Advances in Psychological Science ›› 2019, Vol. 27 ›› Issue (12): 2019-2033.doi: 10.3724/SP.J.1042.2019.02019
• Regular Articles • Previous Articles Next Articles
ZHANG Jiaxin, HAI Lagan, LI Huijie()
Received:
2019-04-17
Online:
2019-12-15
Published:
2019-10-21
Contact:
LI Huijie
E-mail:lihj@psych.ac.cn
CLC Number:
ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging[J]. Advances in Psychological Science, 2019, 27(12): 2019-2033.
[1] | 胡镜清, 温泽淮, 赖世隆 . ( 2000). Morris水迷宫检测的记忆属性与方法学初探. 广州中医药大学学报, 17( 2), 117-119. |
[2] | 胡志红, 闫君宝, 杨东伟 . ( 2016). 游泳训练次数对大鼠Morris水迷宫成绩的影响. 山西医科大学学报, 47( 1), 18-21. |
[3] | 李丹, 杨昭宁 . ( 2015). 空间导航:路标学习和路径整合的关系. 心理科学进展, 23( 10), 1755-1762. doi: 10.3724/ sp.j.1042.2015.01755 |
[4] | 罗小泉, 骆利平, 陈海芳, 涂明珠, 黎艳刚, 袁金斌, 杨武亮 . ( 2010). Morris水迷宫检测大鼠记忆力方法的探讨. 时珍国医国药, 21( 10), 2667-2669. |
[5] | 王芳芳 . ( 2017). APOE风险基因和性别差异对空间导航能力相关脑结构的影响. (硕士), 南京大学 |
[6] | 武文博 . ( 2015). 年龄和认知状态对空间导航能力影响的行为学研究及其脑网络基础. (硕士), 南京医科大学 |
[7] | 武文博, 张冰, 徐运 . ( 2015). 空间导航——阿尔兹海默病早期诊断的新指标. 中国实用内科杂志, 35( 02), 168-170. |
[8] | Allard, S., Gosein, V., Cuello, A. C., & Ribeiro-da-Silva, A . ( 2011). Changes with aging in the dopaminergic and noradrenergic innervation of rat neocortex. Neurobiology of Aging, 32( 12), 2244-2253. doi: 10.1016/j.neurobiolaging. 2009.12.023 |
[9] | Allison, S. L., Fagan, A. M., Morris, J. C., & Head, D . ( 2016). Spatial navigation in preclinical Alzheimer's disease. Journal of Alzheimers Dissease, 52( 1), 77-90. doi: 10.3233/JAD-150855 |
[10] | Antonova, E., Parslow, D., Brammer, M., Dawson, G. R., Jackson, S. H., & Morris, R. G . ( 2009). Age-related neural activity during allocentric spatial memory. Memory, 17( 2), 125-143. doi: 10.1080/09658210802077348 |
[11] | Bai, F., Zhang, Z., Watson, D. R., Yu, H., Shi, Y., Yuan, Y., .. Qian, Y . ( 2009). Abnormal functional connectivity of hippocampus during episodic memory retrieval processing network in amnestic mild cognitive impairment. Biological Psychiatry, 65( 11), 951-958. doi: 10.1016/j.biopsych.2008. 10.017 |
[12] | Banta Lavenex, P. A., Colombo, F., Ribordy Lambert, F., & Lavenex, P . ( 2014). The human hippocampus beyond the cognitive map: Evidence from a densely amnesic patient. Frontiers in Human Neuroscience, 8, 711. doi: 10.3389/ fnhum.2014.00711 |
[13] | Barnes, C. A., Nadel, L., & Honig, W. K . ( 1980). Spatial memory deficit in senescent rats. Canadian Journal of Psychologyl, 34( 1), 29-39. |
[14] | Barrash, J. (1994). Age-related decline in route learning ability. Developmental Neuropsychology, 10( 3), 189-201. |
[15] | Bellassen, V., Igloi, K., de Souza, L. C., Dubois, B., & Rondi-Reig, L . ( 2012). Temporal order memory assessed during spatiotemporal navigation as a behavioral cognitive marker for differential Alzheimer's disease diagnosis. Journal of Neuroscience, 32( 6), 1942-1952. doi: 10.1523/ JNEUROSCI.4556-11.2012 |
[16] | Besnard, S., Machado, M. L., Vignaux, G., Boulouard, M., Coquerel, A., Bouet, V., .. Lelong-Boulouard, V . ( 2012). Influence of vestibular input on spatial and nonspatial memory and on hippocampal NMDA receptors. Hippocampus, 22( 4), 814-826. doi: 10.1002/hipo.20942 |
[17] | Boccia, M., Nemmi, F., & Guariglia, C . ( 2014). Neuropsychology of environmental navigation in humans: Review and meta-analysis of FMRI studies in healthy participants. Neuropsychology Review, 24( 2), 236-251. doi: 10.1007/s11065-014-9247-8 |
[18] | Bohbot, V. D., Lerch, J., Thorndycraft, B., Iaria, G., & Zijdenbos, A. P . ( 2007). Gray matter differences correlate with spontaneous strategies in a human virtual navigation task. Journal of Neuroscience, 27( 38), 10078-10083. doi: 10.1523/JNEUROSCI.1763-07.2007 |
[19] | Bohil, C. J., Alicea, B., & Biocca, F. A . ( 2011). Virtual reality in neuroscience research and therapy. Nature Reviews Neuroscience, 12( 12), 752-762. doi: 10.1038/nrn3122 |
[20] | Bullens, J., Igloi, K., Berthoz, A., Postma, A., & Rondi-Reig, L . ( 2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107( 3), 337-350. doi: 10.1016/j.jecp.2010.05.010 |
[21] | Burgdorf, J., Zhang, X. L., Weiss, C., Matthews, E., Disterhoft, J. F., Stanton, P. K., & Moskal, J. R . ( 2011). The N-methyl-D-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiology of Aging, 32( 4), 698-706. doi: 10.1016/j.neurobiolaging.2009.04.012 |
[22] | Burgess, N., Maguire, E. A., & O'Keefe, J . ( 2002). The human hippocampus and spatial and episodic memory. Neuron, 35( 4), 625-641. |
[23] | Byrne, P., Becker, S., & Burgess, N . ( 2007). Remembering the past and imagining the future: A neural model of spatial memory and imagery. Psychological Review, 114( 2), 340-375. doi: 10.1037/0033-295X.114.2.340 |
[24] | Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R . ( 2002). Aging gracefully: Compensatory brain activity in high-performing older adults. NeuroImage, 17( 3), 1394-1402. doi: 10.1006/nimg.2002.1280 |
[25] | Chersi, F., & Burgess, N. (2015). The cognitive architecture of spatial navigation: Hippocampal and striatal contributions. Neuron, 88( 1), 64-77. doi: 10.1016/j.neuron.2015.09.021 |
[26] | Cogne, M., Taillade, M., N'Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., .. Sorita, E . ( 2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of Physical and Rehabilitation Medicine, 60( 3), 164-176. doi: 10.1016/ j.rehab.2015.12.004 |
[27] | Colombo, D., Serino, S., Tuena, C., Pedroli, E., Dakanalis, A., Cipresso, P., & Riva, G . ( 2017). Egocentric and allocentric spatial reference frames in aging: A systematic review. Neuroscience and Biobehavioral Reviews, 80, 605-621. doi: 10.1016/j.neubiorev.2017.07.012 |
[28] | Cong, S., Risacher, S. L., West, J. D., Wu, Y. C., Apostolova, L. G., Tallman, E., .. Shen, L . ( 2018). Volumetric comparison of hippocampal subfields extracted from 4- minute accelerated vs. 8-minute high-resolution T2-weighted 3T MRI scans. Brain Imaging and Behavior, 12( 6), 1583-1595. doi: 10.1007/s11682-017-9819-3 |
[29] | Coughlan, G., Laczo, J., Hort, J., Minihane, A. M., & Hornberger, M . ( 2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14( 8), 496-506. doi: 10.1038/s41582-018-0031-x |
[30] | Coutureau, E., & Di Scala, G. (2009). Entorhinal cortex and cognition. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33( 5), 753-761. doi: 10.1016/j. pnpbp.2009.03.038 |
[31] | Cushman, L. A., Stein, K., & Duffy, C. J . ( 2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71( 12), 888-895. doi: 10.1212/01.wnl.0000326262.67613.fe |
[32] | Dahmani, L., & Bohbot, V. D . ( 2015). Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies. Neurobiology of Learning and Memory, 117, 42-50. doi: 10.1016/j.nlm.2014.07.002 |
[33] | Daugherty, A. M., Yuan, P., Dahle, C. L., Bender, A. R., Yang, Y., & Raz, N . ( 2015). Path complexity in virtual water maze navigation: Differential associations with age, sex, and regional brain volume. Cerebral Cortex, 25( 9), 3122-3131. doi: 10.1093/cercor/bhu107 |
[34] | Davis, R. L., & Weisbeck, C. (2015). Search strategies used by older adults in a virtual reality place learning task. Gerontologist, 55 Suppl 1, S118-127. doi: 10.1093/geront/ gnv020 |
[35] | de Bruin, J. P. C., Sànchez-Santed, F., Heinsbroek, R. P. W., Donker, A., & Postmes, P . ( 1994). A behavioural analysis of rats with damage to the medial prefrontal cortex using the morris water maze: Evidence for behavioural flexibility, but not for impaired spatial navigation. Brain Research, 652( 2), 323-333. doi: https://doi.org/10.1016/0006-8993 (94)90243-7 |
[36] | Doeller, C. F., Barry, C., & Burgess, N . ( 2010). Evidence for grid cells in a human memory network. Nature, 463( 7281), 657-661. doi: 10.1038/nature08704 |
[37] | Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J . ( 2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47( 3), 326-335. doi: 10.1016/j. yhbeh.2004.11.013 |
[38] | Duffy, C. J . ( 2009). Visual motion processing in aging and Alzheimer's disease: neuronal mechanisms and behavior from monkeys to man. Annals of the New York Academy of Sciences, 1170( 1), 736-744. doi: 10.1111/j.1749-6632. 2009.04021.x |
[39] | Duvernoy, H.M . ( 2005). The human hippocampus: functional anatomy, vascularization and serial sections with MRI: Springer Science & Business Media. |
[40] | Fouquet, C., Tobin, C., & Rondi-Reig, L . ( 2010). A new approach for modeling episodic memory from rodents to humans: the temporal order memory. Behavioural Brain Research, 215( 2), 172-179. doi: 10.1016/j.bbr.2010.05.054 |
[41] | Fu, H., Rodriguez, G. A., Herman, M., Emrani, S., Nahmani, E., Barrett, G., .. Duff, K. E . ( 2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer's disease. Neuron, 93( 3), 533- 541 e535. doi: 10.1016/j. neuron.2016.12.023 |
[42] | Garcia-Betances, R. I., Arredondo Waldmeyer, M. T., Fico, G., & Cabrera-Umpierrez, M. F . ( 2015). A succinct overview of virtual reality technology use in Alzheimer's disease. Frontiers in Aging Neuroscience, 7, 80. doi: 10.3389/fnagi.2015.00080 |
[43] | Gazova, I., Laczo, J., Rubinova, E., Mokrisova, I., Hyncicova, E., Andel, R., .. Hort, J . ( 2013). Spatial navigation in young versus older adults. Frontiers in Aging Neuroscience, 5, 94. doi: 10.3389/fnagi.2013.00094 |
[44] | Gramann, K., Muller, H. J., Eick, E. M., & Schonebeck, B . ( 2005). Evidence of separable spatial representations in a virtual navigation task. Journal of Experimental Psychology-Human Perception and Performance, 31( 6), 1199-1223. doi: 10.1037/0096-1523.31.6.1199 |
[45] | Groth-Marnat, G., & Teal, M. (2000). Block design as a measure of everyday spatial ability: A study of ecological validity. Perceptual and motor skills, 90( 2), 522-526. doi: Doi 10.2466/Pms.90.2.522-526 |
[46] | Guzowski, J. F., Knierim, J. J., & Moser, E. I . ( 2004). Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron, 44( 4), 581-584. doi: 10.1016/j.neuron.2004.11.003 |
[47] | Harris, M. A., Wiener, J. M., & Wolbers, T . ( 2012). Aging specifically impairs switching to an allocentric navigational strategy. Frontiers in Aging Neuroscience, 4, 29. doi: 10.3389/fnagi.2012.00029 |
[48] | Harris, M. A., & Wolbers, T. (2012). Ageing effects on path integration and landmark navigation. Hippocampus, 22( 8), 1770-1780. doi: 10.1002/hipo.22011 |
[49] | Harris, M. A., & Wolbers, T. (2014). How age-related strategy switching deficits affect wayfinding in complex environments. Neurobiology of Aging, 35( 5), 1095-1102. doi: 10.1016/j.neurobiolaging.2013.10.086 |
[50] | Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N . ( 2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37( 5), 877-888. |
[51] | Horner, A. J., Bisby, J. A., Zotow, E., Bush, D., & Burgess, N . ( 2016). Grid-like processing of imagined navigation. Current Biology, 26( 6), 842-847. doi: 10.1016/j.cub.2016. 01.042 |
[52] | Hort, J., Laczo, J., Vyhnalek, M., Bojar, M., Bures, J., & Vlcek, K . ( 2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proceedings of the National Academy of Sciences of the United States of America, 104( 10), 4042-4047. doi: 10.1073/pnas.0611314104 |
[53] | Howard, L. R., Javadi, A. H., Yu, Y., Mill, R. D., Morrison, L. C., Knight, R., .. Spiers, H. J . ( 2014). The hippocampus and entorhinal cortex encode the path and Euclidean distances to goals during navigation. Current Biology, 24( 12), 1331-1340. doi: 10.1016/j.cub.2014.05.001 |
[54] | Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., .. Tsai, L. H . ( 2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540( 7632), 230-235. doi: 10.1038/ nature20587 |
[55] | Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D . ( 2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23( 13), 5945-5952. |
[56] | Igloi, K., Doeller, C. F., Paradis, A. L., Benchenane, K., Berthoz, A., Burgess, N., & Rondi-Reig, L . ( 2015). Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation. Cerebral Cortex, 25( 11), 4146-4154. doi: 10.1093/cercor/bhu132 |
[57] | Igloi, K., Zaoui, M., Berthoz, A., & Rondi-Reig, L . ( 2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19( 12), 1199-1211. doi: 10.1002/hipo.20595 |
[58] | Joy, S., Fein, D., Kaplan, E., & Freedman, M . ( 2001). Quantifying qualitative features of Block Design performance among healthy older adults. Archives of Clinical Neuropsychology, 16( 2), 157-170. |
[59] | Julian, J. B., Ryan, J., Hamilton, R. H., & Epstein, R. A . ( 2016). The occipital place area is causally involved in representing environmental boundaries during navigation. Current Biology, 26( 8), 1104-1109. doi: 10.1016/j.cub.2016. 02.066 |
[60] | Kirasic, K. C . ( 1991). Spatial cognition and behavior in young and elderly adults: Implications for learning new environments. Psychology and Aging, 6( 1), 10-18. |
[61] | Klencklen, G., Despres, O., & Dufour, A . ( 2012). What do we know about aging and spatial cognition? Reviews and perspectives. Ageing Research Reviews, 11( 1), 123-135. doi: 10.1016/j.arr.2011.10.001 |
[62] | Knierim, J. J., & Neunuebel, J. P . ( 2016). Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiology of Learning and Memory, 129, 38-49. doi: 10.1016/j.nlm. 2015.10.008 |
[63] | Konishi, K., Bhat, V., Banner, H., Poirier, J., Joober, R., & Bohbot, V. D . ( 2016). APOE2 Is Associated with spatial navigational strategies and increased gray matter in the hippocampus. Frontiers in Human Neuroscience, 10, 349. doi: 10.3389/fnhum.2016.00349 |
[64] | Konishi, K., & Bohbot, V. D . ( 2013). Spatial navigational strategies correlate with gray matter in the hippocampus of healthy older adults tested in a virtual maze. Frontiers in Aging Neuroscience, 5, 1. doi: 10.3389/fnagi.2013.00001 |
[65] | Kunz, L., Schroder, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., .. Axmacher, N . ( 2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer's disease. Science, 350( 6259), 430-433. doi: 10.1126/science.aac8128 |
[66] | Lavenex, P. B., Amaral, D. G., & Lavenex, P . ( 2006). Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. Journal of Neuroscience, 26( 17), 4546-4558. doi: 10.1523/JNEUROSCI.5412-05.2006 |
[67] | Leal, S.L., & Yassa, M. A . ( 2015). Neurocognitive aging and the hippocampus across species. Trends in Neurosciences, 38( 12), 800-812. doi: 10.1016/j.tins.2015.10.003 |
[68] | Lemay, M., Bertram, C. P., & Stelmach, G. E . ( 2004). Pointing to an allocentric and egocentric remembered target in younger and older adults. Experimental Aging Research, 30( 4), 391-406. doi: 10.1080/03610730490484443 |
[69] | Lester, A. W., Moffat, S. D., Wiener, J. M., Barnes, C. A., & Wolbers, T . ( 2017). The aging navigational system. Neuron, 95( 5), 1019-1035. doi: 10.1016/j.neuron.2017.06.037 |
[70] | Liang, Z., Yang, Y., Li, G., Zhang, J., Wang, Y., Zhou, Y., & Leventhal, A. G . ( 2010). Aging affects the direction selectivity of MT cells in rhesus monkeys. Neurobiology of Aging, 31( 5), 863-873. doi: 10.1016/j.neurobiolaging. 2008.06.013 |
[71] | Lithfous, S., Dufour, A., Blanc, F., & Despres, O . ( 2014). Allocentric but not egocentric orientation is impaired during normal aging: An ERP study. Neuropsychology, 28( 5), 761-771. doi: 10.1037/neu0000084 |
[72] | Lovden, M., Schaefer, S., Noack, H., Bodammer, N. C., Kuhn, S., Heinze, H. J., .. Lindenberger, U . ( 2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33( 3), 620 e629-620 e622. doi: 10.1016/j.neurobiolaging.2011.02.013 |
[73] | Mahmood, O., Adamo, D., Briceno, E., & Moffat, S. D . ( 2009). Age differences in visual path integration. Behavioural Brain Research, 205( 1), 88-95. doi: 10.1016/j. bbr.2009.08.001 |
[74] | Marquez, D. X., Hunter, R. H., Griffith, M. H., Bryant, L. L., Janicek, S. J., & Atherly, A. J . ( 2017). Older adult strategies for community wayfinding. Journal of Applied Gerontology, 36( 2), 213-233. doi: 10.1177/ 0733464815581481 |
[75] | McHail, D. G., Valibeigi, N., & Dumas, T. C . ( 2018). A Barnes maze for juvenile rats delineates the emergence of spatial navigation ability. Learn Mem, 25( 3), 138-146. doi: 10.1101/lm.046300.117 |
[76] | Migo, E. M., O'Daly, O., Mitterschiffthaler, M., Antonova, E., Dawson, G. R., Dourish, C. T., .. Morris, R. G . ( 2016). Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Neuropsychol, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 23( 2), 196-217. doi: 10.1080/13825585.2015.1073218 |
[77] | Moffat, S. D . ( 2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19( 4), 478-489. doi: 10.1007/s11065-009-9120-3 |
[78] | Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N . ( 2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17( 6), 1274-1282. doi: 10.1093/cercor/bhl036 |
[79] | Monahan, J. B., Handelmann, G. E., Hood, W. F., & Cordi, A. A . ( 1989). D-cycloserine, a positive modulator of the N-methyl-D-aspartate receptor, enhances performance of learning tasks in rats. Pharmacology Biochemistry and Behavior, 34( 3), 649-653. |
[80] | Morganti, F., Stefanini, S., & Riva, G . ( 2013). From allo- to egocentric spatial ability in early Alzheimer's disease: A study with virtual reality spatial tasks. Cognitive Neuroscience, 4( 3-4), 171-180. doi: 10.1080/17588928. 2013.854762 |
[81] | Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11( 1), 47-60. |
[82] | Mueller, S. G., Yushkevich, P. A., Das, S., Wang, L., van Leemput, K., Iglesias, J. E., .. Weiner, M. W . ( 2018). Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage: Clinical, 17, 1006-1018. doi: 10.1016/j.nicl.2017.12.036 |
[83] | Muffato, V., Meneghetti, C., & de Beni, R . ( 2016). Not all is lost in older adults' route learning: The role of visuo-spatial abilities and type of task. Journal of Environmental Psychology, 47, 230-241. doi: 10.1016/j.jenvp. 2016.07.003 |
[84] | Nemmi, F., Boccia, M., & Guariglia, C . ( 2017). Does aging affect the formation of new topographical memories? Evidence from an extensive spatial training. Neuropsychol, Development, and Cognition. Section B, Aging, Neuropsychology and Cognition, 24( 1), 29-44. doi: 10.1080/ 13825585.2016.1167162 |
[85] | Nori, R., Grandicelli, S., & Giusberti, F . ( 2006). Visuo- spatial ability and wayfinding performance in real-world. Cognitive Processing, 7( S1), 135-137. doi: 10.1007/ s10339-006-0104-4 |
[86] | O'Keefe, J., & Burgess, N. (2005). Dual phase and rate coding in hippocampal place cells: Theoretical significance and relationship to entorhinal grid cells. Hippocampus, 15( 7), 853-866. doi: 10.1002/hipo.20115 |
[87] | O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34( 1), 171-175. |
[88] | Packard, M. G., & McGaugh, J.L . ( 1996). Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiology of Learning and Memory, 65( 1), 65-72. doi: 10.1006/nlme.1996.0007 |
[89] | Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., .. Bilder, R. M . ( 2002). Neurodevelopmental aspects of spatial navigation: A virtual reality fMRI study. NeuroImage, 15( 2), 396-406. doi: 10.1006/nimg.2001.0988 |
[90] | Ranjbar Pouya, O., Byagowi, A., Kelly, D. M., & Moussavi, Z . ( 2017). Introducing a new age-and-cognition-sensitive measurement for assessing spatial orientation using a landmark-less virtual reality navigational task. Quarterly journal of experimental psychology (Hove), 70( 7), 1406-1419. doi: 10.1080/17470218.2016.1187181 |
[91] | Reisberg, B., Franssen, E. H., Hasan, S. M., Monteiro, I., Boksay, I., Souren, L. E., .. Kluger, A . ( 1999). Retrogenesis: Clinical, physiologic, and pathologic mechanisms in brain aging, Alzheimer's and other dementing processes. European Archives of Psychiatry and Clinical Neuroscience, 249( S3), 28-36. |
[92] | Rodgers, M. K., Sindone, J. A., 3rd, & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33( 1), 202 e215-222. doi: 10.1016/j.neurobiolaging. 2010.07.021 |
[93] | Ruggiero, G., D'Errico, O., & Iachini, T . ( 2016). Development of egocentric and allocentric spatial representations from childhood to elderly age. Psychological Research, 80( 2), 259-272. doi: 10.1007/s00426-015-0658-9 |
[94] | Salthouse, T. A . ( 1979). Adult age and the speed-accuracy trade-off. Ergonomics, 22( 7), 811-821. doi: 10.1080/ 00140137908924659 |
[95] | Sanders, A. E., Holtzer, R., Lipton, R. B., Hall, C., & Verghese, J . ( 2008). Egocentric and exocentric navigation skills in older adults. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 63( 12), 1356-1363. |
[96] | Spiers, H. J., & Gilbert, S. J . ( 2015). Solving the detour problem in navigation: A model of prefrontal and hippocampal interactions. Frontiers in Human Neuroscience, 9, 125. doi: 10.3389/fnhum.2015.00125 |
[97] | Stangl, M., Achtzehn, J., Huber, K., Dietrich, C., Tempelmann, C., & Wolbers, T . ( 2018). Compromised grid-cell-like representations in old age as a key mechanism to explain age-related navigational deficits. Current Biology, 28( 7), 1108- 1115 e1106. doi: 10.1016/j. cub.2018.02.038 |
[98] | Stark, S. M., & Stark, C. E. L . ( 2017). Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 333, 109-117. doi: 10.1016/ j.bbr.2017.06.049 |
[99] | Tangen, G. G., Engedal, K., Bergland, A., Moger, T. A., Hansson, O., & Mengshoel, A. M . ( 2015). Spatial navigation measured by the Floor Maze Test in patients with subjective cognitive impairment, mild cognitive impairment, and mild Alzheimer's disease. International Psychogeriatrics, 27( 8), 1401-1409. doi: 10.1017/ S1041610215000022 |
[100] | Tascon, L., Castillo, J., Leon, I., & Cimadevilla, J. M . ( 2018). Walking and non-walking space in an equivalent virtual reality task: Sexual dimorphism and aging decline of spatial abilities. Behavioural Brain Research, 347, 201-208. doi: 10.1016/j.bbr.2018.03.022 |
[101] | Techentin, C., Voyer, D., & Voyer, S. D . ( 2014). Spatial abilities and aging: A meta-analysis. Experimental Aging Research, 40( 4), 395-425. doi: 10.1080/0361073X.2014.926773 |
[102] | Topic, B., Willuhn, I., Palomero-Gallagher, N., Zilles, K., Huston, J. P., & Hasenohrl, R. U . ( 2007). Impaired maze performance in aged rats is accompanied by increased density of NMDA, 5-HT1A, and alpha-adrenoceptor binding in hippocampus. Hippocampus, 17( 1), 68-77. doi: 10.1002/hipo.20246 |
[103] | Tu, S., Spiers, H. J., Hodges, J. R., Piguet, O., & Hornberger, M . ( 2017). Egocentric versus allocentric spatial memory in behavioral variant frontotemporal dementia and Alzheimer's Disease. Journal of Alzheimers Dissease, 59( 3), 883-892. doi: 10.3233/jad-160592 |
[104] | Tu, S., Wong, S., Hodges, J. R., Irish, M., Piguet, O., & Hornberger, M . ( 2015). Lost in spatial translation - a novel tool to objectively assess spatial disorientation in Alzheimer's disease and frontotemporal dementia. Cortex, 67, 83-94. doi: 10.1016/j.cortex.2015.03.016 |
[105] | van Meer, P., & Raber, J. (2005). Mouse behavioural analysis in systems biology. Biochemical Journal, 389(Pt 3), 593-610. doi: 10.1042/BJ20042023 |
[106] | Wang, L., Zang, Y., He, Y., Liang, M., Zhang, X., Tian, L., .. Li, K . ( 2006). Changes in hippocampal connectivity in the early stages of Alzheimer's disease: Evidence from resting state fMRI. NeuroImage, 31( 2), 496-504. doi: 10.1016/j. neuroimage.2005.12.033 |
[107] | Wiener, J. M., de Condappa, O., Harris, M. A., & Wolbers, T . ( 2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. Journal of Neuroscience, 33( 14), 6012-6017. doi: 10.1523/JNEUROSCI.0717-12.2013 |
[108] | Wilson, I. A., Gallagher, M., Eichenbaum, H., & Tanila, H . ( 2006). Neurocognitive aging: Prior memories hinder new hippocampal encoding. Trends in Neurosciences, 29( 12), 662-670. doi: 10.1016/j.tins.2006.10.002 |
[109] | Wilson, K. D., Woldorff, M. G., & Mangun, G. R . ( 2005). Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames. NeuroImage, 25( 3), 668-683. doi: 10. 1016/j.neuroimage.2004.07.075 |
[110] | Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14( 3), 138-146. doi: 10.1016/j.tics.2010.01.001 |
[111] | Wolbers, T., Wiener, J. M., Mallot, H. A., & Buchel, C . ( 2007). Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. Journal of Neuroscience, 27( 35), 9408-9416. doi: 10.1523/JNEUROSCI.2146-07.2007 |
[112] | Wood, R. A., Bauza, M., Krupic, J., Burton, S., Delekate, A., Chan, D., & O'Keefe, J . ( 2018). The honeycomb maze provides a novel test to study hippocampal-dependent spatial navigation. Nature, 554( 7690), 102-105. doi: 10.1038/ nature25433 |
[113] | Wu, Z., Gao, Y., Shi, F., Ma, G., Jewells, V., & Shen, D . ( 2018). Segmenting hippocampal subfields from 3T MRI with multi-modality images. Medical Image Analysis, 43, 10-22. doi: 10.1016/j.media.2017.09.006 |
[114] | Yassa, M. A., Lacy, J. W., Stark, S. M., Albert, M. S., Gallagher, M., & Stark, C. E . ( 2011). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 21( 9), 968-979. doi: 10.1002/hipo.20808 |
[115] | Yin, S., Zhu, X., Huang, X., & Li, J . ( 2015). Visuospatial characteristics of an elderly Chinese population: Results from the WAIS-R block design test. Frontiers in Aging Neuroscience, 7, 17. doi: 10.3389/fnagi.2015.00017 |
[1] | ZHANG Caihui, YE Jianqiao, YANG Jing. Brain mechanism underlying learning Chinese as a second language [J]. Advances in Psychological Science, 2023, 31(5): 747-758. |
[2] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[3] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[4] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[5] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[6] | LIANG Fei, JIANG Yao, XIAO Tingwei, DONG Jie, WANG Fushun. Basic emotion and its neural basis: Evidence from fMRI and machine-vision studies [J]. Advances in Psychological Science, 2022, 30(8): 1832-1843. |
[7] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[8] | HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. Cognitive neural mechanism of boundary processing in spatial navigation [J]. Advances in Psychological Science, 2022, 30(7): 1496-1510. |
[9] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[10] | LI Xi, LI Tongmao, HU Jihao. The mechanism and influences of multilingual packaging strategy for tourism product: From the perspective of selective accessibility model [J]. Advances in Psychological Science, 2022, 30(6): 1216-1229. |
[11] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[12] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[13] | ZHAO Xinxian, YANG Xiaohu. Prosody perception in older adults [J]. Advances in Psychological Science, 2022, 30(3): 613-621. |
[14] | LIU Ping, ZHANG Rongwei, LI Dan. The effect and mechanisms of self-transcendence values on durable happiness [J]. Advances in Psychological Science, 2022, 30(3): 660-669. |
[15] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||