefits from sleep. Cortex, 78, 85-99.
doi: S0010-9452(16)30024-7 pmid: 27017231 |
[17] |
Fogel, S. M., Albouy, G., Vien, C., Popovicci, R., King, B. R., Hoge, R., ... Doyon, J. (2014). fMRI and sleep correlates of the age-related impairment in motor memory consolidation. Human Brain Mapping, 35(8), 3625-3645.
doi: 10.1002/hbm.v35.8 URL |
[18] |
Hennies, N., Lambon Ralph, M. A., Durrant, S. J., Cousins, J. N., & Lewis, P. A. (2017). Cued memory reactivation during SWS abolishes the beneficial effect of sleep on abstraction. Sleep, 40(8). doi: 10.1093/sleep/zsx102.
doi: 10.1093/sleep/zsx102 |
[19] |
Hołda, M., Głodek, A., Dankiewicz-Berger, M., Skrzypińska, D., & Szmigielska, B. (2020). Ill-defined problem solving does not benefit from daytime napping. Frontiers in Psychology, 11, 559.
doi: 10.3389/fpsyg.2020.00559 URL |
[20] | Huber, R., Mäki, H., Rosanova, M., Casarotto, S., Canali, P., Casali, A. G., ... Massimini, M. (2013). Human cortical excitability increases with time awake. Cerebral Cortex, 23(2), 1-7. |
[21] | Huguet, M., Payne, J. D., Kim, S. Y., & Alger, S. E. (2019). Overnight sleep benefits both neutral and negative direct associative and relational memory. Cognitive, Affective, & Behavioral Neuroscience, 19(6), 1391-1403. |
[22] |
Kattner, F., Samaan, L., & Schubert, T. (2019). Cross-modal transfer after auditory task-switching training. Memory & Cognition, 47(5), 1044-1061.
doi: 10.3758/s13421-019-00911-x URL |
[23] | Kirov, R., Kolev, V., Verleger, R., & Yordanova, J. (2015). Labile sleep promotes awareness of abstract knowledge in a serial reaction time task. Frontiers in Psychology, 6, 1354. |
[24] |
Kralik, J. D., Mao, T., Cheng, Z., & Ray, L. E. (2016). Modeling incubation and restructuring for creative problem solving in robots. Robotics and Autonomous Systems, 86, 162-173.
doi: 10.1016/j.robot.2016.08.025 URL |
[25] |
Kuhn, M., Wolf, E., Maier, J. G., Mainberger, F., Feige, B., Schmid, H., ... Nissen, C. (2016). Sleep recalibrates homeostatic and associative synaptic plasticity in the human cortex. Nature Communication, 7, 12455.
doi: 10.1038/ncomms12455 URL |
[26] |
Landmann, N., Kuhn, M., Maier, J.-G., Feige, B., Spiegelhalder, K., Riemann, D., & Nissen, C. (2016). Sleep strengthens but does not reorganize memory traces in a verbal creativity task. Sleep, 39(3), 705-713.
doi: 10.5665/sleep.5556 pmid: 26518596 |
[27] |
Landmann, N., Kuhn, M., Piosczyk, H., Feige, B., Baglioni, C., Spiegelhalder, K., ... Nissen, C. (2014). The reorganisation of memory during sleep. Sleep Medicine Reviews, 18(6), 531-541.
doi: 10.1016/j.smrv.2014.03.005 pmid: 24813468 |
[28] | Larson-Prior, L. J., Azhar, G., Davila, D. G., Jun, S.-R., Kemp, A. S., Nookaew, I., ... Wassenaar, T. M. (2017). Neurobiology of sleep and microbiomics in aging. OBM Neurobiology, 1(2), 003. |
[29] |
Lau, H., Tucker, M. A., & Fishbein, W. (2010). Daytime napping: Effects on human direct associative and relational memory. Neurobiology of Learning and Memory, 93(4), 554-560.
doi: 10.1016/j.nlm.2010.02.003 pmid: 20176120 |
[30] |
Lavoie, C. J., Zeidler, M. R., & Martin, J. L. (2018). Sleep and aging. Sleep Science and Practice, 2, 3.
doi: 10.1186/s41606-018-0021-3 URL |
[31] |
Lehmann, M., Schreiner, T., Seifritz, E., & Rasch, B. (2016). Emotional arousal modulates oscillatory correlates of targeted memory reactivation during NREM, but not REM sleep. Scientific Reports, 6, 39229.
doi: 10.1038/srep39229 URL |
[32] |
Lewis, P. A., Knoblich, G., & Poe, G. (2018). How memory replay in sleep boosts creative problem-solving. Trends in Cognitive Sciences, 22(6), 491-503.
doi: 10.1016/j.tics.2018.03.009 URL |
[33] |
Llewellyn, S., & Hobson, J. A. (2015). Not only... But also: REM sleep creates and NREM stage 2 instantiates landmark junctions in cortical memory networks. Neurobiology of Learning and Memory, 122, 69-87.
doi: 10.1016/j.nlm.2015.04.005 pmid: 25921620 |
[34] |
Lo, J. C., Ong, J. L., Leong, R. L. F., Gooley, J. J., & Chee, M. W. L. (2016). Cognitive performance, sleepiness, and mood in partially sleep deprived adolescents: The need for sleep study. Sleep, 39(3), 687-698.
doi: 10.5665/sleep.5552 URL |
[35] |
Lowe, C. J., Safati, A., & Hall, P. A. (2017). The neurocognitive consequences of sleep restriction: A meta-analytic review. Neuroscience & Biobehavioral Reviews, 80, 586-604.
doi: 10.1016/j.neubiorev.2017.07.010 URL |
[36] |
Luo, J., & Niki, K. (2003). Function of hippocampus in "insight" of problem solving. Hippocampus, 13(3), 316-323.
doi: 10.1002/(ISSN)1098-1063 URL |
[37] |
Lv, K. (2015). The involvement of working memory and inhibition functions in the different phases of insight problem solving. Memory & Cognition, 43(5), 709-722.
doi: 10.3758/s13421-014-0498-7 URL |
[38] |
Martinsen, Ø.L., & Furnham, A. (2019). Cognitive style and competence motivation in creative problem solving. Personality and Individual Differences, 139, 241-246.
doi: 10.1016/j.paid.2018.11.023 |
[39] |
McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102(3), 419-457.
doi: 10.1037/0033-295X.102.3.419 pmid: 7624455 |
[40] | Nere, A., Hashmi, A., Cirelli, C., & Tononi, G. (2013). Sleep- dependent synaptic down-selection (I): Modeling the benefits of sleep on memory consolidation and integration. Frontiers in Neurology, 4, 143. |
[41] |
Nir, Y., & Tononi, G. (2010). Dreaming and the brain: From phenomenology to neurophysiology. Trends in Cognitive Sciences, 14(2), 88-100.
doi: 10.1016/j.tics.2009.12.001 URL |
[42] | Nizet, L., Montana, X., Lanquart, J.-P., & Loas, G. (2018). Research into an association between anhedonia and decreased REM latency in moderately to severely depressed patients. Sleep Disorders, doi: 10.1155/2018/1636574. |
[43] |
Öllinger, M., Jones, G., & Knoblich, G. (2014). The dynamics of search, impasse, and representational change provide a coherent explanation of difficulty in the nine-dot problem. Psychological Research, 78(2), 266-275.
doi: 10.1007/s00426-013-0494-8 pmid: 23708954 |
[44] |
Patrick, Y., Lee, A., Raha, O., Pillai, K., Gupta, S., Sethi, S., ... Moss, J. (2017). Effects of sleep deprivation on cognitive and physical performance in university students. Sleep and Biological Rhythms, 15(3), 217-225.
doi: 10.1007/s41105-017-0099-5 pmid: 28680341 |
[45] |
Payne, J. D., Kensinger, E. A., Wamsley, E. J., Spreng, R. N., Alger, S. E., Gibler, K., ... Stickgold, R. (2015). Napping and the selective consolidation of negative aspects of scenes. Emotion, 15(2), 176-186.
doi: 10.1037/a0038683 URL |
[46] |
Perdomo, V. L., Hofman, W. F., & Talamini, L. M. (2018). Sleep fosters insight into real-life problems. Archives Italiennes de Biologie, 156(3), 87-98.
doi: 10.12871/00039829201831 pmid: 30324605 |
[47] |
Perogamvros, L., & Schwartz, S. (2012). The roles of the reward system in sleep and dreaming. Neuroscience & Biobehavioral Reviews, 36(8), 1934-1951.
doi: 10.1016/j.neubiorev.2012.05.010 URL |
[48] | Power, A. E. (2004). Slow-wave sleep, acetylcholine, and memory consolidation. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 1795-1796. |
[49] |
Rauchs, G., Schabus, M., Parapatics, S., Bertran, F., Clochon, P., Hot, P., ... Anderer, P. (2008). Is there a link between sleep changes and memory in Alzheimer's disease? NeuroReport, 19(11), 1159-1162.
doi: 10.1097/WNR.0b013e32830867c4 URL |
[50] |
Ritter, S. M., Strick, M., Bos, M. W., van Baaren, R. B., & Dijksterhuis, A. (2012). Good morning creativity: Task reactivation during sleep enhances beneficial effect of sleep on creative performance. Journal of Sleep Research, 21(6), 643-647.
doi: 10.1111/jsr.2012.21.issue-6 URL |
[51] |
Sanders, K. E. G., Osburn, S., Paller, K. A., & Beeman, M. (2019). Targeted memory reactivation during sleep improves next-day problem solving. Psychological Science, 30(11), 1616-1624.
doi: 10.1177/0956797619873344 URL |
[52] |
Schönauer, M., Brodt, S., Pöhlchen, D., Breßmer, A., Danek, A. H., & Gais, S. (2018). Sleep does not promote solving classical insight problems and magic tricks. Frontiers in Human Neuroscience, 12, 72.
doi: 10.3389/fnhum.2018.00072 pmid: 29535620 |
[53] |
Schreiner, T., Lehmann, M., & Rasch, B. (2015). Auditory feedback blocks memory benefits of cueing during sleep. Nature Communications, 6, 8729.
doi: 10.1038/ncomms9729 pmid: 26507814 |
[54] |
Sio, U. N., Monaghan, P., & Ormerod, T. (2013). Sleep on it, but only if it is difficult: Effects of sleep on problem solving. Memory & Cognition, 41(2), 159-166.
doi: 10.3758/s13421-012-0256-7 URL |
[55] |
Staresina, B. P., Bergmann, T. O., Bonnefond, M., van der Meij, R., Jensen, O., Deuker, L., ... Fell, J. (2015). Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep. Nature Neuroscience, 18(11), 1679-1686.
doi: 10.1038/nn.4119 URL |
[56] |
Sterpenich, V., Schmidt, C., Albouy, G., Matarazzo, L., Vanhaudenhuyse, A., Boveroux, P., ... Maquet, P. (2014). Memory reactivation during rapid eye movement sleep promotes its generalization and integration in cortical stores. Sleep, 37(6), 1061-1075.
doi: 10.5665/sleep.3762 pmid: 24882901 |
[57] |
Stickgold, R., Scott, L., Rittenhouse, C., & Hobson, J. A. (1999). Sleep-induced changes in associative memory. Journal of Cognitive Neuroscience, 11(2), 182-193.
doi: 10.1162/089892999563319 URL |
[58] |
Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. The Journal of Neuroscience, 30(43), 14356-14360.
doi: 10.1523/JNEUROSCI.3028-10.2010 pmid: 20980591 |
[59] |
Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49-62.
doi: 10.1016/j.smrv.2005.05.002 URL |
[60] |
Verleger, R., Rose, M., Wagner, U., Yordanova, J., & Kolev, V. (2013). Insights into sleep's role for insight: Studies with the number reduction task. Advances in Cognitive Psychology, 9(4), 160-172.
doi: 10.2478/v10053-008-0143-8 pmid: 24605175 |
[61] |
Wagner, U., Gais, S., Haider, H., Verleger, R., & Born, J. (2004). Sleep inspires insight. Nature, 427(6972), 352-355.
doi: 10.1038/nature02223 URL |
[62] |
Wang, M., Hao, N., Ku, Y., Grabner, R. H., & Fink, A. (2017). Neural correlates of serial order effect in verbal divergent thinking. Neuropsychologia, 99, 92-100.
doi: 10.1016/j.neuropsychologia.2017.03.001 URL |
[63] |
Wei, Y., Krishnan, G. P., & Bazhenov, M. (2016). Synaptic mechanisms of memory consolidation during sleep slow oscillations. The Journal of Neuroscience, 36(15), 4231-4247.
doi: 10.1523/JNEUROSCI.3648-15.2016 URL |
[64] |
Wei, Y., Krishnan, G. P., Komarov, M., & Bazhenov, M. (2018). Differential roles of sleep spindles and sleep slow oscillations in memory consolidation. Plos Computational Biology, 14(7), e1006322.
doi: 10.1371/journal.pcbi.1006322 URL |
[65] |
Wilhelm, I., Rose, M., Imhof, K. I., Rasch, B., Büchel, C., & Born, J. (2013). The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nature Neuroscience, 16(4), 391-393.
doi: 10.1038/nn.3343 URL |
[66] |
Yordanova, J., Kolev, V., Bruns, E., Kirov, R., & Verleger, R. (2017). Sleep spindles in the right hemisphere support awareness of regularities and reflect pre-sleep activations. Sleep, 40(11). doi: 10.1093/sleep/zsx151.
doi: 10.1093/sleep/zsx151 |
[67] | Yordanova, J., Kolev, V., Verleger, R., Bataghva, Z., Born, J., & Wagner, U. (2008). Shifting from implicit to explicit knowledge: Different roles of early- and late-night sleep. Learning & Memory, 15(7), 508-515. |
[68] |
Yordanova, J., Kolev, V., Wagner, U., Born, J., & Verleger, R. (2012). Increased alpha (8-12 Hz) activity during slow wave sleep as a marker for the transition from implicit knowledge to explicit insight. Journal of Cognitive Neuroscience, 24(1), 119-132.
doi: 10.1162/jocn_a_00097 URL |
[1] | PENG Zhilin, ZHENG Ruoying, HU Xiaoqing, ZHANG Dandan. The role of sleep in consolidating memory of learning in infants and toddlers [J]. Advances in Psychological Science, 2024, 32(2): 287-299. |
[2] | Chengyong Jiang, Xinrong Tan, Qingshuo Meng, Er Chen, Liyuan Cui, Yanyu Xiong, Zixuan Yan, Biao Yan, Jiayi Zhang. Controlling Eye Movements and REM Sleep by Distinct Cholinergic Neurons in Oculomotor Nucleus [J]. Advances in Psychological Science, 2023, 31(suppl.): 143-143. |
[3] | HE Meiheng, RU Taotao, LI Le, LI Siyu, ZHANG Chenze, ZHOU Guofu. The optimization effects of daytime light exposure on sleep and its mechanisms [J]. Advances in Psychological Science, 2023, 31(9): 1698-1713. |
[4] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[5] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[6] | KANG Dan, LI Jiajia, CAI Shu. Preschool children’s sleep problem and language disorder [J]. Advances in Psychological Science, 2022, 30(6): 1270-1281. |
[7] | QIAN Liu, Ru Taotao, LUO Xue, Niu Jiaxing, Ma Yongjun, ZHOU Guofu. Effect of sleep restriction on cognitive function and its underlying mechanism [J]. Advances in Psychological Science, 2020, 28(9): 1493-1507. |
[8] | PENG Jiaxi, ZHAO Lumimg, FANG Peng, CAO Yunfei, MIAO Danmin, XIAO Wei. The effect mechanism of sleep deprivation on risky decision making [J]. Advances in Psychological Science, 2020, 28(11): 1789-1799. |
[9] | LIU Xiaoting, ZHANG Lijin, ZHANG Ning. The effects of sleep quality on risk-taking behavior: Evidence and explanation [J]. Advances in Psychological Science, 2019, 27(11): 1875-1886. |
[10] | CHEN Qingwei, RU Taotao, LUO Xue, DONG Qiaoling, ZHAI Diguo, XIONG Xiao, ZHOU Guofu. The effects of digital media usage on sleep: Mechanisms and interventions [J]. Advances in Psychological Science, 2019, 27(1): 70-82. |
[11] | LIN Mengdi, YE Maolin, PENG Jian, YIN Kui, WANG Zhen. The employees’ sleep quality: A perspective of organizational behavior [J]. Advances in Psychological Science, 2018, 26(6): 1096-1110. |
[12] | SHI Jian, LONG Lirong. The depletion effects of sleep deprivation among employees: A new topic in organization and management research [J]. Advances in Psychological Science, 2018, 26(5): 896-909. |
[13] | SHENG Xiaotian, LIU Zihan, ZHANG Xichao, GUO Heng, DA Shu, ZHOU Shiyi. Sleep and work: The interactive mechanism [J]. Advances in Psychological Science, 2018, 26(10): 1844-1856. |
[14] | LI Aimei; TAN Lei; SUN Hailong; Xiong Guanxing; Pan Jiyang. The effect of sleep deprivation on risky choice: A dual-process models approach [J]. Advances in Psychological Science, 2016, 24(5): 804-814. |
[15] | LEI Xu; ZHAO Wenrui. Simultaneous EEG-fMRI studies of sleep-dependent memory consolidation [J]. Advances in Psychological Science, 2016, 24(3): 327-334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||