Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (6): 951-958.doi: 10.3724/SP.J.1042.2021.00951
• Editor-In-Chief Invited • Next Articles
Received:
2020-12-07
Online:
2021-06-15
Published:
2021-04-25
Contact:
CHEN Hong
E-mail:chenhg@swu.edu.cn
CLC Number:
CHEN Hong, LIU Xinyuan. Neuro-cognitive mechanism of food craving and restrained eating in Chinese[J]. Advances in Psychological Science, 2021, 29(6): 951-958.
[1] | 王健美, 刘永, 周一舟, 张露露, 尹明, 杨润澜, 陈红. (2020). 辣食渴求者抑制控制能力的行为和ERP研究. 心理科学, 43(1), 150-157. |
[2] | 王劭睿, 陈红. (2019). 为何越减越肥?——限制性饮食者过度进食的心理机制及影响因素. 心理科学进展, 27(2), 322-328. |
[3] | 张雪萌, 陈红, 高笑, 江沂芯, 周一舟. (2016). 成功与失败限制性饮食者对食物加工的能量效应:注意偏向的眼动追踪. 心理科学, 39(4), 956-963. |
[4] | 周一舟. (2018). “辣食渴求者”线索反应的生理及神经机制 (博士学位论文). 西南大学, 重庆. |
[5] |
Brockmeyer, T., Hahn, C., Reetz, C., Schmidt, U., & Friederich, H.-C. (2015). Approach bias and cue reactivity towards food in people with high versus low levels of food craving. Appetite, 95, 197-202.
doi: 10.1016/j.appet.2015.07.013 pmid: 26184338 |
[6] |
Chen, S., Dong, D., Jackson, T., Su, Y., & Chen, H. (2016). Altered frontal inter-hemispheric resting state functional connectivity is associated with bulimic symptoms among restrained eaters. Neuropsychologia, 81, 22-30.
doi: 10.1016/j.neuropsychologia.2015.06.036 URL |
[7] |
Chen, S., Dong, D., Jackson, T., Zhuang, Q., & Chen, H. (2017). Trait-based food-cravings are encoded by regional homogeneity in the parahippocampal gyrus. Appetite, 114, 155-160.
doi: 10.1016/j.appet.2017.03.033 URL |
[8] | Chen, S., Jackson, T., Dong, D., Zhuang, Q., & Chen, H. (2019). Effects of palatable food versus thin figure conflicts on responses of young dieting women. Frontiers in Psychology, 10.. |
[9] |
Chen, S., Jia, Y., & Woltering, S. (2018). Neural differences of inhibitory control between adolescents with obesity and their peers. International Journal of Obesity, 42(10), 1753-1761.
doi: 10.1038/s41366-018-0142-x URL |
[10] |
Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013). Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology, 38(12), 2363-2372.
doi: 10.1038/npp.2013.134 pmid: 23708507 |
[11] |
Dong, D., Jackson, T., Wang, Y., & Chen, H. (2015). Spontaneous regional brain activity links restrained eating to later weight gain among young women. Biological Psychology, 109, 176-183.
doi: 10.1016/j.biopsycho.2015.05.003 URL |
[12] |
Dong, D., Lei, X., Jackson, T., Wang, Y., Su, Y., & Chen, H. (2014). Altered regional homogeneity and efficient response inhibition in restrained eaters. Neuroscience, 266, 116-126.
doi: 10.1016/j.neuroscience.2014.01.062 pmid: 24513387 |
[13] |
Geliebter, A., Benson, L., Pantazatos, S. P., Hirsch, J., & Carnell, S. (2016). Greater anterior cingulate activation and connectivity in response to visual and auditory high-calorie food cues in binge eating: Preliminary findings. Appetite, 96, 195-202.
doi: S0195-6663(15)00375-X pmid: 26275334 |
[14] | Goldstein, R. (2018). 9. Cue-induced incubation of craving in human cocaine addiction: Modulation by reappraisal? Biological Psychiatry, 83(9), S3-S4. |
[15] |
Hormes, J. M., & Meule, A. (2016). Psychometric properties of the English Food Cravings Questionnaire-Trait-reduced (FCQ-T-r). Eating Behaviors, 20, 34-38.
doi: 10.1016/j.eatbeh.2015.11.011 pmid: 26609669 |
[16] |
Jones, A., Robinson, E., Duckworth, J., Kersbergen, I., Clarke, N., & Field, M. (2018). The effects of exposure to appetitive cues on inhibitory control: A meta-analytic investigation. Appetite, 128, 271-282.
doi: 10.1016/j.appet.2018.06.024 URL |
[17] |
Keller, C., & Siegrist, M. (2014). Successful and unsuccessful restrained eating. Does dispositional self-control matter? Appetite, 74, 101-106.
doi: 10.1016/j.appet.2013.11.019 URL |
[18] |
Kober, H., & Boswell, R. G. (2018). Potential psychological & neural mechanisms in binge eating disorder: Implications for treatment. Clinical Psychology Review, 60, 32-44.
doi: S0272-7358(17)30190-3 pmid: 29329692 |
[19] | Kober, H., & Mell, M. M. (2015). Neural mechanisms underlying craving and the regulation of craving. The Wiley Handbook on the Cognitive Neuroscience of Addiction, 195-218. |
[20] | Kong, F., Zhang, Y., & Chen, H. (2015). Inhibition ability of food cues between successful and unsuccessful restrained eaters: A two-choice oddball task. PLos ONE, 10(4), 741-752. |
[21] |
Liu, Y., Zhang, L., Jackson, T., Wang, J., Yang, R., & Chen, H. (2020). Effects of negative mood state on event-related potentials of restrained eating subgroups during an inhibitory control task. Behavioural Brain Research, 377, 112249.
doi: 10.1016/j.bbr.2019.112249 URL |
[22] | Ludy, M.-J., & Mattes, R. D. (2011). The effects of hedonically acceptable red pepper doses on thermogenesis and appetite. Physiology & Behavior, 102(3-4),251-258. |
[23] | Lv, J., Qi, L., Yu, C., Yang, L., Guo, Y., Chen, Y., ... Li, L. (2015). Consumption of spicy foods and total and cause specific mortality: Population based cohort study. The British Medical Journal, 351, h3942. |
[24] |
Ma, Y., Ratnasabapathy, R., & Gardiner, J. (2017). Carbohydrate craving: Not everything is sweet. Current Opinion in Clinical Nutrition and Metabolic Care, 20(4), 261-265.
doi: 10.1097/MCO.0000000000000374 URL |
[25] |
Meule, A., & Hormes, J. M. (2015). Chocolate versions of the Food Cravings Questionnaires. Associations with chocolate exposure-induced salivary flow and ad libitum chocolate consumption. Appetite, 91, 256-265.
doi: 10.1016/j.appet.2015.04.054 URL |
[26] |
Meule, A., & Kubler, A. (2014). Double trouble. Trait food craving and impulsivity interactively predict food-cue affected behavioral inhibition. Appetite, 79, 174-182.
doi: 10.1016/j.appet.2014.04.014 URL |
[27] |
Noori, H. R., Linan, A. C., & Spanagel, R. (2016). Largely overlapping neuronal substrates of reactivity to drug, gambling, food and sexual cues: A comprehensive meta-analysis. European Neuropsychopharmacology, 26(9), 1419-1430.
doi: 10.1016/j.euroneuro.2016.06.013 URL |
[28] |
Pires, L., Leitão, J., Guerrini, C., & Simões, M. R. (2014). Event-related brain potentials in the study of inhibition: Cognitive control, source localization and age-related modulations. Neuropsychological Review, 24(4), 461-490.
doi: 10.1007/s11065-014-9275-4 URL |
[29] | Polivy, J., Herman, C. P., & Mills, J. S. (2020). What is restrained eating and how do we identify it? Appetite, 155, 104802. |
[30] |
Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., ... Li, L. (2014). Alterations of the human gut microbiome in liver cirrhosis. Nature, 513(7516), 59-64.
doi: 10.1038/nature13568 URL |
[31] |
Rolls, E. T., & McCabe, C. (2007). Enhanced affective brain representations of chocolate in cravers vs. non-cravers. European Journal of Neuroscience, 26(4), 1067-1076.
doi: 10.1111/j.1460-9568.2007.05724.x URL |
[32] |
Schaumberg, K., Anderson1, D. A., Anderson, L. M., Reilly, E. E., & Gorrell, S. (2016). Dietary restraint: What's the harm? A review of the relationship between dietary restraint, weight trajectory and the development of eating pathology. Clinical Obesity, 6, 89-100.
doi: 10.1111/cob.12134 URL |
[33] |
Song, S., Zhang, Y., Qiu, J., Li, X., Ma, K., Chen, S., & Chen, H. (2019). Brain structures associated with eating behaviors in normal-weight young females. Neuropsychologia, 133, 107171.
doi: 10.1016/j.neuropsychologia.2019.107171 URL |
[34] |
Stopyra, M. A., Simon, J. J., Skunde, M., Walther, S., Bendszus, M., Herzog, W., & Friederich, H. C. (2019). Altered functional connectivity in binge eating disorder and bulimia nervosa: A resting-state fmri study. Brain and Behavior, 9(2), e01207.
doi: 10.1002/brb3.2019.9.issue-2 URL |
[35] |
Stroebe, W., van Koningsbruggen, G. M., Papies, E. K., & Aarts, H. (2013). Why most dieters fail but some succeed: A goal conflict model of eating behavior. Psychological Review, 120(1), 110-138.
doi: 10.1037/a0030849 URL |
[36] | Su, Y., Jackson, T., Wei, D., Qiu, J., & Chen, H. (2017). Regional gray matter volume is associated with restrained eating in healthy Chinese young adults: Evidence from voxel-based morphometry. Frontiers in Psychology, 8, 443. |
[37] |
Sun, D., Lv, J., Chen, W., Li, S., Guo, Y., Bian, Z., ... Li, L. (2014). Spicy food consumption is associated with adiposity measures among half a million Chinese people: The China kadoorie biobank study. BMC Public Health, 14(1), 1293.
doi: 10.1186/1471-2458-14-1293 URL |
[38] |
Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: Lessons learned and a road ahead. NeuroImage, 62(4), 2281-2295.
doi: 10.1016/j.neuroimage.2012.01.117 pmid: 22326834 |
[39] | Tepper, B. J., Keller, K. L., & Ullrich, N. V. (2004). Genetic variation in taste and preferences for bitter and pungent foods: Implications for chronic disease risk(pp.60-74). Challenges in Taste Chemistry and Biology. |
[40] |
Wang, Y., Dong, D., Jackson, T., Jie, D., Zhou, Y., Hui, L., & Chen, H. (2016). Neural correlates of restrained eaters' high susceptibility to food cues: An fMRI study. Neuroscience Letters, 631, 56-62.
doi: S0304-3940(16)30588-2 pmid: 27524674 |
[41] |
Weygandt, M., Mai, K., Dommes, E., Ritter, K., Leupelt, V., Spranger, J., & Haynes, J.-D. (2015). Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity. NeuroImage, 109, 318-327.
doi: 10.1016/j.neuroimage.2014.12.073 pmid: 25576647 |
[42] |
Yao, L., Li, W., Dai, Z., & Dong, C. (2016). Eating behavior associated with gray matter volume alternations: A voxel based morphometry study. Appetite, 96, 572-579.
doi: 10.1016/j.appet.2015.10.017 URL |
[43] |
Zhang, X., Luo, Y., Liu, Y., Yang, C., & Chen, H. (2019). Lack of conflict during food choice is associated with the failure of restrained eating. Eating Behaviors, 34, 101309.
doi: 10.1016/j.eatbeh.2019.101309 URL |
[44] | Zhang, Y., Wang, S., Wei, L., Jackson, T., Gao, X., Xiao, M. Y., ... Chen, H. (2020). Resting state differences between successful and unsuccessful restrained eaters. Brain Imaging and Behavior, 6. |
[45] |
Zhou, Y., Gao, X., Small, D. M., & Chen, H. (2019). Extreme spicy food cravers displayed increased brain activity in response to pictures of foods containing chili peppers: An fMRI study. Appetite, 142, 104379.
doi: 10.1016/j.appet.2019.104379 URL |
[46] |
Zhou, Y., Liu, Y., Du, J., & Chen, H. (2018). Effects of food exposure on food-related inhibitory control in restrained eaters: An ERP study. Neuroscience Letters, 672, 130-135.
doi: 10.1016/j.neulet.2018.02.048 URL |
[1] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[2] | LIU Wenhua, WEN Xiujuan, CHEN Ling, YANG Rui, HU Yiru. Reward-anticipation and outcome-evaluation ERPs and its application in psychiatric disorders [J]. Advances in Psychological Science, 2023, 31(5): 783-799. |
[3] | ZHANG Jie, ZHANG Huoyin, LI Hong, LEI Yi. The effect of sleep on fear learning and its cognitive neural mechanisms [J]. Advances in Psychological Science, 2023, 31(4): 631-640. |
[4] | LIU Wenbin, QI Zhengtang, LIU Weina. The effects of different sensory functions on depression and its neuromechanism [J]. Advances in Psychological Science, 2023, 31(4): 641-656. |
[5] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[6] | LIU Peihan, ZHANG Huoyin, ZHANG Xukai, LI Hong, LEI Yi. Effects of acute versus chronic pain on reward processing and the underlying neural mechanisms involved [J]. Advances in Psychological Science, 2023, 31(3): 402-415. |
[7] | MA Yuanxiao, CHEN Xu. The functional mechanism of oxytocin in anxiety detection and extinction among anxiety-susceptible groups [J]. Advances in Psychological Science, 2023, 31(1): 10-19. |
[8] | YU Jiayu, JIN Yuxi, LIANG Dandan. Brain activation differences in lexical-semantics processing in autistic population: A meta-analysis of fMRI studies [J]. Advances in Psychological Science, 2022, 30(11): 2448-2460. |
[9] | WANG Rong, CHEN Xiaoyi, DU Xue, JIANG Jun. The regulatory mechanism of transcutaneous vagus nerve stimulation on inhibition control [J]. Advances in Psychological Science, 2022, 30(10): 2269-2277. |
[10] | HU Xiaoyong, DU Tangyan, LI Lanyu, WANG Tiantian. Neural mechanisms underlying the effect of low socioeconomic status on self-regulation [J]. Advances in Psychological Science, 2022, 30(10): 2278-2290. |
[11] | ZHANG Siyuan, LI Xuebing. The application of different frequencies of transcranial alternating current stimulation in mental disorders [J]. Advances in Psychological Science, 2022, 30(9): 2053-2066. |
[12] | ZOU Di, LI Hong, WANG Fushun. An investigation into the definition of arousal and its cognitive neurophysiological basis [J]. Advances in Psychological Science, 2022, 30(9): 2020-2033. |
[13] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[14] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[15] | LI Haihong, SHANG Siyuan, XIE Xiaofei. The role of genes in altruistic behavior: Evidence from quantitative genetics and molecular genetics [J]. Advances in Psychological Science, 2022, 30(7): 1574-1588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||