Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (12): 2232-2262.doi: 10.3724/SP.J.1042.2023.02232
• Meta-Analysis • Previous Articles Next Articles
CHEN Lijun1, HUANG Meilin1, JIANG Xiaoliu2, WANG Xinjian1()
Received:
2023-02-24
Online:
2023-12-15
Published:
2023-09-11
CLC Number:
CHEN Lijun, HUANG Meilin, JIANG Xiaoliu, WANG Xinjian. Does classical music make you smarter? A meta-analysis based on generalized Mozart effect[J]. Advances in Psychological Science, 2023, 31(12): 2232-2262.
作者年份a | 国家/地区 | 年龄群体[M (SD); 范围(单位: 岁)] | 划分 类型 | 实验 设计 | 认知任务 | 音乐呈现 顺序 | 性别比 (男/女) | 样本量 | 对照组类型b (实验组−对照组) | 效果量 | 质量 评估 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alexander ( | 美国 | 19~22 | 成人 | 组内 | 阅读测试 | 背景 | - | 19 | 古典乐−通俗乐 | 0.84 | 3 |
Angel ( | 美国 | - | 成人 | 组内 | 空间认知 | 背景 | 28/28 | 56 | 古典乐−静默 | 0.79 | 3 |
Betshahbazadeh ( | 美国 | 16~51 (3人18岁以下) | 成人 | 组间 | 数学测试 | 先导 | 0/200 | 325 | 古典乐−通俗乐 | 0.20 | 2 |
古典乐−静默 | 0.08 | ||||||||||
125/0 | 古典乐−通俗乐 | 0.04 | |||||||||
古典乐−静默 | −0.08 | ||||||||||
Bolander ( | 美国 | 18~22 | 成人 | 组内 | 阅读测试 | 先导 | 9/24 | 33 | 古典乐−通俗乐 | −0.01 | 3 |
Borella ( | 意大利 | 20~35 | 成人 | 组间 | 记忆任务 | 先导 | - | 63(年轻人) | 古典乐−非音乐 | −0.19 | 2 |
20~35 | 古典乐−通俗乐 | −0.41 | |||||||||
64~75 | - | 93(老年人) | 古典乐−非音乐 | −0.28 | |||||||
64~75 | 古典乐−通俗乐 | −0.13 | |||||||||
Borella ( | 意大利 | 65~75 | 成人 | 组间 | 记忆任务; 空间认知 | 先导 | 16/19 | 70 | 古典乐1−非音乐 | 0.45 | 2 |
12/23 | 古典乐2−非音乐 | 0.28 | |||||||||
Bottiroli ( | 意大利 | 69.03(5.79); 60~84 | 成人 | 组内 | 记忆任务 | 背景 | 14/51 | 65 | 古典乐−非音乐 | 0.28 | 3 |
古典乐−通俗乐 | |||||||||||
Bressler ( | 美国 | 5~5.80 | 前运算期儿童 | 组间 | 记忆任务 | 先导 | 9/12 | 21 | 古典乐−静默 | −0.02 | 2 |
Buerger-Cole ( | 美国 | 18岁以上 | 成人 | 组间 | 综合性认知任务 | 背景 | - | 52 | 古典乐−通俗乐 | −0.50 | 2 |
Caldwell ( | 英国 | 32;18~58 | 成人 | 组内 | 注意任务 | 背景 | 10/6 | 8(弦乐家) | 古典乐−通俗乐 | −0.52 | 3 |
8(摇滚乐手) | 古典乐−通俗乐 | 0.16 | |||||||||
Carstens ( | 美国 | 20.60(4.00); 18~38 | 成人 | 组间 | 空间认知 | 先导 | 21/30 | 51 | 古典乐−静默 | 0.08 | 2 |
Cavanaugh ( | 美国 | 七年级 | 青少年 | 组间 | 数学测试 | 背景 | 41/0 | 98 | 古典乐−静默 | 0.49 | 1 |
0/57 | 古典乐−静默 | 0.13 | |||||||||
Chou ( | 中国台湾 | 大学生(18+) | 成人 | 组间 | 阅读测试 | 背景 | 16/0 | 79 | 古典乐1−通俗乐 | 0.46 | 3 |
0/63 | 古典乐1−通俗乐 | 0.41 | |||||||||
0/67 | 84 | 古典乐2−静默 | −0.11 | ||||||||
17/0 | 古典乐2−静默 | −0.27 | |||||||||
Chrosniak ( | 美国 | 高中生 | 青少年 | 组间 | 阅读测试 | 背景 | - | 47 | 古典乐−静默 | −0.27 | 1 |
- | 56 | 古典乐−通俗乐 | −0.23 | ||||||||
Chua ( | 菲律宾 | 高中生和大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 120 | 古典乐−静默 | −0.09 | 1 |
- | 古典乐−通俗乐 | 0.10 | |||||||||
Cortez ( | 菲律宾 | 15~19 | 青少年 | 组间 | 综合性认知任务 | 先导 | 11/41 | 76 | 古典乐−通俗乐 | −0.61 | 3 |
Dai ( | 中国 | 9~10 | 具体运算期 儿童 | 组内 | 空间认知 | 先导 | - | 87 | 古典乐−静默 | 0.20 | 3 |
古典乐−通俗乐 | |||||||||||
Dawson ( | 美国 | 七年级 | 青少年 | 组内 | 阅读测试 | 背景 | 92/0 | 170 | 古典乐−通俗乐1 | 0.31 | 3 |
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
0/78 | 古典乐−通俗乐1 | 0.28 | |||||||||
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
Dosseville ( | 法国 | 18~23 | 成人 | 组间 | 综合性认知任务 | 背景 | 190/59 | 249 | 古典乐−静默 | 0.53 | 3 |
Du ( | 中国 | 24.38(1.12) | 成人 | 组间 | 阅读测试 | 背景 | 5/8 | 26 | 古典乐1−静默 | −0.56 | 1 |
24.38(1.12) | 5/8 | 古典乐2−静默 | −0.09 | ||||||||
Flores ( | 加拿大 | 大学生 | 成人 | 组间 | 阅读测试; 空间认知 | 背景 | - | 86 | 古典乐−静默 | −0.08 | 2 |
- | 古典乐−通俗乐 | −0.17 | |||||||||
Gavazzi ( | 意大利 | 27.90(4.10) | 成人 | 组内 | 注意任务 | 背景 | 7/8 | 15(非音乐家) | 古典乐−静默 | 1.31 | 3 |
7/8 | 15(音乐家) | 古典乐−通俗乐 | 1.21 | ||||||||
Gilleta ( | 加拿大 | 19.60(2.60); 18~34 | 成人 | 组内 | 空间认知 | 先导 | 0/26 | 56 | 古典乐−静默 | 0.12 | 3 |
26/0 | 古典乐−静默 | 0.03 | |||||||||
Hallam ( | 英国 | 11~12 | 具体运算期 儿童 | 组间 | 记忆任务 | 背景 | 10/0 | 20 | 古典乐−静默 | 1.23 | 2 |
0/10 | 古典乐−静默 | 1.16 | |||||||||
Hausmann ( | 英国 | 20.64(0.74); 18~22 | 成人 | 组间 | 注意任务 | 先导 | 21/26 | 44 | 古典乐−静默 | 1.51 | 2 |
20.67(0.91):19~24 | 36/31 | 32 | 古典乐−静默 | 3.49c | |||||||
Hayashi ( | 美国 | 20.77(0.36) | 成人 | 组内 | 注意任务 | 背景 | - | 48 | 古典乐−静默 | −0.14 | 3 |
Ho ( | 英国 | 20; 18~23 | 成人 | 组内 | 注意任务 | 背景 | 13/21 | 34 | 古典乐−静默 | 1.64 | 3 |
Hui ( | 美国 | 4.69; 3.17~6.25 | 前运算期儿童 | 组内 | 空间认知 | 先导 | 25/16 | 41 | 古典乐−静默 | −0.07 | 5 |
古典乐−通俗乐 | |||||||||||
Ivanov ( | 澳大利亚 | 11.09; 10~12 | 具体运算期 儿童 | 组间 | 空间认知 | 背景 | 42/34 | 76 | 古典乐1−静默 | 0.76 | 2 |
古典乐2−静默 | 0.65 | ||||||||||
Jausovec ( | 斯洛文尼亚 | 20.20(0.60); 19~21 | 成人 | 组内 | 注意任务 | 背景 | 5/15 | 20 | 古典乐−静默 | −0.04 | 3 |
Jausovec ( | 斯洛文尼亚 | 20.50 | 成人 | 组间 | 空间认知 | 先导 | 12/12 | 24 | 古典乐−静默 | 2.26 | 2 |
Jones ( | 美国 | 20.30(1.70) | 成人 | 组内 | 注意任务 | 背景 | 7/5 | 12 | 古典乐−静默 | 0.14 | 3 |
古典乐−通俗乐 | |||||||||||
Jones ( | 美国 | 20.75(1.75); 19~27 | 成人 | 组间 | 空间认知 | 先导 | 20/21 | 41 | 古典乐−静默 | 0.91 | 1 |
Jones ( | 美国 | 15.88(1.12); 14~18 | 青少年 | 组间 | 空间认知 | 先导 | 38/48 | 86 | 古典乐−静默 | 0.54 | 2 |
Ju Hui ( | 马来西亚 | 18~30 | 成人 | 组间 | 记忆任务 | 先导 | 20/19 | 58 | 古典乐−静默 | 0.15 | 3 |
18~30 | 24/15 | 古典乐−通俗乐 | 0.15 | ||||||||
Kumaradevan ( | 爱尔兰 | 17~23 | 成人 | 组内 | 注意任务 | 背景 | 25/55 | 80 | 古典乐−静默 | 2.22 | 1 |
古典乐−通俗乐 | |||||||||||
Kuschpel ( | 德国 | 24.5(3.42); 19~32 | 成人 | 组内 | 记忆任务 | 先导 | 17/18 | 35 | 古典乐−静默 | −0.34 | 3 |
古典乐−通俗乐 | |||||||||||
Lake ( | 美国 | 66.10(2.90) | 成人 | 组内 | 注意任务 | 先导 | 4/8 | 12 | 古典乐−静默 | 0.04 | 5 |
Lange-Küttner ( | 英国 | 19~65 | 成人 | 组间 | 注意任务 | 先导 | 16/40 | 56 | 古典乐−静默 | 0.52 | 2 |
Lewis ( | 加拿大 | 二年级 | 具体运算期 儿童 | 组内 | 阅读测试 | 背景 | 7/0 | 7 | 古典乐−静默 | 0.47 | 3 |
古典乐−通俗乐 | |||||||||||
0/4 | 4 | 古典乐−静默 | −0.71 | ||||||||
古典乐−通俗乐 | |||||||||||
Lewis ( | 加拿大 | 三年级 | 0/7 | 7 | 古典乐−静默 | 0.13 | |||||
古典乐−通俗乐 | |||||||||||
4/0 | 4 | 古典乐−静默 | −0.48 | ||||||||
古典乐−通俗乐 | |||||||||||
Lin ( | 中国台湾 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 60 | 古典乐−静默 | 0.45 | 2 |
Lints ( | 加拿大 | 21 | 成人 | 组间 | 空间认知 | 先导 | 0/140 | 140 | 古典乐1−非音乐1 | −0.46 | 2 |
古典乐1−非音乐2 | −0.30 | ||||||||||
古典乐2−非音乐1 | −0.32 | ||||||||||
古典乐2−非音乐2 | −0.17 | ||||||||||
Mammarella ( | 意大利 | 81(4.50); 73~86 | 成人 | 组内 | 记忆任务 | 背景 | - | 24 | 古典乐−静默 | 0.72 | 3 |
古典乐−非音乐 | |||||||||||
Mattar ( | 约旦 | 5~6 | 前运算期儿童 | 组间 | 综合性认知任务 | 先导 | - | 21 | 古典乐−静默 | 12.26 | 2 |
McClure ( | 美国 | 18~22 | 成人 | 组间 | 空间认知 | 先导 | 22/111 | 133 | 古典乐1−静默 | 0.32 | 2 |
古典乐2−静默 | 0.02 | ||||||||||
古典乐3−静默 | −0.13 | ||||||||||
McCutcheon ( | 美国 | 36.30(13.60) | 成人 | 组内 | 空间认知 | 先导 | 12/24 | 36 | 古典乐−静默 | −0.20 | 2 |
古典乐−通俗乐 | |||||||||||
McKelvie ( | 新西兰 | 11.95(0.61); 11~13 | 具体运算期 儿童 | 组间 | 空间认知 | 先导 | 24/31 | 55 | 古典乐−通俗乐 | 0.57 | 1 |
12.22(0.48); 11.5~13 | 组内 | 15/33 | 48 | 古典乐−通俗乐 | −0.05 | ||||||
Mohan. ( | 印度 | 13~14 | 青少年 | 组内 | 阅读测试 | 背景 | 14/20 | 34 | 古典乐−静默 | 0.46 | 3 |
古典乐−通俗乐 | |||||||||||
Mualem ( | 以色列 | 8~9 | 具体运算期 儿童 | 组内 | 综合性认知任务 | 先导 | 36/24 | 60 | 古典乐−静默 | 2.91 | 3 |
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 56 | 古典乐1−静默 | 0.27 | 2 |
- | 28 | 古典乐2−非音乐 | 0.02 | ||||||||
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 28 | 古典乐1−静默 | 0.53 | 3 |
- | 28 | 古典乐2−静默 | 0.78 | ||||||||
- | 13 | 古典乐−非音乐 | 0.78 | ||||||||
Newman ( | 美国 | 27.30; 18~51 | 成人 | 组间 | 空间认知 | 先导 | - | 78 | 古典乐−静默 | −0.14 | 2 |
古典乐−非音乐 | |||||||||||
Pecci ( | 意大利 | 68(4.50) | 成人 | 组内 | 空间认知 | 先导 | - | 10 | 古典乐−静默 | 0.23 | 3 |
Rauscher ( | 美国 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 36 | 古典乐−静默 | 0.78 | 3 |
古典乐−非音乐 | |||||||||||
Rideout ( | 美国 | 18.90(1.10); 18~21 | 成人 | 组内 | 空间认知 | 先导 | 16/16 | 32 | 古典乐−非音乐 | 0.33 | 3 |
Rideout ( | 美国 | 21.10; 19~22 | 成人 | 组内 | 空间认知 | 先导 | 4/4 | 8 | 古典乐−非音乐 | 0.46 | 3 |
Rideout ( | 美国 | 17~22 | 成人 | 组内 | 空间认知 | 先导 | 8/8 | 16 | 古典乐−非音乐 | 0.41 | 3 |
Roth ( | 美国 | 21.90; 18~51 | 成人 | 组间 | 阅读测试 | 先导 | - | 30 | 古典乐−静默 | 2.05 | 2 |
Sittler ( | 美国 | 22 | 成人 | 组间 | 综合性认知任务 | 背景 | 29/0 | 29 | 古典乐−静默 | 0.40 | 3 |
21.93 | 29/0 | 29 | 古典乐−通俗乐 | 0.57 | |||||||
22 | 0/25 | 25 | 古典乐−静默 | 0.12 | |||||||
21.20 | 0/25 | 25 | 古典乐−通俗乐 | 0.88 | |||||||
Smith ( | 英国 | 20 | 成人 | 组内 | 空间认知 | 先导 | - | 24 | 古典乐−静默 | 0.42 | 3 |
Standing ( | 加拿大 | 21.80 | 成人 | 组内 | 空间认知 | 先导 | 20/40 | 60 | 古典乐−静默 | 0.08 | 3 |
古典乐−非音乐 | |||||||||||
Steele ( | 美国 | 大学生 | 成人 | 组内 | 记忆任务 | 先导 | 8/28 | 36 | 古典乐−非音乐 | −0.02 | 3 |
古典乐−通俗乐 | |||||||||||
Steele, Bass ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | 42/83 | 125 | 古典乐1−静默 | 1.00 | 2 |
古典乐2−静默 | 0.37 | ||||||||||
Steele, Bella ( | 加拿大 | 大学生 (西安大略大学) | 成人 | 组间 | 空间认知 | 先导 | - | 46 | 古典乐−通俗乐 | 2.78 | 1 |
- | 45 | 古典乐−静默 | 1.97 | ||||||||
美国 | 大学生(阿巴拉 契亚州立大学) | 组内 | - | 18 | 古典乐−静默 | −0.39 | |||||
古典乐−通俗乐 | |||||||||||
加拿大 | 大学生 (蒙特利尔大学) | 组内 | - | 32 | 古典乐−静默 | −1.59 | |||||
Steele, Brown ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 136 | 古典乐−非音乐 | 1.79 | 2 |
Stough ( | 新西兰 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 30 | 古典乐−静默 | 0.11 | 3 |
古典乐−通俗乐 | |||||||||||
Su ( | 中国台湾 | 小学高年级 | 具体运算期 儿童 | 组内 | 阅读测试; 记忆任务 | 背景 | 37/29 | 62 | 古典乐−静默 | 0.47 | 3 |
Sweeny ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 184 | 古典乐−静默 | −0.15 | 2 |
Taylor ( | 新西兰 | 大学生 | 成人 | 组间 | 数学测试 | 背景 | 103/25 | 128 | 古典乐−静默 | 0.24 | 1 |
Theofilidis ( | 希腊 | 大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 168 | 古典乐−静默 | −0.45 | 2 |
- | 古典乐−通俗乐 | 0.01 | |||||||||
Thompson ( | 英国 | 75.94(4.42) | 成人 | 组内 | 记忆任务 | 背景 | 5/11 | 16 | 古典乐−静默 | 0.51 | 3 |
Thompson ( | 澳大利亚 | 17~48 | 成人 | 组间 | 阅读测试 | 背景 | 15/26 | 41 | 古典乐−静默 | −0.60 | 1 |
Toon ( | 美国 | 18~44 | 成人 | 组间 | 阅读测试 | 背景 | - | 513 | 古典乐−通俗乐1 | 0.13 | 2 |
18~44 | 组内 | - | 古典乐−静默 | 0.09 | |||||||
18~44 | 组间 | - | 古典乐−通俗乐2 | 0.14 | |||||||
Twomey ( | 英国 | 25(6.50); 17~44 | 成人 | 组间 | 空间认知 | 先导 | 20/20 | 20(音乐家) | 古典乐−静默 | 0.16 | 2 |
25(6.50); 17~44 | 20(非音乐家) | 古典乐−静默 | 1.03 | ||||||||
Wiseman ( | 美国 | 16~27(20.60) | 成人 | 组间 | 空间认知 | 先导 | - | 52 | 古典乐−静默 | −0.23 | 5 |
古典乐−通俗乐 | −0.78 | ||||||||||
龚菊芳 ( | 中国 | 大学生 | 成人 | 组内 | 阅读测试 | 背景 | 0/61 | 61 | 古典乐−静默 | 0.01 | 3 |
30/0 | 30 | 古典乐−静默 | −0.41 | ||||||||
谷岳 ( | 中国 | 3.40 | 前运算期儿童 | 组间 | 记忆任务 | 背景 | 17/0 | 17 | 古典乐−静默 | 0.98 | 2 |
14/0 | 14 | 古典乐−通俗乐 | −0.04 | ||||||||
0/23 | 23 | 古典乐−静默 | 2.45 | ||||||||
0/21 | 21 | 古典乐−通俗乐 | 3.56 | ||||||||
19/0 | 19 | 古典乐−静默 | 3.15 | ||||||||
0/21 | 21 | 古典乐−静默 | 1.61 | ||||||||
黄君 ( | 中国 | 大学生; 20.30 | 成人 | 组内 | 空间认知 | 先导 | 0/28 | 28 | 古典乐−静默 | 0.56 | 2 |
组内 | 13/0 | 13 | 古典乐−静默 | 0.29 | |||||||
大学生; 21.10 | 组间 | - | 60 | 古典乐1−静默 | 0.55 | ||||||
大学生; 21.10 | 组间 | - | 古典乐2−静默 | 0.27 | |||||||
大学生; 20.90 | 组内 | 16/27;剔4 | 39 | 古典乐−中国民乐 | 0.42 | ||||||
大学生; 20.55 | 组内 | 8/30 | 38 | 古典乐−非音乐 | 0.19 | ||||||
景银霞 ( | 中国 | 19.8(0.88); 18~22 | 成人 | 组内 | 阅读测试 | 背景 | 37/0 | 37 | 古典乐−静默 | 0.39 | 3 |
0/27 | 27 | 古典乐−静默 | −1.32 | ||||||||
孔令龙 ( | 中国 | 21.11 | 成人 | 组内 | 空间认知 | 先导 | - | 40 | 古典乐−静默 | 0.62 | 4 |
李继鹏 ( | 中国 | 20~30 | 成人 | 组内 | 记忆任务 | 背景 | 10/10 | 20 | 古典乐−通俗乐 | 0.11 | 3 |
古典乐−静默 | |||||||||||
李宁宁 ( | 中国 | 初中生与高中生 | 青少年 | 组内 | 阅读测试 | 背景 | - | 72 | 古典乐−通俗乐 | 1.41 | 3 |
古典乐−静默 | |||||||||||
李文辉 ( | 中国 | 5~6 | 前运算期儿童 | 组间 | 注意任务 | 先导 | 27/28 | 55 | 古典乐−静默 | 3.05 | 2 |
李哲 ( | 中国 | 21(1.21); 18~24 | 成人 | 组间 | 记忆任务 | 背景 | 17/20; 剔5 | 32 | 古典乐−静默 | 0.81 | 2 |
古典乐−中国民乐 | 0.63 | ||||||||||
20.56(0.99); 18~22 | 9/24; 剔3 | 30 | 古典乐−静默 | −0.31 | |||||||
古典乐−中国民乐 | −0.51 | ||||||||||
刘玥 ( | 中国 | 初一 | 青少年 | 组间 | 记忆任务 | 背景 | - | 210 | 古典乐−静默 | 0.52 | 1 |
古典乐−通俗乐1 | 0.89 | ||||||||||
古典乐−通俗乐2 | 0.91 | ||||||||||
古典乐−通俗乐3 | 0.59 | ||||||||||
汪菲 ( | 中国 | 5.40; 4.17~5.75 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 24/20 | 44 | 古典乐−通俗乐 | 1.05 | 1 |
古典乐−静默 | 1.00 | ||||||||||
5.10; 4.67~5.67 | 20/20 | 40 | 古典乐−静默 | 1.02 | |||||||
王玲 ( | 中国 | 5.51(0.35) | 前运算期儿童 | 组内 | 综合性认知任务 | 背景 | 13/14 | 27 | 古典乐−非音乐 | −0.53 | 3 |
古典乐−通俗乐 | |||||||||||
3.67(0.21) | 16/15 | 31 | 古典乐−非音乐 | −0.17 | |||||||
古典乐−通俗乐 | |||||||||||
4.58(0.28) | 15/15 | 30 | 古典乐−非音乐 | 0.06 | |||||||
古典乐−通俗乐 | |||||||||||
吴海珍 ( | 中国 | 5.38 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 0/120 | 120 | 古典乐1−通俗乐 | 4.38c | 1 |
古典乐1−静默 | 3.89c | ||||||||||
古典乐2−静默 | 2.92 | ||||||||||
5.44 | 前运算期儿童 | 0/59 | 59 | 古典乐1−静默 | 2.91 | ||||||
古典乐2−静默 | 2.85 | ||||||||||
古典乐1−通俗乐 | 2.79 | ||||||||||
57/0 | 57 | 古典乐1−静默 | 0.19 | ||||||||
古典乐1−通俗乐 | −0.34 | ||||||||||
古典乐2−静默 | −0.69 | ||||||||||
杨芬 ( | 中国 | 大学生; 22.10 | 成人 | 组间 | 空间认知 | 背景 | - | 41 | 古典乐−静默 | 0.56 | 2 |
古典乐−通俗乐 | 0.53 | ||||||||||
于馨滢 ( | 中国 | 13.10(0.55); 12~14 | 青少年 | 组内 | 记忆任务 | 先导 | - | 40 | 古典乐−通俗乐 | 0.74 | 3 |
诸薇娜 ( | 中国 | 23.40(2.30)20~27 | 成人 | 组内 | 注意任务 | 背景 | 5/7 | 12 | 古典乐−静默 | −0.30 | 3 |
古典乐−中国民乐 | |||||||||||
22.8(1.34); 20~25 | 8/8 | 16 | 古典乐−静默 | −0.39 | |||||||
23(1.33); 20~29 | 8/7 | 15 | 古典乐−静默 | −0.23 | |||||||
古典乐−中国民乐 | |||||||||||
22(1.60); 20~24 | 6/7 | 13 | 古典乐−静默 | 0.00 | |||||||
古典乐−中国民乐 |
作者年份a | 国家/地区 | 年龄群体[M (SD); 范围(单位: 岁)] | 划分 类型 | 实验 设计 | 认知任务 | 音乐呈现 顺序 | 性别比 (男/女) | 样本量 | 对照组类型b (实验组−对照组) | 效果量 | 质量 评估 |
---|---|---|---|---|---|---|---|---|---|---|---|
Alexander ( | 美国 | 19~22 | 成人 | 组内 | 阅读测试 | 背景 | - | 19 | 古典乐−通俗乐 | 0.84 | 3 |
Angel ( | 美国 | - | 成人 | 组内 | 空间认知 | 背景 | 28/28 | 56 | 古典乐−静默 | 0.79 | 3 |
Betshahbazadeh ( | 美国 | 16~51 (3人18岁以下) | 成人 | 组间 | 数学测试 | 先导 | 0/200 | 325 | 古典乐−通俗乐 | 0.20 | 2 |
古典乐−静默 | 0.08 | ||||||||||
125/0 | 古典乐−通俗乐 | 0.04 | |||||||||
古典乐−静默 | −0.08 | ||||||||||
Bolander ( | 美国 | 18~22 | 成人 | 组内 | 阅读测试 | 先导 | 9/24 | 33 | 古典乐−通俗乐 | −0.01 | 3 |
Borella ( | 意大利 | 20~35 | 成人 | 组间 | 记忆任务 | 先导 | - | 63(年轻人) | 古典乐−非音乐 | −0.19 | 2 |
20~35 | 古典乐−通俗乐 | −0.41 | |||||||||
64~75 | - | 93(老年人) | 古典乐−非音乐 | −0.28 | |||||||
64~75 | 古典乐−通俗乐 | −0.13 | |||||||||
Borella ( | 意大利 | 65~75 | 成人 | 组间 | 记忆任务; 空间认知 | 先导 | 16/19 | 70 | 古典乐1−非音乐 | 0.45 | 2 |
12/23 | 古典乐2−非音乐 | 0.28 | |||||||||
Bottiroli ( | 意大利 | 69.03(5.79); 60~84 | 成人 | 组内 | 记忆任务 | 背景 | 14/51 | 65 | 古典乐−非音乐 | 0.28 | 3 |
古典乐−通俗乐 | |||||||||||
Bressler ( | 美国 | 5~5.80 | 前运算期儿童 | 组间 | 记忆任务 | 先导 | 9/12 | 21 | 古典乐−静默 | −0.02 | 2 |
Buerger-Cole ( | 美国 | 18岁以上 | 成人 | 组间 | 综合性认知任务 | 背景 | - | 52 | 古典乐−通俗乐 | −0.50 | 2 |
Caldwell ( | 英国 | 32;18~58 | 成人 | 组内 | 注意任务 | 背景 | 10/6 | 8(弦乐家) | 古典乐−通俗乐 | −0.52 | 3 |
8(摇滚乐手) | 古典乐−通俗乐 | 0.16 | |||||||||
Carstens ( | 美国 | 20.60(4.00); 18~38 | 成人 | 组间 | 空间认知 | 先导 | 21/30 | 51 | 古典乐−静默 | 0.08 | 2 |
Cavanaugh ( | 美国 | 七年级 | 青少年 | 组间 | 数学测试 | 背景 | 41/0 | 98 | 古典乐−静默 | 0.49 | 1 |
0/57 | 古典乐−静默 | 0.13 | |||||||||
Chou ( | 中国台湾 | 大学生(18+) | 成人 | 组间 | 阅读测试 | 背景 | 16/0 | 79 | 古典乐1−通俗乐 | 0.46 | 3 |
0/63 | 古典乐1−通俗乐 | 0.41 | |||||||||
0/67 | 84 | 古典乐2−静默 | −0.11 | ||||||||
17/0 | 古典乐2−静默 | −0.27 | |||||||||
Chrosniak ( | 美国 | 高中生 | 青少年 | 组间 | 阅读测试 | 背景 | - | 47 | 古典乐−静默 | −0.27 | 1 |
- | 56 | 古典乐−通俗乐 | −0.23 | ||||||||
Chua ( | 菲律宾 | 高中生和大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 120 | 古典乐−静默 | −0.09 | 1 |
- | 古典乐−通俗乐 | 0.10 | |||||||||
Cortez ( | 菲律宾 | 15~19 | 青少年 | 组间 | 综合性认知任务 | 先导 | 11/41 | 76 | 古典乐−通俗乐 | −0.61 | 3 |
Dai ( | 中国 | 9~10 | 具体运算期 儿童 | 组内 | 空间认知 | 先导 | - | 87 | 古典乐−静默 | 0.20 | 3 |
古典乐−通俗乐 | |||||||||||
Dawson ( | 美国 | 七年级 | 青少年 | 组内 | 阅读测试 | 背景 | 92/0 | 170 | 古典乐−通俗乐1 | 0.31 | 3 |
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
0/78 | 古典乐−通俗乐1 | 0.28 | |||||||||
古典乐−通俗乐2 | |||||||||||
古典乐−静默 | |||||||||||
Dosseville ( | 法国 | 18~23 | 成人 | 组间 | 综合性认知任务 | 背景 | 190/59 | 249 | 古典乐−静默 | 0.53 | 3 |
Du ( | 中国 | 24.38(1.12) | 成人 | 组间 | 阅读测试 | 背景 | 5/8 | 26 | 古典乐1−静默 | −0.56 | 1 |
24.38(1.12) | 5/8 | 古典乐2−静默 | −0.09 | ||||||||
Flores ( | 加拿大 | 大学生 | 成人 | 组间 | 阅读测试; 空间认知 | 背景 | - | 86 | 古典乐−静默 | −0.08 | 2 |
- | 古典乐−通俗乐 | −0.17 | |||||||||
Gavazzi ( | 意大利 | 27.90(4.10) | 成人 | 组内 | 注意任务 | 背景 | 7/8 | 15(非音乐家) | 古典乐−静默 | 1.31 | 3 |
7/8 | 15(音乐家) | 古典乐−通俗乐 | 1.21 | ||||||||
Gilleta ( | 加拿大 | 19.60(2.60); 18~34 | 成人 | 组内 | 空间认知 | 先导 | 0/26 | 56 | 古典乐−静默 | 0.12 | 3 |
26/0 | 古典乐−静默 | 0.03 | |||||||||
Hallam ( | 英国 | 11~12 | 具体运算期 儿童 | 组间 | 记忆任务 | 背景 | 10/0 | 20 | 古典乐−静默 | 1.23 | 2 |
0/10 | 古典乐−静默 | 1.16 | |||||||||
Hausmann ( | 英国 | 20.64(0.74); 18~22 | 成人 | 组间 | 注意任务 | 先导 | 21/26 | 44 | 古典乐−静默 | 1.51 | 2 |
20.67(0.91):19~24 | 36/31 | 32 | 古典乐−静默 | 3.49c | |||||||
Hayashi ( | 美国 | 20.77(0.36) | 成人 | 组内 | 注意任务 | 背景 | - | 48 | 古典乐−静默 | −0.14 | 3 |
Ho ( | 英国 | 20; 18~23 | 成人 | 组内 | 注意任务 | 背景 | 13/21 | 34 | 古典乐−静默 | 1.64 | 3 |
Hui ( | 美国 | 4.69; 3.17~6.25 | 前运算期儿童 | 组内 | 空间认知 | 先导 | 25/16 | 41 | 古典乐−静默 | −0.07 | 5 |
古典乐−通俗乐 | |||||||||||
Ivanov ( | 澳大利亚 | 11.09; 10~12 | 具体运算期 儿童 | 组间 | 空间认知 | 背景 | 42/34 | 76 | 古典乐1−静默 | 0.76 | 2 |
古典乐2−静默 | 0.65 | ||||||||||
Jausovec ( | 斯洛文尼亚 | 20.20(0.60); 19~21 | 成人 | 组内 | 注意任务 | 背景 | 5/15 | 20 | 古典乐−静默 | −0.04 | 3 |
Jausovec ( | 斯洛文尼亚 | 20.50 | 成人 | 组间 | 空间认知 | 先导 | 12/12 | 24 | 古典乐−静默 | 2.26 | 2 |
Jones ( | 美国 | 20.30(1.70) | 成人 | 组内 | 注意任务 | 背景 | 7/5 | 12 | 古典乐−静默 | 0.14 | 3 |
古典乐−通俗乐 | |||||||||||
Jones ( | 美国 | 20.75(1.75); 19~27 | 成人 | 组间 | 空间认知 | 先导 | 20/21 | 41 | 古典乐−静默 | 0.91 | 1 |
Jones ( | 美国 | 15.88(1.12); 14~18 | 青少年 | 组间 | 空间认知 | 先导 | 38/48 | 86 | 古典乐−静默 | 0.54 | 2 |
Ju Hui ( | 马来西亚 | 18~30 | 成人 | 组间 | 记忆任务 | 先导 | 20/19 | 58 | 古典乐−静默 | 0.15 | 3 |
18~30 | 24/15 | 古典乐−通俗乐 | 0.15 | ||||||||
Kumaradevan ( | 爱尔兰 | 17~23 | 成人 | 组内 | 注意任务 | 背景 | 25/55 | 80 | 古典乐−静默 | 2.22 | 1 |
古典乐−通俗乐 | |||||||||||
Kuschpel ( | 德国 | 24.5(3.42); 19~32 | 成人 | 组内 | 记忆任务 | 先导 | 17/18 | 35 | 古典乐−静默 | −0.34 | 3 |
古典乐−通俗乐 | |||||||||||
Lake ( | 美国 | 66.10(2.90) | 成人 | 组内 | 注意任务 | 先导 | 4/8 | 12 | 古典乐−静默 | 0.04 | 5 |
Lange-Küttner ( | 英国 | 19~65 | 成人 | 组间 | 注意任务 | 先导 | 16/40 | 56 | 古典乐−静默 | 0.52 | 2 |
Lewis ( | 加拿大 | 二年级 | 具体运算期 儿童 | 组内 | 阅读测试 | 背景 | 7/0 | 7 | 古典乐−静默 | 0.47 | 3 |
古典乐−通俗乐 | |||||||||||
0/4 | 4 | 古典乐−静默 | −0.71 | ||||||||
古典乐−通俗乐 | |||||||||||
Lewis ( | 加拿大 | 三年级 | 0/7 | 7 | 古典乐−静默 | 0.13 | |||||
古典乐−通俗乐 | |||||||||||
4/0 | 4 | 古典乐−静默 | −0.48 | ||||||||
古典乐−通俗乐 | |||||||||||
Lin ( | 中国台湾 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 60 | 古典乐−静默 | 0.45 | 2 |
Lints ( | 加拿大 | 21 | 成人 | 组间 | 空间认知 | 先导 | 0/140 | 140 | 古典乐1−非音乐1 | −0.46 | 2 |
古典乐1−非音乐2 | −0.30 | ||||||||||
古典乐2−非音乐1 | −0.32 | ||||||||||
古典乐2−非音乐2 | −0.17 | ||||||||||
Mammarella ( | 意大利 | 81(4.50); 73~86 | 成人 | 组内 | 记忆任务 | 背景 | - | 24 | 古典乐−静默 | 0.72 | 3 |
古典乐−非音乐 | |||||||||||
Mattar ( | 约旦 | 5~6 | 前运算期儿童 | 组间 | 综合性认知任务 | 先导 | - | 21 | 古典乐−静默 | 12.26 | 2 |
McClure ( | 美国 | 18~22 | 成人 | 组间 | 空间认知 | 先导 | 22/111 | 133 | 古典乐1−静默 | 0.32 | 2 |
古典乐2−静默 | 0.02 | ||||||||||
古典乐3−静默 | −0.13 | ||||||||||
McCutcheon ( | 美国 | 36.30(13.60) | 成人 | 组内 | 空间认知 | 先导 | 12/24 | 36 | 古典乐−静默 | −0.20 | 2 |
古典乐−通俗乐 | |||||||||||
McKelvie ( | 新西兰 | 11.95(0.61); 11~13 | 具体运算期 儿童 | 组间 | 空间认知 | 先导 | 24/31 | 55 | 古典乐−通俗乐 | 0.57 | 1 |
12.22(0.48); 11.5~13 | 组内 | 15/33 | 48 | 古典乐−通俗乐 | −0.05 | ||||||
Mohan. ( | 印度 | 13~14 | 青少年 | 组内 | 阅读测试 | 背景 | 14/20 | 34 | 古典乐−静默 | 0.46 | 3 |
古典乐−通俗乐 | |||||||||||
Mualem ( | 以色列 | 8~9 | 具体运算期 儿童 | 组内 | 综合性认知任务 | 先导 | 36/24 | 60 | 古典乐−静默 | 2.91 | 3 |
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 56 | 古典乐1−静默 | 0.27 | 2 |
- | 28 | 古典乐2−非音乐 | 0.02 | ||||||||
Nantais ( | 加拿大 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 28 | 古典乐1−静默 | 0.53 | 3 |
- | 28 | 古典乐2−静默 | 0.78 | ||||||||
- | 13 | 古典乐−非音乐 | 0.78 | ||||||||
Newman ( | 美国 | 27.30; 18~51 | 成人 | 组间 | 空间认知 | 先导 | - | 78 | 古典乐−静默 | −0.14 | 2 |
古典乐−非音乐 | |||||||||||
Pecci ( | 意大利 | 68(4.50) | 成人 | 组内 | 空间认知 | 先导 | - | 10 | 古典乐−静默 | 0.23 | 3 |
Rauscher ( | 美国 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 36 | 古典乐−静默 | 0.78 | 3 |
古典乐−非音乐 | |||||||||||
Rideout ( | 美国 | 18.90(1.10); 18~21 | 成人 | 组内 | 空间认知 | 先导 | 16/16 | 32 | 古典乐−非音乐 | 0.33 | 3 |
Rideout ( | 美国 | 21.10; 19~22 | 成人 | 组内 | 空间认知 | 先导 | 4/4 | 8 | 古典乐−非音乐 | 0.46 | 3 |
Rideout ( | 美国 | 17~22 | 成人 | 组内 | 空间认知 | 先导 | 8/8 | 16 | 古典乐−非音乐 | 0.41 | 3 |
Roth ( | 美国 | 21.90; 18~51 | 成人 | 组间 | 阅读测试 | 先导 | - | 30 | 古典乐−静默 | 2.05 | 2 |
Sittler ( | 美国 | 22 | 成人 | 组间 | 综合性认知任务 | 背景 | 29/0 | 29 | 古典乐−静默 | 0.40 | 3 |
21.93 | 29/0 | 29 | 古典乐−通俗乐 | 0.57 | |||||||
22 | 0/25 | 25 | 古典乐−静默 | 0.12 | |||||||
21.20 | 0/25 | 25 | 古典乐−通俗乐 | 0.88 | |||||||
Smith ( | 英国 | 20 | 成人 | 组内 | 空间认知 | 先导 | - | 24 | 古典乐−静默 | 0.42 | 3 |
Standing ( | 加拿大 | 21.80 | 成人 | 组内 | 空间认知 | 先导 | 20/40 | 60 | 古典乐−静默 | 0.08 | 3 |
古典乐−非音乐 | |||||||||||
Steele ( | 美国 | 大学生 | 成人 | 组内 | 记忆任务 | 先导 | 8/28 | 36 | 古典乐−非音乐 | −0.02 | 3 |
古典乐−通俗乐 | |||||||||||
Steele, Bass ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | 42/83 | 125 | 古典乐1−静默 | 1.00 | 2 |
古典乐2−静默 | 0.37 | ||||||||||
Steele, Bella ( | 加拿大 | 大学生 (西安大略大学) | 成人 | 组间 | 空间认知 | 先导 | - | 46 | 古典乐−通俗乐 | 2.78 | 1 |
- | 45 | 古典乐−静默 | 1.97 | ||||||||
美国 | 大学生(阿巴拉 契亚州立大学) | 组内 | - | 18 | 古典乐−静默 | −0.39 | |||||
古典乐−通俗乐 | |||||||||||
加拿大 | 大学生 (蒙特利尔大学) | 组内 | - | 32 | 古典乐−静默 | −1.59 | |||||
Steele, Brown ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 136 | 古典乐−非音乐 | 1.79 | 2 |
Stough ( | 新西兰 | 大学生 | 成人 | 组内 | 空间认知 | 先导 | - | 30 | 古典乐−静默 | 0.11 | 3 |
古典乐−通俗乐 | |||||||||||
Su ( | 中国台湾 | 小学高年级 | 具体运算期 儿童 | 组内 | 阅读测试; 记忆任务 | 背景 | 37/29 | 62 | 古典乐−静默 | 0.47 | 3 |
Sweeny ( | 美国 | 大学生 | 成人 | 组间 | 空间认知 | 先导 | - | 184 | 古典乐−静默 | −0.15 | 2 |
Taylor ( | 新西兰 | 大学生 | 成人 | 组间 | 数学测试 | 背景 | 103/25 | 128 | 古典乐−静默 | 0.24 | 1 |
Theofilidis ( | 希腊 | 大学生 | 成人 | 组间 | 记忆任务 | 背景 | - | 168 | 古典乐−静默 | −0.45 | 2 |
- | 古典乐−通俗乐 | 0.01 | |||||||||
Thompson ( | 英国 | 75.94(4.42) | 成人 | 组内 | 记忆任务 | 背景 | 5/11 | 16 | 古典乐−静默 | 0.51 | 3 |
Thompson ( | 澳大利亚 | 17~48 | 成人 | 组间 | 阅读测试 | 背景 | 15/26 | 41 | 古典乐−静默 | −0.60 | 1 |
Toon ( | 美国 | 18~44 | 成人 | 组间 | 阅读测试 | 背景 | - | 513 | 古典乐−通俗乐1 | 0.13 | 2 |
18~44 | 组内 | - | 古典乐−静默 | 0.09 | |||||||
18~44 | 组间 | - | 古典乐−通俗乐2 | 0.14 | |||||||
Twomey ( | 英国 | 25(6.50); 17~44 | 成人 | 组间 | 空间认知 | 先导 | 20/20 | 20(音乐家) | 古典乐−静默 | 0.16 | 2 |
25(6.50); 17~44 | 20(非音乐家) | 古典乐−静默 | 1.03 | ||||||||
Wiseman ( | 美国 | 16~27(20.60) | 成人 | 组间 | 空间认知 | 先导 | - | 52 | 古典乐−静默 | −0.23 | 5 |
古典乐−通俗乐 | −0.78 | ||||||||||
龚菊芳 ( | 中国 | 大学生 | 成人 | 组内 | 阅读测试 | 背景 | 0/61 | 61 | 古典乐−静默 | 0.01 | 3 |
30/0 | 30 | 古典乐−静默 | −0.41 | ||||||||
谷岳 ( | 中国 | 3.40 | 前运算期儿童 | 组间 | 记忆任务 | 背景 | 17/0 | 17 | 古典乐−静默 | 0.98 | 2 |
14/0 | 14 | 古典乐−通俗乐 | −0.04 | ||||||||
0/23 | 23 | 古典乐−静默 | 2.45 | ||||||||
0/21 | 21 | 古典乐−通俗乐 | 3.56 | ||||||||
19/0 | 19 | 古典乐−静默 | 3.15 | ||||||||
0/21 | 21 | 古典乐−静默 | 1.61 | ||||||||
黄君 ( | 中国 | 大学生; 20.30 | 成人 | 组内 | 空间认知 | 先导 | 0/28 | 28 | 古典乐−静默 | 0.56 | 2 |
组内 | 13/0 | 13 | 古典乐−静默 | 0.29 | |||||||
大学生; 21.10 | 组间 | - | 60 | 古典乐1−静默 | 0.55 | ||||||
大学生; 21.10 | 组间 | - | 古典乐2−静默 | 0.27 | |||||||
大学生; 20.90 | 组内 | 16/27;剔4 | 39 | 古典乐−中国民乐 | 0.42 | ||||||
大学生; 20.55 | 组内 | 8/30 | 38 | 古典乐−非音乐 | 0.19 | ||||||
景银霞 ( | 中国 | 19.8(0.88); 18~22 | 成人 | 组内 | 阅读测试 | 背景 | 37/0 | 37 | 古典乐−静默 | 0.39 | 3 |
0/27 | 27 | 古典乐−静默 | −1.32 | ||||||||
孔令龙 ( | 中国 | 21.11 | 成人 | 组内 | 空间认知 | 先导 | - | 40 | 古典乐−静默 | 0.62 | 4 |
李继鹏 ( | 中国 | 20~30 | 成人 | 组内 | 记忆任务 | 背景 | 10/10 | 20 | 古典乐−通俗乐 | 0.11 | 3 |
古典乐−静默 | |||||||||||
李宁宁 ( | 中国 | 初中生与高中生 | 青少年 | 组内 | 阅读测试 | 背景 | - | 72 | 古典乐−通俗乐 | 1.41 | 3 |
古典乐−静默 | |||||||||||
李文辉 ( | 中国 | 5~6 | 前运算期儿童 | 组间 | 注意任务 | 先导 | 27/28 | 55 | 古典乐−静默 | 3.05 | 2 |
李哲 ( | 中国 | 21(1.21); 18~24 | 成人 | 组间 | 记忆任务 | 背景 | 17/20; 剔5 | 32 | 古典乐−静默 | 0.81 | 2 |
古典乐−中国民乐 | 0.63 | ||||||||||
20.56(0.99); 18~22 | 9/24; 剔3 | 30 | 古典乐−静默 | −0.31 | |||||||
古典乐−中国民乐 | −0.51 | ||||||||||
刘玥 ( | 中国 | 初一 | 青少年 | 组间 | 记忆任务 | 背景 | - | 210 | 古典乐−静默 | 0.52 | 1 |
古典乐−通俗乐1 | 0.89 | ||||||||||
古典乐−通俗乐2 | 0.91 | ||||||||||
古典乐−通俗乐3 | 0.59 | ||||||||||
汪菲 ( | 中国 | 5.40; 4.17~5.75 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 24/20 | 44 | 古典乐−通俗乐 | 1.05 | 1 |
古典乐−静默 | 1.00 | ||||||||||
5.10; 4.67~5.67 | 20/20 | 40 | 古典乐−静默 | 1.02 | |||||||
王玲 ( | 中国 | 5.51(0.35) | 前运算期儿童 | 组内 | 综合性认知任务 | 背景 | 13/14 | 27 | 古典乐−非音乐 | −0.53 | 3 |
古典乐−通俗乐 | |||||||||||
3.67(0.21) | 16/15 | 31 | 古典乐−非音乐 | −0.17 | |||||||
古典乐−通俗乐 | |||||||||||
4.58(0.28) | 15/15 | 30 | 古典乐−非音乐 | 0.06 | |||||||
古典乐−通俗乐 | |||||||||||
吴海珍 ( | 中国 | 5.38 | 前运算期儿童 | 组间 | 空间认知 | 先导 | 0/120 | 120 | 古典乐1−通俗乐 | 4.38c | 1 |
古典乐1−静默 | 3.89c | ||||||||||
古典乐2−静默 | 2.92 | ||||||||||
5.44 | 前运算期儿童 | 0/59 | 59 | 古典乐1−静默 | 2.91 | ||||||
古典乐2−静默 | 2.85 | ||||||||||
古典乐1−通俗乐 | 2.79 | ||||||||||
57/0 | 57 | 古典乐1−静默 | 0.19 | ||||||||
古典乐1−通俗乐 | −0.34 | ||||||||||
古典乐2−静默 | −0.69 | ||||||||||
杨芬 ( | 中国 | 大学生; 22.10 | 成人 | 组间 | 空间认知 | 背景 | - | 41 | 古典乐−静默 | 0.56 | 2 |
古典乐−通俗乐 | 0.53 | ||||||||||
于馨滢 ( | 中国 | 13.10(0.55); 12~14 | 青少年 | 组内 | 记忆任务 | 先导 | - | 40 | 古典乐−通俗乐 | 0.74 | 3 |
诸薇娜 ( | 中国 | 23.40(2.30)20~27 | 成人 | 组内 | 注意任务 | 背景 | 5/7 | 12 | 古典乐−静默 | −0.30 | 3 |
古典乐−中国民乐 | |||||||||||
22.8(1.34); 20~25 | 8/8 | 16 | 古典乐−静默 | −0.39 | |||||||
23(1.33); 20~29 | 8/7 | 15 | 古典乐−静默 | −0.23 | |||||||
古典乐−中国民乐 | |||||||||||
22(1.60); 20~24 | 6/7 | 13 | 古典乐−静默 | 0.00 | |||||||
古典乐−中国民乐 |
影响因素 | 分组 | k | 效果量及95%置信区间 (95% confidence interval) | Q | I2 (%) | p | |||
---|---|---|---|---|---|---|---|---|---|
g | 下限 | 上限 | |||||||
中外被试 | 中国 | 53 | 0.64 | 0.36 | 0.91 | 508.34 | 94.64 | 0.018 | |
外国 | 115 | 0.27 | 0.15 | 0.39 | 609.24 | 87.71 | |||
性别 | 男 | 21 | 0.20 | −0.01 | 0.41 | 48.12 | 56.25 | 0.201 | |
女 | 26 | 0.70 | 0.21 | 1.18 | 243.26 | 95.05 | |||
年龄段 | 前运算期儿童(3~6岁) | 21 | 1.10 | 0.51 | 1.69 | 336.69 | 97.32 | 0.002 | |
具体运算期儿童(7~12岁) | 13 | 0.56 | 0.06 | 1.07 | 114.36 | 89.51 | |||
青少年(13~17岁) | 15 | 0.40 | 0.16 | 0.64 | 59.16 | 79.95 | |||
成人(18岁及以上) | 119 | 0.24 | 0.13 | 0.36 | 576.85 | 86.77 | |||
实验设计 | 组间 | 101 | 0.48 | 0.31 | 0.65 | 670.09 | 91.36 | 0.037 | |
组内 | 67 | 0.22 | 0.07 | 0.37 | 402.36 | 89.42 | |||
音乐顺序 | 先导 | 88 | 0.45 | 0.27 | 0.63 | 728.49 | 92.67 | 0.207 | |
背景 | 80 | 0.26 | 0.12 | 0.39 | 344.27 | 85.96 | |||
对照组类型 | 古典−静默 | 109 | 0.38 | 0.20 | 0.57 | 968.33 | 93.63 | 0.837a | |
古典−非音乐 | 24 | 0.15 | −0.05 | 0.36 | 141.24 | 85.91 | |||
古典−中国民乐 | 6 | 0.10 | −0.24 | 0.44 | 7.14 | 29.41 | |||
古典−通俗音乐 | 60 | 0.34 | 0.15 | 0.53 | 421.01 | 91.97 | |||
歌词 | 古典−通俗音乐(有歌词) | 12 | 0.41 | 0.39 | 0.78 | 91.69 | 87.24 | 0.162b | |
古典−通俗音乐(无歌词) | 22 | 0.43 | 0.02 | 0.83 | 166.25 | 95.97 | |||
情绪 | 积极情绪古典音乐−静默 | 11 | 0.93 | 0.13 | 1.73 | 114.28 | 94.06 | 0.507c | |
消极情绪古典音乐−静默 | 2 | 0.24 | −1.31 | 1.80 | 19.28 | 94.81 | |||
认知任务类型 | 空间认知 | 69 | 0.47 | 0.29 | 0.66 | 488.19 | 90.80 | 0.325 | |
阅读测试 | 29 | 0.07 | −0.14 | 0.28 | 113.43 | 84.51 | |||
注意任务 | 16 | 0.52 | 0.02 | 1.02 | 124.57 | 90.10 | |||
记忆任务 | 36 | 0.45 | 0.22 | 0.69 | 185.95 | 89.76 | |||
数学测试 | 7 | 0.13 | −0.02 | 0.29 | 3.11 | 0.00 | |||
综合性认知测试 | 11 | 0.32 | −0.27 | 0.91 | 184.90 | 96.80 | |||
优势半球 | 左半球 | 35 | 0.08 | −0.08 | 0.25 | 116.17 | 78.92 | 0.019 | |
右半球 | 72 | 0.44 | 0.26 | 0.63 | 569.33 | 91.90 | |||
年龄段×性别 | 女性−前运算期儿童 | 7 | 2.69 | 2.28 | 3.10 | 7.43 | 17.40 | <0.001 | |
女性−具体运算期儿童 | 3 | 0.12 | −0.84 | 1.08 | 5.94 | 69.74 | |||
女性−青少年 | 2 | 0.24 | −0.01 | 0.50 | 0.27 | 0.00 | |||
女性−成人 | 14 | −0.04 | −0.28 | 0.21 | 40.57 | 72.39 | |||
男性−前运算期儿童 | 6 | 0.47 | −0.57 | 1.50 | 29.55 | 88.26 | |||
男性−具体运算期儿童 | 3 | 0.34 | −0.56 | 1.24 | 5.52 | 65.63 | |||
男性−青少年 | 2 | 0.34 | 0.08 | 0.60 | 0.28 | 0.00 | |||
男性−成人 | 10 | 0.09 | −0.10 | 0.27 | 9.94 | 11.09 | |||
中外被试×性别 | 中国−女性 | 10 | 1.78 | 0.78 | 2.78 | 179.43 | 94.76 | 0.005 | |
中国−男性 | 9 | 0.30 | −0.33 | 0.93 | 35.28 | 85.25 | |||
外国−女性 | 16 | 0.04 | −0.12 | 0.19 | 25.66 | 35.26 | |||
外国−男性 | 12 | 0.19 | 0.03 | 0.35 | 12.48 | 1.61 | |||
认知任务类型×性别 | 女性−阅读测试 | 7 | −0.15 | −0.59 | 0.30 | 28.32 | 82.76 | 0.217 | |
男性−阅读测试 | 7 | 0.11 | −0.19 | 0.42 | 10.68 | 46.48 | |||
女性−空间认知 | 10 | 1.04 | 0.09 | 1.20 | 152.10 | 95.98 | |||
男性−空间认知 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 | |||
女性−记忆任务 | 4 | 2.15 | 1.19 | 3.11 | 8.14 | 64.98 | |||
男性−记忆任务 | 4 | 1.28 | 0.00 | 2.56 | 14.46 | 80.60 | |||
女性−数学测试 | 3 | 0.14 | −0.08 | 0.35 | 0.24 | 0.00 | |||
男性−数学测试 | 3 | 0.07 | −0.20 | 0.34 | 2.34 | 0.00 | |||
女性−综合性认知测试 | 2 | 0.49 | −0.26 | 1.23 | 1.84 | 45.68 | |||
男性−综合性认知测试 | 2 | 0.49 | −0.02 | 0.99 | 0.11 | 0.00 | |||
优势半球× 性别 | 女性−左半球 | 10 | −0.04 | −0.33 | 0.25 | 29.55 | 76.26 | 0.036 | |
女性−右半球 | 10 | 1.04 | 0.09 | 1.99 | 152.10 | 95.98 | |||
男性−左半球 | 10 | 0.12 | −0.09 | 0.33 | 13.36 | 33.02 | |||
男性−右半球 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 |
影响因素 | 分组 | k | 效果量及95%置信区间 (95% confidence interval) | Q | I2 (%) | p | |||
---|---|---|---|---|---|---|---|---|---|
g | 下限 | 上限 | |||||||
中外被试 | 中国 | 53 | 0.64 | 0.36 | 0.91 | 508.34 | 94.64 | 0.018 | |
外国 | 115 | 0.27 | 0.15 | 0.39 | 609.24 | 87.71 | |||
性别 | 男 | 21 | 0.20 | −0.01 | 0.41 | 48.12 | 56.25 | 0.201 | |
女 | 26 | 0.70 | 0.21 | 1.18 | 243.26 | 95.05 | |||
年龄段 | 前运算期儿童(3~6岁) | 21 | 1.10 | 0.51 | 1.69 | 336.69 | 97.32 | 0.002 | |
具体运算期儿童(7~12岁) | 13 | 0.56 | 0.06 | 1.07 | 114.36 | 89.51 | |||
青少年(13~17岁) | 15 | 0.40 | 0.16 | 0.64 | 59.16 | 79.95 | |||
成人(18岁及以上) | 119 | 0.24 | 0.13 | 0.36 | 576.85 | 86.77 | |||
实验设计 | 组间 | 101 | 0.48 | 0.31 | 0.65 | 670.09 | 91.36 | 0.037 | |
组内 | 67 | 0.22 | 0.07 | 0.37 | 402.36 | 89.42 | |||
音乐顺序 | 先导 | 88 | 0.45 | 0.27 | 0.63 | 728.49 | 92.67 | 0.207 | |
背景 | 80 | 0.26 | 0.12 | 0.39 | 344.27 | 85.96 | |||
对照组类型 | 古典−静默 | 109 | 0.38 | 0.20 | 0.57 | 968.33 | 93.63 | 0.837a | |
古典−非音乐 | 24 | 0.15 | −0.05 | 0.36 | 141.24 | 85.91 | |||
古典−中国民乐 | 6 | 0.10 | −0.24 | 0.44 | 7.14 | 29.41 | |||
古典−通俗音乐 | 60 | 0.34 | 0.15 | 0.53 | 421.01 | 91.97 | |||
歌词 | 古典−通俗音乐(有歌词) | 12 | 0.41 | 0.39 | 0.78 | 91.69 | 87.24 | 0.162b | |
古典−通俗音乐(无歌词) | 22 | 0.43 | 0.02 | 0.83 | 166.25 | 95.97 | |||
情绪 | 积极情绪古典音乐−静默 | 11 | 0.93 | 0.13 | 1.73 | 114.28 | 94.06 | 0.507c | |
消极情绪古典音乐−静默 | 2 | 0.24 | −1.31 | 1.80 | 19.28 | 94.81 | |||
认知任务类型 | 空间认知 | 69 | 0.47 | 0.29 | 0.66 | 488.19 | 90.80 | 0.325 | |
阅读测试 | 29 | 0.07 | −0.14 | 0.28 | 113.43 | 84.51 | |||
注意任务 | 16 | 0.52 | 0.02 | 1.02 | 124.57 | 90.10 | |||
记忆任务 | 36 | 0.45 | 0.22 | 0.69 | 185.95 | 89.76 | |||
数学测试 | 7 | 0.13 | −0.02 | 0.29 | 3.11 | 0.00 | |||
综合性认知测试 | 11 | 0.32 | −0.27 | 0.91 | 184.90 | 96.80 | |||
优势半球 | 左半球 | 35 | 0.08 | −0.08 | 0.25 | 116.17 | 78.92 | 0.019 | |
右半球 | 72 | 0.44 | 0.26 | 0.63 | 569.33 | 91.90 | |||
年龄段×性别 | 女性−前运算期儿童 | 7 | 2.69 | 2.28 | 3.10 | 7.43 | 17.40 | <0.001 | |
女性−具体运算期儿童 | 3 | 0.12 | −0.84 | 1.08 | 5.94 | 69.74 | |||
女性−青少年 | 2 | 0.24 | −0.01 | 0.50 | 0.27 | 0.00 | |||
女性−成人 | 14 | −0.04 | −0.28 | 0.21 | 40.57 | 72.39 | |||
男性−前运算期儿童 | 6 | 0.47 | −0.57 | 1.50 | 29.55 | 88.26 | |||
男性−具体运算期儿童 | 3 | 0.34 | −0.56 | 1.24 | 5.52 | 65.63 | |||
男性−青少年 | 2 | 0.34 | 0.08 | 0.60 | 0.28 | 0.00 | |||
男性−成人 | 10 | 0.09 | −0.10 | 0.27 | 9.94 | 11.09 | |||
中外被试×性别 | 中国−女性 | 10 | 1.78 | 0.78 | 2.78 | 179.43 | 94.76 | 0.005 | |
中国−男性 | 9 | 0.30 | −0.33 | 0.93 | 35.28 | 85.25 | |||
外国−女性 | 16 | 0.04 | −0.12 | 0.19 | 25.66 | 35.26 | |||
外国−男性 | 12 | 0.19 | 0.03 | 0.35 | 12.48 | 1.61 | |||
认知任务类型×性别 | 女性−阅读测试 | 7 | −0.15 | −0.59 | 0.30 | 28.32 | 82.76 | 0.217 | |
男性−阅读测试 | 7 | 0.11 | −0.19 | 0.42 | 10.68 | 46.48 | |||
女性−空间认知 | 10 | 1.04 | 0.09 | 1.20 | 152.10 | 95.98 | |||
男性−空间认知 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 | |||
女性−记忆任务 | 4 | 2.15 | 1.19 | 3.11 | 8.14 | 64.98 | |||
男性−记忆任务 | 4 | 1.28 | 0.00 | 2.56 | 14.46 | 80.60 | |||
女性−数学测试 | 3 | 0.14 | −0.08 | 0.35 | 0.24 | 0.00 | |||
男性−数学测试 | 3 | 0.07 | −0.20 | 0.34 | 2.34 | 0.00 | |||
女性−综合性认知测试 | 2 | 0.49 | −0.26 | 1.23 | 1.84 | 45.68 | |||
男性−综合性认知测试 | 2 | 0.49 | −0.02 | 0.99 | 0.11 | 0.00 | |||
优势半球× 性别 | 女性−左半球 | 10 | −0.04 | −0.33 | 0.25 | 29.55 | 76.26 | 0.036 | |
女性−右半球 | 10 | 1.04 | 0.09 | 1.99 | 152.10 | 95.98 | |||
男性−左半球 | 10 | 0.12 | −0.09 | 0.33 | 13.36 | 33.02 | |||
男性−右半球 | 5 | −0.06 | −0.34 | 0.21 | 5.01 | 4.94 |
*元分析用到的参考文献 | |
[1] | 边玉芳. (2013). 左脑和右脑在心理发展中的不同作用——儿童大脑单侧化实验. 中小学心理健康教育, 238(23), 34-35. |
[2] | 陈丹, 隋雪, 王小东, 钱丽, 姜娜. (2008). 音乐对大学生阅读影响的眼动研究. 心理科学, 31(2), 385-388. |
[3] | 陈丹丹, 董芸竹, 杨思敏, 何先友. (2011). 音乐认知的跨文化研究——认知神经科学的视角. 华南师范大学学报(自然科学版), (增刊), 122-125. |
[4] | 陈丽君, 文琪. (2017). 音乐欣赏教学中的美感体验与功能实证. 华东师范大学学报(教育科学版), 35(5), 117-127+162. |
[5] |
陈晓宇, 杜媛媛, 刘强. (2022). 积极情绪提高背景线索学习的适应性. 心理学报, 54(12), 1481-1490.
doi: 10.3724/SP.J.1041.2022.01481 |
[6] | *诸薇娜. (2008). 音乐认知研究及其计算分析 (博士学位论文). 厦门大学. |
[7] | *龚菊芳. (2011). 莫扎特背景音乐对大学生英语阅读理解成绩的影响. 广西教育学院学报, 111(1), 142-145+147. |
[8] | *谷岳. (2021). 不同类型的背景音乐对小班幼儿工作记忆广度的影响 (硕士学位论文). 辽宁师范大学, 大连. |
[9] | 侯建成, 董奇. (2010). 音乐认知能力的发展及其大脑可塑性研究. 星海音乐学院学报, 120(3), 79-84. |
[10] | *黄君. (2009). 莫扎特效应的实验研究 (博士学位论文). 西南大学, 重庆. |
[11] | 蒋一禾, 朱华琴. (2011). 基于性别差异的高中音乐教学对策. 江苏教育研究, 139(31), 33-36. |
[12] | *景银霞. (2015). 背景音乐对中国英语学习者阅读理解的影响 (硕士学位论文). 兰州交通大学. |
[13] | *孔令龙. (2015). 音乐对图形推理影响的眼动研究 (硕士学位论文). 广西师范大学, 桂林. |
[14] | 赖寒, 徐苗, 宋宜颖, 刘嘉. (2013). 音乐知觉的神经基础:脑成像研究的元分析. 心理学报, 45(5), 491-507. |
[15] | 雷文斌, 刘峰. (2014). 语言线索下视觉空间知觉任务的性别差异. 心理学探新, 34(6), 511-516. |
[16] | *李继鹏, 李颖, 张东颖, 冯浩, 尹宁. (2019). 基于脑电信号溯源分析的音乐类型对学习记忆影响的研究. 中国生物医学工程学报, 38(6), 679-686. |
[17] | *李宁宁, 李洪玉. (2006). 背景音乐对中学生阅读理解的影响. 心理与行为研究, 4(2), 149-153. |
[18] | 李卫华. (2008). 背景音乐对记忆的影响研究 (硕士学位论文). 华中师范大学, 武汉. |
[19] | *李文辉, 余婷婷, 郭黎岩. (2017). 幼儿语音加工中莫扎特效应的实验研究. 沈阳师范大学学报(社会科学版), 41(3), 132-135. |
[20] | *李哲. (2009). 中西方古典音乐对记忆的影响——春江花月夜曲与莫扎特D大调双钢琴奏鸣曲K.448(硕士学位论文). 西南大学, 重庆. |
[21] | 林崇德, 杨治良, 黄希庭. (2003). 心理学大辞典(上下) (精). 上海教育出版社. |
[22] | *刘玥, 张裕鼎, 张立春. (2012). 背景音乐对中学生说明文文本信息再认的影响. 心理研究, 5(5), 75-80. |
[23] | 阮婷. (2007). 学前儿童音乐偏好的差异性研究 (硕士学位论文). 华东师范大学, 上海. |
[24] | 宋蓓, 侯建成, 骆丹, 周加仙. (2020). 音乐训练的"关键期"与"敏感期"及其音乐教育启示. 教育生物学杂志, 8(4), 278-285. |
[25] | 孙长安, 韦洪涛, 岳丽娟. (2013). 音乐对工作记忆影响及机制的ERP研究. 心理与行为研究, 11(2), 195-199. |
[26] | 孙国忠. (2011). 古典音乐: 时代·风格·经典. 星海音乐学院学报, 123(2), 59-67. |
[27] | 孙淑平. (2011). 中西音乐文化中的审美意识. 艺术百家, 27(3), 254-256. |
[28] | *汪菲. (2012). 中班幼儿莫扎特效应的实验研究 (硕士学位论文). 华南师范大学, 广州. |
[29] | *王玲, 赵蕾, 卢英俊. (2012). 莫扎特音乐对幼儿表情识别能力的影响. 幼儿教育(教育科学), 541(9), 25-31. |
[30] | 王帅帅, 李颖, 李继鹏, 王灵月, 尹宁, 杨硕. (2020). 基于皮层脑网络的背景音乐对空间认知工作记忆影响的实验研究. 生物医学工程学杂志, 37(4), 587-595. |
[31] | *吴海珍, 赵蕾, 卢英俊. (2014). 莫扎特音乐对幼儿时空推理能力影响的研究. 心理发展与教育, 30(4), 345-354. |
[32] | 许燕, 张厚粲. (2000). 小学生空间能力及其发展倾向的性别差异研究. 心理科学, 23(2), 160-164. |
[33] | *杨芬. (2016). 图形推理中的莫扎特效应:来自眼动的证据 (硕士学位论文). 山西师范大学, 太原. |
[34] |
杨集梅, 柴洁余, 邱天龙, 全小山, 郑茂平. (2022). 共情与中国民族音乐情绪识别的关系:来自ERP的证据. 心理学报, 54(10), 1181-1192.
doi: 10.3724/SP.J.1041.2022.01181 |
[35] | *于馨滢. (2019). 音乐和背景色调对中学生词汇记忆的影响 (硕士学位论文). 山西师范大学, 太原. |
[36] | 张艺. (2012). 中西方音乐异同初探. 海南师范大学学报(社会科学版), 25(5), 142-144. |
[37] | 张正元. (2020). 流行音乐的“外”与“内” ——对“流行音乐是‘外部音乐’”的解读. 人民音乐, 689(9), 88-91. |
[38] |
Aheadi, A., Dixon, P., & Glover, S. (2010). A limiting feature of the Mozart effect: Listening enhances mental rotation abilities in non-musicians but not musicians. Psychology of Music, 38(1), 107-117.
doi: 10.1177/0305735609336057 URL |
[39] | *Alexander, J., Firouzbakht, P., Glennon, L., & Lang, M. (2012). Effects of music type on reading comprehension performance and other physiological factors. Journal of Advanced Student Science, 1(1), 1-11. |
[40] |
Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2016). Studying emotion induced by music through a crowdsourcing game. Information Processing & Management, 52(1), 115-128.
doi: 10.1016/j.ipm.2015.03.004 URL |
[41] |
Altenmuller, E., Schurmann, K., Lim, V. K., & Parlitz, D. (2002). Hits to the left, flops to the right: Different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia, 40(13), 2242-2256.
pmid: 12417455 |
[42] |
Amunts, K., Schlaug, G., Jancke, L., Steinmetz, H., Schleicher, A., Dabringhaus, A., & Zilles, K. (1997). Motor cortex and hand motor skills: Structural compliance in the human brain. Human Brain Mapping, 5(3), 206-215.
doi: 10.1002/(SICI)1097-0193(1997)5:3<206::AID-HBM5>3.0.CO;2-7 pmid: 20408216 |
[43] | Anderson, N. H. (2002). Methodology and statistics in single-subject experiments. In J. Wixted (Ed.), Stevens' handbook of experimental psychology (Vol. 4, pp. 301-337). London: John Wiley & Sons, Inc. |
[44] | *Angel, L. A., Polzella, D. J., & Elvers, G. C. (2010). Background music and cognitive performance. Perceptual and Motor Skills, 110(3), 1059-1064. |
[45] |
Aoun, P., Jones, T., Shaw, G. L., & Bodner, M. (2005). Long-term enhancement of maze learning in mice via a generalized Mozart effect. Neurological Research, 27(8), 791-796.
pmid: 16354537 |
[46] |
Ardila, A., Rosselli, M., Matute, E., & Inozemtseva, O. (2011). Gender differences in cognitive development. Developmental Psychology, 47(4), 984-990.
doi: 10.1037/a0023819 pmid: 21744957 |
[47] |
Argstatter, H. (2016). Perception of basic emotions in music: Culture-specific or multicultural? Psychology of Music, 44(4), 674-690.
doi: 10.1177/0305735615589214 URL |
[48] |
Arikan, M. K., Devrim, M., Oran, O., Inan, S., Elhih, M., & Demiralp, T. (1999). Music effects on event-related potentials of humans on the basis of cultural environment. Neuroscience Letters, 268(1), 21-24.
pmid: 10400068 |
[49] |
Bailey, J. A., & Penhune, V. B. (2010). Rhythm synchronization performance and auditory working memory in early- and late-trained musicians. Experimental Brain Research, 204(1), 91-101.
doi: 10.1007/s00221-010-2299-y pmid: 20508918 |
[50] | Bailey, J. A., & Penhune, V. B. (2012). A sensitive period for musical training:Contributions of age of onset and cognitive abilities. Annals of the New York Academy of Sciences, 1252(1), 163-170. |
[51] |
Bailey, J. A., Zatorre, R. J., & Penhune, V. B. (2014). Early musical training is linked to gray matter structure in the ventral premotor cortex and auditory-motor rhythm synchronization performance. Journal of Cognitive Neuroscience, 26(4), 755-767.
doi: 10.1162/jocn_a_00527 pmid: 24236696 |
[52] |
Berenbaum, S. A., & Beltz, A. M. (2011). Sexual differentiation of human behavior: Effects of prenatal and pubertal organizational hormones. Frontiers in Neuroendocrinology, 32(2), 183-200.
doi: 10.1016/j.yfrne.2011.03.001 pmid: 21397624 |
[53] | *Betshahbazadeh, Y. (2001). The effects of Mozart and Tejano music on community college student math test performance (Unpublished doctorial dissertation). Texas A&M University-Kingsville. |
[54] |
Bever, T. G., & Chiarello, R. J. (1974). Cerebral dominance in musicians and nonmusicians. Science, 185(4150), 537-539.
doi: 10.1126/science.185.4150.537 pmid: 4841585 |
[55] |
Bhattacharya, J., & Petsche, H. (2001). Universality in the brain while listening to music. Proceedings of the Royal Society B-Biological Sciences, 268(1484), 2423-2433.
doi: 10.1098/rspb.2001.1802 URL |
[56] |
Bhattacharya, J., & Petsche, H. (2005). Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise. Signal Processing, 85(11), 2161-2177.
doi: 10.1016/j.sigpro.2005.07.007 URL |
[57] |
Bodner, M., Muftuler, L. T., Nalcioglu, O., & Shaw, G. L. (2001). FMRI study relevant to the Mozart effect: Brain areas involved in spatial-temporal reasoning. Neurological Research, 23(7), 683-690.
pmid: 11680506 |
[58] | *Bolander, H. B., & Callahan, S. (2021). Rockin’the GRE: The effects of preferred, non-preferred, and classical music on college students’ cognitive test performance. Butler Journal of Undergraduate Research, 7(1), 115-128. |
[59] |
*Borella, E., Carretti, B., Grassi, M., Nucci, M., & Sciore, R. (2014). Are age-related differences between yound and older adults in an aggective working memory test sensitive to the music effects? Frontiers in Aging Neuroscience, 6, 298. doi: 10.3389/fnagi.2014.00298
pmid: 25426064 |
[60] |
*Borella, E., Carretti, B., Meneghetti, C., Carbone, E., Vincenzi, M., Madonna, J. C., & Mammarella, N. (2017). Is working memory training in older adults sensitive to music? Psychological Research, 83(6), 1107-1123.
doi: 10.1007/s00426-017-0961-8 |
[61] |
*Bottiroli, S., Rosi, A., Russo, R., Vecchi, T., & Cavallini, E. (2014). The cognitive effects of listening to background music on older adults: Processing speed improves with upbeat music, while memory seems to benefit from both upbeat and downbeat music. Frontiers in Aging Neuroscience, 6, 284. doi: 10.3389/fnagi.2014.00284
pmid: 25360112 |
[62] | *Bressler, R. A. (2003). Music and cognitive abilities: A look at the Mozart effect (Unpublished doctorial dissertation). The Chicago School of Professional Psychology. |
[63] | Brouwers, M. C., Johnston, M. E., Charette, M. L., Hanna, S. E., Jadad, A. R., & Browman, G. P. (2005). Evaluating the role of quality assessment of primary studies in systematic reviews of cancer practice guidelines. BMC Medical Research Methodology, 5(1), 8. doi: 10.1186/1471-2288-5-8 |
[64] |
Brown, T. T., & Jernigan, T. L. (2012). Brain development during the preschool years. Neuropsychology Review, 22(4), 313-333.
doi: 10.1007/s11065-012-9214-1 pmid: 23007644 |
[65] | *Buerger-Cole, H., Agyemang, S., Cotting, G., Joottu, S., & Vetter, K. (2019). How music genre affects memory retention & physiological indicators of stress. Journal of Advanced Student Sciences, 1-32. |
[66] | Cacciafesta, M., Ettorre, E., Amici, A., Cicconetti, P., Martinelli, V., Linguanti, A., & Marigliano, V. (2010). New frontiers of cognitive rehabilitation in geriatric age: The Mozart effect (ME). Archives of Gerontology and Geriatrics, 51(3), E79-E82. |
[67] |
*Caldwell, G. N., & Riby, L. M. (2007). The effects of music exposure and own genre preference on conscious and unconscious cognitive processes: A pilot ERP study. Consciousness and Cognition, 16(4), 992-996.
pmid: 16931056 |
[68] | Campbell, D. Ed. (2000). The Mozart effect for children: Awakening your child's mind, health, and creativity with music (pp. 608-610). New York: HarperCollins. |
[69] |
Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? A multilevel critique with new data. American Psychologist. 40(7), 786-799.
pmid: 3898936 |
[70] |
*Carstens, C. B., Huskins, E., & Hounshell, G. W. (1995). Listening to Mozart may not enhance performance on the revised Minnesota paper form board test. Psychological Reports, 77(1), 111-114.
pmid: 7501747 |
[71] | *Cavanaugh, L. K. (2005). A study of the effects of music on middle school students' math test scores (Unpublished doctorial dissertation). Barry University, Miami. |
[72] |
Chabris, C. F. (1999). Prelude or requiem for the 'Mozart effect'? Nature, 400(6747), 826-827.
doi: 10.1038/23608 |
[73] |
Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. Journal of Economic Behavior & Organization, 81(1), 1-8.
doi: 10.1016/j.jebo.2011.08.009 URL |
[74] |
Chen, J., Scheller, M., Wu, C., Hu, B., Peng, R., & Liu, C. (2022). The relationship between early musical training and executive functions: Validation of effects of the sensitive period. Psychology of Music, 50(1), 86-99.
doi: 10.1177/0305735620978690 URL |
[75] | *Chou, P. (2007). The effects of background music on the reading performance of Taiwanese ESL students (Unpublished doctorial dissertation). Indiana State University. |
[76] | *Chrosniak, K. M., & Talarczyk, P. (2019). The effects of different musical auditory backgrounds on a high school student’s comprehension performance. Journal of Student Research, 8(2), 1-12. |
[77] | *Chua, M., Ngie, G., Nicomedes, C. J., & Cruz, C. (2020). A study on the effect of music on short term memory with the use of digit span task among students. International Journal of Advanced Research and Publications, 4(4), 55-59. |
[78] |
Clements, A. M., Rimrodt, S. L., Abel, J. R., Blankner, J. G., Mostofsky, S. H., Pekar, J. J.,... Cutting, L. E. (2006). Sex differences in cerebral laterality of language and visuospatial processing. Brain and Language, 98(2), 150-158.
doi: 10.1016/j.bandl.2006.04.007 pmid: 16716389 |
[79] |
Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155-159.
doi: 10.1037//0033-2909.112.1.155 pmid: 19565683 |
[80] | *Cortez, J. R. B., Chua, S. S., Cid, M. J. J., Claro, C. I. T., Claveria, J. R. S., Cobarrubias, C. V. D.,... Conejos, E. J. R. (2019). The effects of binaural beats stimulation compared to classical music on the memory of senior high school students: A randomized controlled trial. The Health Sciences Journal, 8(2), 90-94. |
[81] |
Crncec, R., Wilson, S. J., & Prior, M. (2006). No evidence for the Mozart effect in children. Music Perception, 23(4), 305-318.
doi: 10.1525/mp.2006.23.4.305 URL |
[82] | *Dai, M., & Marshall, N. A. (2021). Exploring the relationship between music and children’s cognitive abilitive. Problems in Music Pedagogy, 20(1), 59-70. |
[83] | *Dawson, D. (2003). Listening to music and increasing reading achievement scores in vocabulary and comprehension and total reading ability (Unpublished doctorial dissertation). Widener University, Chester. |
[84] |
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3), 487-506.
doi: 10.1080/02643290244000239 pmid: 20957581 |
[85] |
Demorest, S. M., Morrison, S. J., Beken, M. N., & Jungbluth, D. (2008). Lost in translation: An enculturation effect in music memory performance. Music Perception, 25(3), 213-223.
doi: 10.1525/mp.2008.25.3.213 URL |
[86] |
Desrocher, M. E., Smith, M. L., & Taylor, M. J. (1995). Stimulus and sex-differences in performance of mental rotation-evidence from event-related potentials. Brain and Cognition, 28(1), 14-38.
pmid: 7546666 |
[87] |
di Muro, F., & Murray, K. B. (2012). An arousal regulation explanation of mood effects on consumer choice. Journal of Consumer Research, 39(3), 574-584.
doi: 10.1086/664040 URL |
[88] | Díaz, J.-L., Flores-Gutiérrez, E. O., Rio-Portilla, Y., & Cabrera, M. C. (2011). Musical emotion assessment, brain correlates, and gender differences. In T. A. Ivanova (Ed.), Music: Composition, interpretation and effects (pp.31- 56). New York: Nova Science Pub Inc. |
[89] |
Dobbs, S., Furnham, A., & McClelland, A. (2011). The effect of background music and noise on the cognitive test performance of introverts and extraverts. Applied Cognitive Psychology, 25(2), 307-313.
doi: 10.1002/acp.v25.2 URL |
[90] |
Dong, Y., Zheng, H. -Y., Wu, S. X. -Y., Huang, F. -Y., Peng, S. -N., Sun, S. Y. -K., & Zeng, H. (2022). The effect of Chinese pop background music on Chinese poetry reading comprehension. Psychology of Music, 50(5), 1544-1565.
doi: 10.1177/03057356211062940 URL |
[91] |
*Dosseville, F., Laborde, S., & Scelles, N. (2012). Music during lectures: Will students learn better? Learning and Individual Differences, 22(2), 258-262.
doi: 10.1016/j.lindif.2011.10.004 URL |
[92] |
Doyle, R. A., & Voyer, D. (2016). Stereotype manipulation effects on math and spatial test performance: A meta- analysis. Learning and Individual Differences, 47, 103-116.
doi: 10.1016/j.lindif.2015.12.018 URL |
[93] | *Du, M., Jiang, J., Li, Z., Man, D., & Jiang, C. (2020). The effects of background music on neural responses during reading comprehension. Scientific Reports, 10(1), 18651. doi: 10.1038/s41598-020-75623-3. |
[94] |
Elfenbein, H. A., & Ambady, N. (2002). On the universality and cultural specificity of emotion recognition: A meta- analysis. Psychological Bulletin, 128(2), 203-235.
doi: 10.1037/0033-2909.128.2.203 pmid: 11931516 |
[95] |
Eskine, K. E., Anderson, A. E., Sullivan, M., & Golob, E. J. (2020). Effects of music listening on creative cognition and semantic memory retrieval. Psychology of music, 48(4), 513-528.
doi: 10.1177/0305735618810792 URL |
[96] | Fang, R., Ye, S., Huangfu, J., & Calimag, D. P. (2017). Music therapy is a potential intervention for cognition of Alzheimer's disease: A mini-review. Translational Neurodegeneration, 6(1), 2. doi: 10.1186/s40035-017-0073-9 |
[97] | Ferreri, L., Bigand, E., Bard, P., & Bugaiska, A. (2015). The influence of music on prefrontal cortex during episodic encoding and retrieval of verbal information: A multichannel fNIRS study. Behavioural Neurology, 2015, 707625. doi: 10.1155/2015/707625 |
[98] |
Ferreri, L., Bigand, E., & Bugaiska, A. (2015). The positive effect of music on source memory. Musicae Scientiae, 19(4), 402-411.
doi: 10.1177/1029864915604684 URL |
[99] |
Ferreri, L., & Verga, L. (2016). Benefits of music on verbal learning and memory: How and when does it work? Music Perception, 34(2), 167-182.
doi: 10.1525/mp.2016.34.2.167 URL |
[100] | *Flores, D. R. A. (2021). The effects of music genre on scores in different exam types: A pilot study. Kwantlen Psychology Student Journal, 3, 86-97. |
[101] |
Foster, N. A., & Valentine, E. R. (2001). The effect of auditory stimulation on autobiographical recall in dementia. Experimental Aging Research, 27(3), 215-228.
pmid: 11441644 |
[102] |
Furnham, A., & Allass, K. (1999). The influence of musical distraction of varying complexity on the cognitive performance of extroverts and introverts. European Journal of Personality, 13(1), 27-38.
doi: 10.1002/(ISSN)1099-0984 URL |
[103] |
Gaab, N., Keenan, J. P., & Schlaug, G. (2003). The effects of gender on the neural substrates of pitch memory. Journal of Cognitive Neuroscience, 15(6), 810-820.
pmid: 14511534 |
[104] | Gainotti, G. (2019). The role of the right hemisphere in emotional and behavioral disorders of patients with frontotemporal lobar degeneration: An updated review. Frontiers in Aging Neuroscience, 11. doi: 10.3389/fnagi.2019.00055 |
[105] | * Gavazzi, G., Marzi, T., Giganti, F., Lorini, J., Fisher, A. D., & Viggiano, M. P. (2021). Pleasure plays the music: Visual attention and expertise. Retrieved Mar 18, 2021, from 10.31234/osf.io/me3c7 |
[106] |
Giannouli, V., Kolev, V., & Yordanova, J. (2019). Is there a specific Vivaldi effect on verbal memory functions? Evidence from listening to music in younger and older adults. Psychology of Music, 47(3), 325-341.
doi: 10.1177/0305735618757901 |
[107] |
Giedd, J. N., & Rapoport, J. L. (2010). Structural MRI of pediatric brain development: What have we learned and where are we going? Neuron, 67(5), 728-734.
doi: 10.1016/j.neuron.2010.08.040 pmid: 20826305 |
[108] |
*Gilleta, K. S., Vrbancic, M. I., Elias, L. J., & Saucier, D. M. (2003). A Mozart effect for women on a mental rotations task. Perceptual and Motor Skills, 96(3), 1086-1092.
doi: 10.2466/pms.2003.96.3c.1086 URL |
[109] |
Gold, B. P., Frank, M. J., Bogert, B., & Brattico, E. (2013). Pleasurable music affects reinforcement learning according to the listener. Frontiers in Psychology, 4, 541. doi: 10.3389/fpsyg.2013.00541
pmid: 23970875 |
[110] |
Gonzalez, M. F., & Aiello, J. R. (2019). More than meets the ear: Investigating how music affects cognitive task performance. Journal of Experimental Psychology: Applied, 25(3), 431-444.
doi: 10.1037/xap0000202 URL |
[111] |
Gultepe, B., & Coskun, H. (2016). Music and cognitive stimulation influence idea generation. Psychology of Music, 44(1), 3-14.
doi: 10.1177/0305735615580356 URL |
[112] |
Habibi, A., Damasio, A., Ilari, B., Veiga, R., Joshi, A. A., Leahy, R. M., … Damasio, H. (2018). Childhood music training induces change in micro and macroscopic brain structure: Results from a longitudinal study. Cerebral Cortex, 28(12), 4336-4347.
doi: 10.1093/cercor/bhx286 URL |
[113] | *Hallam, S., Price, J., & Katsarou, G. (2002). The effects of background music on primary school pupils' task performance. Educational Studies, 28(2), 111-122. |
[114] | Halpern, D. F. (2012). Sex differences in cognitive abilities (4th ed.). New York, NY: Psychology Press. |
[115] |
*Hausmann, M., Hodgetts, S., & Eerola, T. (2016). Music- induced changes in functional cerebral asymmetries. Brain and Cognition, 104, 58-71.
doi: 10.1016/j.bandc.2016.03.001 pmid: 26970942 |
[116] | * Hayashi, M. (2021). Relationships between background music and cognitive control. Retrieved August 13, 2021, from https://escholarship.org/uc/item/8gn1q7zh |
[117] | Heng, L. (2018). Timbre in the communication of emotions among performers and listeners from western art music and Chinese Music traditions (Unpublished master’s thesis). McGill University, Montreal. |
[118] |
Herlitz, A., Reuterskiold, L., Loven, J., Thilers, P. P., & Rehnman, J. (2013). Cognitive sex differences are not magnified as a function of age, sex hormones, or puberty development during early adolescence. Developmental Neuropsychology, 38(3), 167-179.
doi: 10.1080/87565641.2012.759580 pmid: 23573795 |
[119] |
Hetland, L. (2000). Listening to music enhances spatial- temporal reasoning: Evidence for the "Mozart effect". Journal of Aesthetic Education, 34(3/4), 105-148.
doi: 10.2307/3333640 URL |
[120] |
Hines, M. (2011). Gender development and the human brain. Annual Review of Neuroscience, 34, 69-88.
doi: 10.1146/annurev-neuro-061010-113654 pmid: 21438685 |
[121] |
*Ho, C., Mason, O., & Spence, C. (2007). An investigation into the temporal dimension of the Mozart effect: Evidence from the attentional blink task. Acta Psychologica, 125(1), 117-128.
pmid: 16942739 |
[122] |
Hu, X., & Lee, J. H. (2016). Towards global music digital libraries: A cross-cultural comparison on the mood of Chinese music. Journal of Documentation, 72(5), 858-877.
doi: 10.1108/JD-01-2016-0005 URL |
[123] |
*Hui, K. (2006). Mozart effect in preschool children? Early Child Development Care, 176(3-4), 411-419.
doi: 10.1080/03004430500147540 URL |
[124] |
Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104(1), 53-69.
doi: 10.1037/0033-2909.104.1.53 URL |
[125] |
*Ivanov, V. K., & Geake, J. G. (2003). The Mozart effect and primary school children. Psychology of Music, 31(4), 405-413.
doi: 10.1177/03057356030314005 URL |
[126] |
Jaschke, A. C., Honing, H., & Scherder, E. J. A. (2018). Longitudinal analysis of music education on executive functions in primary school children. Frontiers in Neuroscience, 12, 103. doi: 10.3389/fnins.2018.00103
pmid: 29541017 |
[127] |
*Jausovec, N., & Habe, K. (2004). The influence of auditory background stimulation (Mozart's sonata K. 448) on visual brain activity. International Journal of Psychophysiology, 51(3), 261-271.
pmid: 14962578 |
[128] |
Jausovec, N., & Habe, K. (2005). The influence of Mozart's Sonata K. 448 on brain activity during the performance of spatial rotation and numerical tasks. Brain Topography, 17(4), 207-218.
pmid: 16110771 |
[129] |
*Jausovec, N., Jausovec, K., & Gerlic, I. (2006). The influence of Mozart's music on brain activity in the process of learning. Clinical Neurophysiology, 117(12), 2703-2714.
pmid: 17029951 |
[130] | Jing, Y., Jing, S., Huajian, C., Chuangang, S., & Yan, L. (2012). The gender difference in distraction of background music and noise on the cognitive task performance. In Proceedings of the 2012 8th International Conference on Natural Computation. Chongqing: IEEE. |
[131] | Johnson, K. J., Waugh, C. E., & Fredrickson, B. L. (2010). Smile to see the forest: Facially expressed positive emotions broaden cognition. Cognition & Emotion, 24, 299-321. |
[132] | *Jones, D. (2020). Effect of different music genres on cognitive task performance after high intensity interval training. Longwood Senior Theses, Longwood University. |
[133] |
*Jones, M. H., & Estell, D. B. (2007). Exploring the Mozart effect among high school students. Psychology of Aesthetics, Creativity, the Arts, 1(4), 219-224.
doi: 10.1037/1931-3896.1.4.219 URL |
[134] | *Jones, M. H., West, S. D., & Estell, D. B. (2006). The Mozart effect: Arousal, preference, and spatial performance. Psychology of Aesthetics, Creativity, the Arts, S(1), 26-32. |
[135] |
Jones, S. M., & Zigler, E. (2002). The Mozart effect: Not learning from history. Journal of Applied Developmental Psychology, 23(3), 355-372.
doi: 10.1016/S0193-3973(02)00113-2 URL |
[136] | Juslin, P. N., & Sloboda, J. (Eds). (2011). Handbook of music and emotion: Theory, research, applications. Oxford University Press. |
[137] |
Kaempfe, J., Sedlmeier, P., & Renkewitz, F. (2011). The impact of background music on adult listeners: A meta-analysis. Psychology of Music, 39(4), 424-448.
doi: 10.1177/0305735610376261 URL |
[138] | Karolis, V. R., Corbetta, M., & de Schotten, M. T. (2019). The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain. Nature Communications, 10(1), 1417. doi: 10.1038/s41467-019-09344-1 |
[139] | Kimura, D. (2002). Sex hormones influence human cognitive pattern. Neuro Endocrinology Letters, 23(Suppl 4), 67-77. |
[140] | Kinsbourne, M. (1974). Lateral interactions in the brain. In M. Kinsbourne & W. L. Smith (Eds.), Hemispheric disconnection and cerebral function (pp. 239-259). Springfield: Thomas. |
[141] |
Kiss, L., & Linnell, K. J. (2021). The effect of preferred background music on task-focus in sustained attention. Psychological Research-Psychologische Forschung, 85(6), 2313-2325.
doi: 10.1007/s00426-020-01400-6 |
[142] |
Koelsch, S., Maess, B., Grossmann, T., & Friederici, A. D. (2003). Electric brain responses reveal gender differences in music processing. Neuroreport, 14(5), 709-713.
pmid: 12692468 |
[143] | Kosta, K., Song, Y., Fazekas, G., & Sandler, M. B. (2013). A study of cultural dependence of perceived mood in Greek music. In A. de Souza Britto, Jr., F. Gouyon, & S. Dixon (Eds.), Proceedings of the 14th International Society for Music Information Retrieval Conference (ISMIR) (pp. 317-322). Curitiba, Brazil: ISMIR |
[144] |
Krumhansl, C. L. (2002). Music: A link between cognition and emotion. Current Directions in Psychological Science, 11(2), 45-50.
doi: 10.1111/1467-8721.00165 URL |
[145] |
*Kumaradevan, K. S., Balan, A., Khan, K., Alji, R. M., & Narayanan, S. N. (2021). Modulatory role of background music on cognitive interference task in young people. Irish Journal of Medical Science, 190(2), 779-786.
doi: 10.1007/s11845-020-02365-6 |
[146] |
*Kuschpel, M. S., Liu, S., Schad, D. J., Heinzel, S., Heinz, A., & Rapp, M. A. (2015). Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task. Frontiers in Psychology, 6, 1683. doi: 10.3389/fpsyg.2015.01683
pmid: 26579055 |
[147] |
*Lake, J. I., & Goldstein, F. C. (2011). An examination of an enhancing effect of music on attentional abilities in older persons with mildcognitive lmpairment. Perceptual and Motor Skills, 112(1), 267-278.
doi: 10.2466/04.10.15.PMS.112.1.267-278 URL |
[148] | *Lange-Küttner, C., & Rohloff, S. (2020). Mozart sharpens and Mahler degrades the word memory trace. Advanced Research in Psychology, 1(1), 1-8. |
[149] |
Lauer, J. E., Yhang, E., & Lourenco, S. F. (2019). The development of gender differences in spatial reasoning: A meta-analytic review. Psychological Bulletin, 145(6), 537-565.
doi: 10.1037/bul0000191 pmid: 30973235 |
[150] | Lee, J. H., & Hu, X. (2014). Cross-cultural similarities and differences in music mood perception. In Proceedings of the iConference. Berlin, Germany. |
[151] |
Leng, X. D., Shaw, G. L., & Wright, E. L. (1990). Coding of musical structure and the trion model of cortex. Music Perception, 8(1), 49-62.
doi: 10.2307/40285485 URL |
[152] |
Levinson, D. B., Smallwood, J., & Davidson, R. J. (2012). The persistence of thought: Evidence for a role of working memory in the maintenance of task-unrelated thinking. Psychological Science, 23(4), 375-380.
doi: 10.1177/0956797611431465 pmid: 22421205 |
[153] | * Lewis, M. J. (1997). The effects of three different auditory environments on the learning outcomes of primary students (Unpublished master's thesis). University of Regina. |
[154] | * Lin, H., & Hsieh, H. Y. (2011). The effect of music on spatial ability. In P. L. P. Rau (Ed) Internationalization, Design and Global Development. IDGD 2011. Lecture Notes in Computer Science (Vol. 6775, pp.185-191). Berlin, Germany: Springer-Verlag. |
[155] | Lin, L. -C., Ouyang, C. -S., Chiang, C. -T., Wu, R. -C., Wu, H. -C., & Yang, R. -C. (2014). Listening to Mozart K. 448 decreases electroencephalography oscillatory power associated with an increase in sympathetic tone in adults: A post-intervention study. Journal of the Royal Society of Medicine Open, 5(10), 1-7. |
[156] |
*Lints, A., & Gadbois, S. (2003). Is listening to mozart the only way to enhance spatial reasoning? Perceptual and Motor Skills, 97(3), 1163-1174.
doi: 10.2466/pms.2003.97.3f.1163 URL |
[157] | Loprinzi, P. D., & Frith, E. (2018). The role of sex in memory function: Considerations and recommendations in the context of exercise. Journal of Clinical Medicine, 7(6), E132. doi: 10.3390/jcm7060132 |
[158] |
*Mammarella, N., Fairfield, B., & Cornoldi, C. (2007). Does music enhance cognitive performance in healthy older adults? The Vivaldi effect. Aging Clinical and Experimental Research, 19(5), 394-399.
pmid: 18007118 |
[159] | *Mattar, J. (2013). The effect of Mozart's music on child development in a Jordanian kindergarten. Education. 133(3), 370-377. |
[160] | *McClure, L. E. (2004). The Mozart effect: The role of periodicity and musical structure (Unpublished doctorial dissertation). The Chicago School of Professional Psychology. |
[161] |
*McCutcheon, L. E . (2000). Another failure to generalize the Mozart effect. Psychological Reports, 87(1), 325-330.
pmid: 11026433 |
[162] |
Mcguinness, D., Olson, A., & Chapman, J. J. L. (1990). Sex differences in incidental recall for words and pictures. Learning Individual Differences, 2(3), 263-285.
doi: 10.1016/1041-6080(90)90006-3 URL |
[163] |
*McKelvie, P., & Low, J. (2002). Listening to Mozart does not improve children's spatial ability: Final curtains for the Mozart effect. British Journal of Developmental Psychology, 20(2), 241-258.
doi: 10.1348/026151002166433 URL |
[164] |
Merzenich, M. M., van Vleet, T. M., & Nahum, M. (2014). Brain plasticity-based therapeutics. Frontiers in Human Neuroscience, 8, 385. doi:10.3389/fnhum.2014.00385
pmid: 25018719 |
[165] |
Miles, S. A., Miranda, R. A., & Ullman, M. T. (2016). Sex differences in music: A female advantage at recognizing familiar melodies. Frontiers in Psychology, 7, 278. doi: 10.3389/fpsyg.2016.00278
pmid: 26973574 |
[166] |
Miller, D. I., & Halpern, D. F. (2014). The new science of cognitive sex differences. Trends in Cognitive Sciences, 18(1), 37-45.
doi: 10.1016/j.tics.2013.10.011 pmid: 24246136 |
[167] |
Minagawa-Kawai, Y., Cristia, A., & Dupoux, E. (2011). Cerebral lateralization and early speech acquisition: A developmental scenario. Developmental Cognitive Neuroscience, 1(3), 217-232.
doi: 10.1016/j.dcn.2011.03.005 pmid: 22436509 |
[168] |
*Mohan, A., & Thomas, E. (2020). Effect of background music and the cultural preference to music on adolescents' task performance. International Journal of Adolescence and Youth, 25(1), 562-573.
doi: 10.1080/02673843.2019.1689368 URL |
[169] |
Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 1063-1066.
doi: 10.1111/j.1467-9280.2008.02200.x pmid: 19076473 |
[170] | Morgan, A. J., Ross, A., & Reavley, N. J. (2018). Systematic review and meta-analysis of mental health first aid training: Effects on knowledge, stigma, and helping behaviour. Plos One, 13(5), e0197102. doi: 10.1371/journal.pone.0197102 |
[171] | *Mualem, R., Badarne, B., Biswas, S., Hnout, M., & Ganem, S. (2021). Improvements in cognition and educational attainment as a result of integrating music into science teaching in elementary school. Neuroscience and Neurological Surgery, 8(5), 1-8. |
[172] | Mullikin, C. N., & Henk, W. A. (1985). Using music as a background for reading: An exploratory study. Journal of Reading, 28(4), 353-358. |
[173] |
Nadler, R. T., Rabi, R., & Minda, J. P. (2010). Better mood and better performance: Learning rule-described categories is enhanced by positive mood. Psychological Science, 21(12), 1770-1776.
doi: 10.1177/0956797610387441 pmid: 20974709 |
[174] |
Nan, Y., Knoesche, T. R., & Friederci, A. D. (2006). The perception of musical phrase structure: A cross-cultural ERP study. Brain Research, 1094, 179-191.
doi: 10.1016/j.brainres.2006.03.115 pmid: 16712816 |
[175] | * Nantais, K. M. (1997). Spatial-temporal skills and exposure to music: Is there an effect, and if so, why? (Unpublished master’s thesis). University of Windsor. |
[176] |
*Nantais, K. M., & Schellenberg, E. G. (1999). The Mozart effect: An artifact of preference. Psychological Science, 10(4), 370-373.
doi: 10.1111/1467-9280.00170 URL |
[177] | Nelson, C. A., & Luciana, M. (Eds.). (2001). Handbook of developmental cognitive neuroscience (pp.191-202). Cambridge: The MIT Press. |
[178] |
Nemati, S., Akrami, H., Salehi, S., Esteky, H., & Moghimi, S. (2019). Lost in music: Neural signature of pleasure and its role in modulating attentional resources. Brain Research, 1711, 7-15.
doi: S0006-8993(19)30017-4 pmid: 30629944 |
[179] |
Neuburger, S., Jansen, P., Heil, M., & Quaiser-Pohl, C. (2011). Gender differences in pre-adolescents' mental- rotation performance: Do they depend on grade and stimulus type? Personality and Individual Differences, 50(8), 1238-1242.
doi: 10.1016/j.paid.2011.02.017 URL |
[180] | Neuhaus, C. (2003). Perceiving musical scale structures. A cross-cultural event-related brain potentials study. Annals of the New York Academy of Sciences, 999, 184-188. |
[181] |
*Newman, J., Rosenbach, J. H., Burns, K. L., Latimer, B. C., Matocha, H. R., & Vogt, E. R. (1995). An experimental test of ''the Mozart effect'': Does listening to his music improve spatial ability? Perceptual and Motor Skills, 81(3), 1379-1387.
doi: 10.2466/pms.1995.81.3f.1379 URL |
[182] |
Nielzirn, S., & Cesarec, Z. (1981). On the perception of emotional meaning in music. Psychology of Music, 9(2), 17-31.
doi: 10.1177/030573568192002 URL |
[183] |
Nobre, G. C., Valentini, N. C., & Sales Nobre, F. S. (2018). Fundamental motor skills, nutritional status, perceived competence, and school performance of Brazilian children in social vulnerability: Gender comparison. Child Abuse & Neglect, 80, 335-345.
doi: 10.1016/j.chiabu.2018.04.007 URL |
[184] |
Overman, A. A., Hoge, J., Dale, J. A., Cross, J. D., & Chien, A. (2003). EEG alpha desynchronization in musicians and nonmusicians in response to changes in melody, tempo, and key in classical music. Perceptual and Motor Skills, 97(2), 519-532.
pmid: 14620240 |
[185] |
Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38(1), 1-4.
doi: 10.1207/S15326985EP3801_1 URL |
[186] |
Padulo, C., Mammarella, N., Brancucci, A., Altamura, M., & Fairfield, B. (2020). The effects of music on spatial reasoning. Psychological Research-Psychologische Forschung, 84(6), 1723-1728.
doi: 10.1007/s00426-019-01182-6 |
[187] |
Palejwala, M. H., & Fine, J. G. (2015). Gender differences in latent cognitive abilities in children aged 2 to 7. Intelligence, 48, 96-108.
doi: 10.1016/j.intell.2014.11.004 URL |
[188] |
Panteleeva, Y., Ceschi, G., Glowinski, D., Courvoisier, D. S., & Grandjean, D. (2018). Music for anxiety? Meta-analysis of anxiety reduction in non-clinical samples. Psychology of Music, 46(4), 473-487.
doi: 10.1177/0305735617712424 URL |
[189] |
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., & Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392(6678), 811-814.
doi: 10.1038/33918 |
[190] | *Pecci, M. T., Verrusio, W., Radicioni, A. F., Anzuini, A., Renzi, A., Martinelli, V.,... Cacciafesta, M. (2016). Music, spatial task performance, and brain plasticity in elderly adults. Journal of the American Geriatrics Society, 64(10), E78-E80. |
[191] |
Penner, A. M., & Paret, M. (2008). Gender differences in mathematics achievement: Exploring the early grades and the extremes. Social Science Research, 37(1), 239-253.
doi: 10.1016/j.ssresearch.2007.06.012 URL |
[192] |
Perham, N., & Sykora, M. (2012). Disliked music can be better for performance than liked music. Applied Cognitive Psychology, 26(4), 550-555.
doi: 10.1002/acp.v26.4 URL |
[193] |
Perham, N., & Vizard, J. (2011). Can preference for background music mediate the irrelevant sound effect? Applied Cognitive Psychology, 25(4), 625-631.
doi: 10.1002/acp.v25.4 URL |
[194] |
Perlovsky, L., Cabanac, A., Bonniot-Cabanac, M. -C., & Cabanac, M. (2013). Mozart effect, cognitive dissonance, and the pleasure of music. Behavioural Brain Research, 244, 9-14.
doi: 10.1016/j.bbr.2013.01.036 pmid: 23380673 |
[195] |
Pietschnig, J., Voracek, M., & Formann, A. K. (2010). Mozart effect-Shmozart effect: A meta-analysis. Intelligence, 38(3), 314-323.
doi: 10.1016/j.intell.2010.03.001 URL |
[196] |
Preis, S., Jancke, L., Schmitz-Hillebrecht, J., & Steinmetz, H. (1999). Child age and planum temporale asymmetry. Brain and Cognition, 40(3), 441-452.
pmid: 10415130 |
[197] | Price, C. J. (2010). The anatomy of language:A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62-88. |
[198] |
Proverbio, A. M., & de Benedetto, F. (2018). Auditory enhancement of visual memory encoding is driven by emotional content of the auditory material and mediated by superior frontal cortex. Biological Psychology, 132, 164-175.
doi: S0301-0511(17)30344-7 pmid: 29292233 |
[199] | *Quek, M. J. H., Santharisegar, P., Roslan, N. F. A., Elman, Z. E. E., & Arumugam, K. (2020). The effect of music intervention on intellectual ability and cognitive function among medical students randomized controlled trial. International Journal of Biomedical and Clinical Sciences, 5(1), 20-32. |
[200] |
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067-1070.
doi: 10.1111/j.1467-9280.2008.02201.x pmid: 19076474 |
[201] | Rauscher, F. H. (1999). Music exposure and the development of spatial intelligence in children. Bulletin of the Council for Research in Music Education, 142, 35-47. |
[202] |
Rauscher, F. H., Robinson, K. D., & Jens, J. J. (1998). Improved maze learning through early music exposure in rats. Neurological Research, 20(5), 427-432.
pmid: 9664590 |
[203] |
Rauscher, F. H., & Shaw, G. L. (1998). Key components of the Mozart effect. Perceptual and Motor Skills, 86(3), 835-841.
doi: 10.2466/pms.1998.86.3.835 URL |
[204] | *Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1993). Music and spatial task-performance. Nature, 365(6447), 611. doi: 10.1038/365611a0 |
[205] |
Rauscher, F. H., Shaw, G. L., & Ky, K. N. (1995). Listening to Mozart enhances spatial-temporal reasoning: Towards aneurophysiological basis. Neuroscience Letters, 185(1), 44-47.
pmid: 7731551 |
[206] | Reilly, D. (2012). Gender, culture, and sex-typed cognitive abilities. Plos One, 7(7), e39904. doi: 10.1371/journal.pone.0039904 |
[207] |
Rey, G. D. (2012). A review of research and a meta-analysis of the seductive detail effect. Educational Research Review, 7(3), 216-237.
doi: 10.1016/j.edurev.2012.05.003 URL |
[208] |
*Rideout, B. E., Dougherty, S., & Wernert, L. (1998). Effect of music on spatial performance: A test of generality. Perceptual and Motor Skills, 86(2), 512-514.
pmid: 9638749 |
[209] |
*Rideout, B. E., & Laubach, C. M. (1996). EEG correlates of enhanced spatial performance following exposure to music. Perceptual and Motor Skills, 82(2), 427-432.
pmid: 8724912 |
[210] |
*Rideout, B. E., & Taylor, J. (1997). Enhanced spatial performance following 10 minutes exposure to music: A replication. Perceptual and Motor Skills, 85(1), 112-114.
pmid: 9293565 |
[211] | Rizou, P. (2020). Reading with noise? The effects of background music and speech on reading comprehension in English as a foreign language (Unpublished master’s thesis). Aristotle University of Thessaloniki. |
[212] |
Robazza, C., Macaluso, C., & Durso, V. (1994). Emotional reactions to music by gender, age, and expertise. Perceptual and Motor Skills, 79(2), 939-944.
doi: 10.2466/pms.1994.79.2.939 pmid: 7870518 |
[213] |
Rodriguez-Negro, J., Javier Huertas-Delgado, F., & Yanci, J. (2021). Motor skills differences by gender in early elementary education students. Early Child Development and Care, 191(2), 281-291.
doi: 10.1080/03004430.2019.1617284 URL |
[214] |
*Roth, E. A., & Smith, K. H. (2008). The Mozart effect: Evidence for the arousal hypothesis. Perceptual and Motor Skills, 107(2), 396-402.
pmid: 19093601 |
[215] |
Ruigrok, A. N. V., Salimi-Khorshidi, G., Lai, M. -C., Baron-Cohen, S., Lombardo, M. V., Tait, R. J., & Suckling, J. (2014). A meta-analysis of sex differences in human brain structure. Neuroscience and Biobehavioral Reviews, 39, 34-50.
doi: 10.1016/j.neubiorev.2013.12.004 pmid: 24374381 |
[216] | Santosa, H., Hong, M. J., & Hong, K. -S. (2014). Lateralization of music processing auditory cortex: An fNIRS study. Frontiers in Behavioral Neuroscience, 8, 418. doi: 10.3389/fnbeh.2014.00418 |
[217] |
Sarnthein, J., vonStein, A., Rappelsberger, P., Petsche, H., Rauscher, F. H., & Shaw, G. L. (1997). Persistent patterns of brain activity: An EEC coherence study of the positive effect of music on spatial-temporal reasoning. Neurological Research, 19(2), 107-116.
pmid: 9175137 |
[218] |
Schaerlaeken, S., Glowinski, D., Rappaz, M. -A., & Grandjean, D. (2019). “Hearing music as...”: Metaphors evoked by the sound of classical music. Psychomusicology: Music, Mind, and Brain, 29(2-3), 100-116.
doi: 10.1037/pmu0000233 URL |
[219] | Shek, V., & Schubert, E. (2009, December). Background music at work: A literature review and some hypotheses. In Proceedings of the 2nd international conference on music communication science (ICoMCS2). Sydney, Australia. |
[220] | Silva, S., Belim, F., & Castro, S. L. (2020). The Mozart effect on the episodic memory of healthy adults is null, but low-functioning older adults may be an exception. Frontiers in Psychology, 11, 538194. doi: 10.3389/fpsyg.2020.538194 |
[221] | *Sittler, R. L. (2015). The effects of audio and gender within a 3D gaming environment on the achievement of different educational objectives (Unpublished doctorial dissertation). Indiana University of Pennsylvania. |
[222] | *Smith, A., Waters, B., & Jones, H. (2010). Effects of prior exposure to office noise and music on aspects of working memory. Noise & Health, 12(49), 235-243. |
[223] | *Standing, L. G., Verpaelst, C. C., & Ulmer, B. K. (2008). A demonstration of nonlinear demand characteristics in the'Mozart effect' experimental paradigm. North American Journal of Psychology, 10(3), 553-566. |
[224] |
*Steele, K. M., Ball, T. N., & Runk, R. (1997). Listening to Mozart does not enhance backwards digit span performance. Perceptual Motor Skills, 84(S3), 1179-1184.
doi: 10.2466/pms.1997.84.3c.1179 URL |
[225] |
*Steele, K. M., Bass, K. E., & Crook, M. D. (1999). The mystery of the Mozart effect: Failure to replicate. Psychological Science, 10(4), 366-369.
doi: 10.1111/1467-9280.00169 URL |
[226] | *Steele, K. M., Bella, S. D., Peretz, I., Dunlop, T., Dawe, L. A., Humphrey, G. K.,... Olmstead, C. G. (1999). Prelude or requiem for the 'Mozart effect'? Nature, 400(6747), 827. doi: 10.1038/23611 |
[227] |
*Steele, K. M., Brown, J. D., & Stoecker, J. A. (1999). Failure to confirm the Rauscher and Shaw description of recovery of the Mozart effect. Perceptual and Motor Skills, 88(3), 843-848.
doi: 10.2466/pms.1999.88.3.843 URL |
[228] | Stoet, G., & Geary, D. C. (2013). Sex differences in mathematics and reading achievement are inversely related: Within-and across-nation assessment of 10 years of PISA data. Plos One, 8(3), e57988. doi: 10.1371/journal.pone.0057988 |
[229] |
Storbeck, J., & Clore, G. L. (2005). With sadness comes accuracy; with happiness, false memory: Mood and the false memory effect. Psychological Science, 16(10), 785-791.
doi: 10.1111/j.1467-9280.2005.01615.x pmid: 16181441 |
[230] | *Stough, C., Kerkin, B., Bates, T., & Mangan, G. (1994). Music and spatial IQ. Personality and Individual Differences, 17(5), 695. doi: 10.1016/0191-8869(94)90145-7 |
[231] | *Su, Y. -N., Kao, C. -C., Hsu, C. -C., Pan, L. -C., Cheng, S. -C., & Huang, Y. -M. (2017). How does Mozart's music affect children's reading? The evidence from learning anxiety and reading rates with e-books. Educational Technology & Society, 20(2), 101-112. |
[232] |
Suda, M., Morimoto, K., Obata, A., Koizumi, H., & Maki, A. (2008). Cortical responses to Mozart's sonata enhance spatial-reasoning ability. Neurological Research, 30(9), 885-888.
doi: 10.1179/174313208X319143 pmid: 18631433 |
[233] | Suh, K., & Park, J. Y. (2011). Music preference and its relationship with personality traits. Korean Journal of Psychology: General, 30(1), 185-203. |
[234] | *Sweeny, R. M. (2007). Making sense of the Mozart effect: Correcting the problems created by null hypothesis significance testing. Dissertation Abstracts International: Section B: The Sciences and Engineering, 67(11-B), 6760. |
[235] | Taheri, S., Razeghi, M., Choobineh, A., Kazemi, R., Rasipisheh, P., & Vali, M. (2022). Investigating the effect of background music on cognitive and skill performance: A cross-sectional study. Work-a Journal of Prevention Assessment & Rehabilitation, 71(4), 871-879. |
[236] |
*Taylor, J. M., & Rowe, B. J. (2012). The “Mozart effect” and the mathematical connection. Journal of College Reading Learning, 42(2), 51-66.
doi: 10.1080/10790195.2012.10850354 URL |
[237] |
*Theofilidis, A., Karakasi, M. V., Kevrekidis, D. -P., Pavlidis, P., Sofologi, M., Trypsiannis, G., & Nimatoudis, J. (2020). Gender differences in short-term memory related to music genres. Neuroscience, 448, 266-271.
doi: 10.1016/j.neuroscience.2020.08.035 pmid: 32891706 |
[238] |
*Thompson, R. G., Moulin, C. J. A., Hayre, S., & Jones, R. W. (2005). Music enhances category fluency in healthy older adults and Alzheimer's disease patients. Experimental Aging Research, 31(1), 91-99.
pmid: 15842075 |
[239] |
Thompson, V. A., & Campbell, J. I. D. (2004). A power struggle: Between- vs. within-subjects designs in deductive reasoning research. Psychologia, 47(4), 277-296.
doi: 10.2117/psysoc.2004.277 URL |
[240] |
Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, mood, and the Mozart effect. Psychological Science, 12(3), 248-251.
pmid: 11437309 |
[241] |
*Thompson, W. F., Schellenberg, E. G., & Letnic, A. K. (2011). Fast and loud background music disrupts reading comprehension. Psychology of Music, 40(6), 700-708.
doi: 10.1177/0305735611400173 URL |
[242] | *Toon, K. (2019). The influence of video game music on verbal reasoning task performance (Unpublished doctorial dissertation). The Ohio State University. |
[243] |
*Twomey, A., & Esgate, A. (2002). The Mozart effect may only be demonstrable in nonmusicians. Perceptual and Motor Skills, 95(3), 1013-1026.
doi: 10.2466/pms.2002.95.3.1013 URL |
[244] | Upadhayay, N., & Guragain, S. (2014). Comparison of cognitive functions between male and female medical students: A pilot study. Journal of Clinical and Diagnostic Research, 8(6), BC12-BC15. |
[245] |
Vasilev, M. R., Kirkby, J. A., & Angele, B. (2018). Auditory distraction during reading: A bayesian meta-analysis of a continuing controversy. Perspectives on Psychological Science, 13(5), 567-597.
doi: 10.1177/1745691617747398 pmid: 29958067 |
[246] |
Verrusio, W., Ettorre, E., Vicenzini, E., Vanacore, N., Cacciafesta, M., & Mecarelli, O. (2015). The Mozart effect: A quantitative EEG study. Consciousness and Cognition, 35, 150-155.
doi: 10.1016/j.concog.2015.05.005 pmid: 26036835 |
[247] |
Viechtbauer, W., & Cheung, M. W. L. (2010). Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods, 1(2), 112-125.
doi: 10.1002/jrsm.11 pmid: 26061377 |
[248] |
Vollestad, J., Nielsen, M. B., & Nielsen, G. H. (2012). Mindfulness- and acceptance-based interventions for anxiety disorders: A systematic review and meta-analysis. British Journal of Clinical Psychology, 51(3), 239-260.
doi: 10.1111/j.2044-8260.2011.02024.x pmid: 22803933 |
[249] |
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250-270.
pmid: 7724690 |
[250] |
Voyer, D., Voyer, S. D., & Saint-Aubin, J. (2017). Sex differences in visual-spatial working memory: A meta- analysis. Psychonomic Bulletin & Review, 24(2), 307-334.
doi: 10.3758/s13423-016-1085-7 URL |
[251] |
Wahn, B., & Konig, P. (2017). Is attentional resource allocation across sensory modalities task-dependent? Advances in Cognitive Psychology, 13(1), 83-96.
doi: 10.5709/acp-0209-2 pmid: 28450975 |
[252] |
Wang, M. -T., Eccles, J. S., & Kenny, S. (2013). Not lack of ability but more choice: Individual and gender differences in choice of careers in science, technology, engineering, and mathematics. Psychological Science, 24(5), 770-775.
doi: 10.1177/0956797612458937 URL |
[253] | Wang, S., & Agius, M. (2018). The neuroscience of music; a review and summary. Psychiatria Danubina, 30(7), 588-594. |
[254] |
Waterhouse, L. (2006). Multiple intelligences, the Mozart effect, and emotional intelligence: A critical review. Educational Psychologist, 41(4), 207-225.
doi: 10.1207/s15326985ep4104_1 URL |
[255] |
Weiss, E., Siedentopf, C. M., Hofer, A., Deisenhammer, E. A., Hoptman, M. J., Kremser, C.,... Fleischhacker, W. W. (2003). Sex differences in brain activation pattern during a visuospatial cognitive task: A functional magnetic resonance imaging study in healthy volunteers. Neuroscience Letters, 344(3), 169-172.
pmid: 12812832 |
[256] |
White, E. J., Hutka, S. A., Williams, L. J., & Sylvain, M. (2013). Learning, neural plasticity and sensitive periods: Implications for language acquisition, music training and transfer across the lifespan. Frontiers in Systems Neuroscience, 7, 90. doi: 10.3389/fnsys.2013.00090
pmid: 24312022 |
[257] |
*Wiseman, M. C. (2013). The Mozart effect on task performance in a laparoscopic surgical simulator. Surgical Innovation, 20(5), 444-453.
doi: 10.1177/1553350612462482 pmid: 23154636 |
[258] |
Wu, C. -C., & Shih, Y. -N. (2021). The effects of background music on the work attention performance between musicians and non-musicians. International Journal of Occupational Safety and Ergonomics, 27(1), 201-205.
doi: 10.1080/10803548.2018.1558854 URL |
[259] | Xing, Y., Xia, Y., Kendrick, K., Liu, X., Wang, M., Wu, D., …Yao, D. (2016). Mozart, Mozart rhythm and retrograde Mozart effects: Evidences from behaviours and neurobiology bases. Scientific Reports, 6, 18744. doi: 10.1038/srep18744 |
[260] |
Zhang, H., Miller, K., Cleveland, R., & Cortina, K. (2018). How listening to music affects reading: Evidence from eye tracking. Journal of Experimental Psychology-Learning Memory and Cognition, 44(11), 1778-1791.
doi: 10.1037/xlm0000544 URL |
[261] |
Zhu, W., Zhang, J., Ding, X., Zhou, C., Ma, Y., & Xu, D. (2009). Crossmodal effects of Guqin and piano music on selective attention: An event-related potential study. Neuroscience Letters, 466(1), 21-26.
doi: 10.1016/j.neulet.2009.09.026 pmid: 19766172 |
[262] |
Zhu, W., Zhao, L., Zhang, J., Ding, X., Liu, H., Ni, E.,... Zhou, C. (2008). The influence of Mozart's sonata K. 448 on visual attention: An ERPs study. Neuroscience Letters, 434(1), 35-40.
doi: 10.1016/j.neulet.2008.01.043 URL |
[1] | YIN Kui, CHI Zhikang, DONG Niannian, LI Peikai, ZHAO Jing. The relationship between team reflexivity and team resources development, team resources utilization, and team outcomes: A meta-analysis [J]. Advances in Psychological Science, 2024, 32(2): 228-245. |
[2] | MENG Xianxin, CHEN Yijing, WANG Xinyi, YUAN Jiajin, YU Delin. The relationship between school connectedness and depression: A three-level meta-analytic review [J]. Advances in Psychological Science, 2024, 32(2): 246-263. |
[3] | KANG Dan, WEN Min, ZHANG Yingjie. The relationship between fine motor skills and mathematical ability in children: A meta-analysis [J]. Advances in Psychological Science, 2023, 31(8): 1443-1459. |
[4] | LI Ying, ZHAO Hongyu, ZHANG Mujun, FAN Zixuan, WANG Yue. The bilingual advantage effect on executive control and its moderators: Evidence from meta-analysis [J]. Advances in Psychological Science, 2023, 31(6): 970-987. |
[5] | ZHANG Ting, ZHANG Kelin, ZHOU Renlai. HPA axis dysfunction in women with premenstrual syndrome: A meta-analysis based on cortisol levels [J]. Advances in Psychological Science, 2023, 31(6): 988-1001. |
[6] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[7] | ZENG Runxi, LI You. The Relationship between self-efficacy and online health information seeking: A meta-analysis [J]. Advances in Psychological Science, 2023, 31(4): 535-551. |
[8] | WU Jiahui, FU Hailun, ZHANG Yuhuan. A meta-analysis of the relationship between perceived social support and student academic achievement: The mediating role of student engagement [J]. Advances in Psychological Science, 2023, 31(4): 552-569. |
[9] | GUO Ying, TIAN Xin, HU Dong, BAI Shulin, ZHOU Shuxi. The effects of shame on prosocial behavior: A systematic review and three-level meta-analysis [J]. Advances in Psychological Science, 2023, 31(3): 371-385. |
[10] | LI Yan, CHEN Wenjin, ZHANG Shuwei. The behavioral effects of nudge: A meta-analysis based on a dual perspective of “Cognitive Pathway” and “Transparency” [J]. Advances in Psychological Science, 2023, 31(12): 2275-2294. |
[11] | ZHANG Xinggui, HU Xiandan, SU Tao. Do high performance work systems impair employee well-being? Evidence from a meta-analysis [J]. Advances in Psychological Science, 2023, 31(11): 2005-2024. |
[12] | CONG Xinrui, WU Zeyu, MANZULA·Aishanjiang , JIANG Yunpeng, LIU Yan, WU Xia. Effects of action video games on different attentional subnetworks: Evidence from a meta-analysis [J]. Advances in Psychological Science, 2023, 31(10): 1843-1855. |
[13] | CHEN Bizhong, SUN Xiaojun. Cross-temporal changes of college students' time management disposition in the mainland of China during 1999~2020 [J]. Advances in Psychological Science, 2022, 30(9): 1968-1980. |
[14] | DU Yufei, OUYANG Huiyue, YU Lin. The relationship between grandparenting and depression in Eastern and Western cultures: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(9): 1981-1992. |
[15] | ZHAO Ning, LIU Xin, LI Shu, ZHENG Rui. Nudging effect of default options: A meta-analysis [J]. Advances in Psychological Science, 2022, 30(6): 1230-1241. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||