Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (10): 2269-2277.doi: 10.3724/SP.J.1042.2022.02269
• Regular Articles • Previous Articles Next Articles
WANG Rong1, CHEN Xiaoyi1, DU Xue1, JIANG Jun2()
Received:
2021-10-13
Online:
2022-10-15
Published:
2022-08-24
Contact:
JIANG Jun
E-mail:jun.qq.jiang@gmail.com
CLC Number:
WANG Rong, CHEN Xiaoyi, DU Xue, JIANG Jun. The regulatory mechanism of transcutaneous vagus nerve stimulation on inhibition control[J]. Advances in Psychological Science, 2022, 30(10): 2269-2277.
[1] | 袁加锦, 徐萌萌, 杨洁敏, 李红. (2017). 双选择oddball范式在行为抑制控制研究中的应用. 中国科学: 生命科学, 47(10), 1065-1073. |
[2] |
Aaronson, S. T., Sears, P., Ruvuna, F., Bunker, M., Conway, C. R., Dougherty, D. D.,... Zajecka, J. M. (2017). A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: Comparison of response, remission, and suicidality. The American Journal of Psychiatry, 174(7), 640-648.
doi: 10.1176/appi.ajp.2017.16010034 URL |
[3] |
Aron, A. R., Dowson, J. H., Sahakian, B. J., & Robbins, T. W. (2003). Methylphenidate improves response inhibition in adults with attention-deficit/hyperactivity disorder. Biological Psychiatry, 54(12), 1465-1468.
pmid: 14675812 |
[4] |
Assenza, G., Campana, C., Colicchio, G., Tombini, M., Assenza, F., di Pino, G., & di Lazzaro, V. (2017). Transcutaneous and invasive vagal nerve stimulations engage the same neural pathways: In-vivo human evidence. Brain Stimulation, 10(4), 853-854.
doi: S1935-861X(17)30625-3 pmid: 28395962 |
[5] |
Bachiller, A., Romero, S., Molina, V., Alonso, J. F., Mañanas, M. A., Poza, J., & Hornero, R. (2015). Auditory P3a and P3b neural generators in schizophrenia: An adaptive sLORETA P300 localization approach. Schizophrenia Research, 169(1-3), 318-325.
doi: 10.1016/j.schres.2015.10.008 URL |
[6] |
Badran, B. W., Dowdle, L. T., Mithoefer, O. J., LaBate, N. T., Coatsworth, J., Brown, J. C.,... George, M. S. (2018). Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimulation, 11(3), 492-500.
doi: S1935-861X(17)31025-2 pmid: 29361441 |
[7] |
Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W.,... Colzato, L. (2016). Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control-a study using transcutaneous vagus nerve stimulation. Brain Stimulation, 9(6), 811-818.
doi: 10.1016/j.brs.2016.07.004 URL |
[8] |
Borges, U., Knops, L., Laborde, S., Klatt, S., & Raab, M. (2020). Transcutaneous vagus nerve stimulation may enhance only specific aspects of the core executive functions. A randomized crossover trial. Frontiers in Neuroscience, 14, 523.
doi: 10.3389/fnins.2020.00523 pmid: 32523510 |
[9] |
Borges, U., Pfannenstiel, M., Tsukahara, J., Laborde, S., Klatt, S., & Raab, M. (2021). Transcutaneous vagus nerve stimulation via tragus or cymba conchae: Are its psychophysiological effects dependent on the stimulation area? International Journal of Psychophysiology, 161, 64-75.
doi: 10.1016/j.ijpsycho.2021.01.003 pmid: 33444689 |
[10] |
Brown, S. B. R. E., Slagter, H. A., van Noorden, M. S., Giltay, E. J., van der Wee, N. J. A., & Nieuwenhuis, S. (2016). Effects of clonidine and scopolamine on multiple target detection in rapid serial visual presentation. Psychopharmacology, 233(2), 341-350.
doi: 10.1007/s00213-015-4111-y pmid: 26507194 |
[11] | Burger, A. M., D'Agostini, M., Verkuil, B., & van Diest, I. (2020). Moving beyond belief: A narrative review of potential biomarkers for transcutaneous vagus nerve stimulation. Psychophysiology, 57(6), e13571. |
[12] |
Butt, M. F., Albusoda, A., Farmer, A. D., & Aziz, Q. (2020). The anatomical basis for transcutaneous auricular vagus nerve stimulation. Journal of Anatomy, 236(4), 588-611.
doi: 10.1111/joa.13122 pmid: 31742681 |
[13] |
Capone, F., Assenza, G., di Pino, G., Musumeci, G., Ranieri, F., Florio, L.,... di Lazzaro, V. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. Journal of Neural Transmission, 122(5), 679-685.
doi: 10.1007/s00702-014-1299-7 pmid: 25182412 |
[14] |
Capone, F., Motolese, F., di Zazzo, A., Antonini, M., Magliozzi, A., Rossi, M.,... di Lazzaro, V. (2021). The effects of transcutaneous auricular vagal nerve stimulation on pupil size. Clinical Neurophysiology, 132(8), 1859-1865.
doi: 10.1016/j.clinph.2021.05.014 pmid: 34147923 |
[15] |
Chatterton, R. T., Jr., Vogelsong, K. M., Lu, Y. C., Ellman, A. B., & Hudgens, G. A. (1996). Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clinical Physiology, 16(4), 433-448.
pmid: 8842578 |
[16] | Chen, L., Zhang, J., Wang, Z., Zhang, X., Zhang, L., Xu, M.,... Ming, D. (2021). Effects of transcutaneous vagus nerve stimulation (tVNS) on action planning: A behavioural and EEG study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 1. |
[17] |
Colzato, L., & Beste, C. (2020). A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: Challenges and future directions. Journal of Neurophysiology, 123(5), 1739-1755.
doi: 10.1152/jn.00057.2020 pmid: 32208895 |
[18] |
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.
doi: 10.1146/annurev-psych-113011-143750 pmid: 23020641 |
[19] |
di Lazzaro, V., Oliviero, A., Pilato, F., Saturno, E., Dileone, M., Meglio, M.,... Tonali, P. (2004). Effects of vagus nerve stimulation on cortical excitability in epileptic patients. Neurology, 62(12), 2310-2312.
pmid: 15210904 |
[20] |
Dores, A. R., Barbosa, F., Carvalho, I. P., Almeida, I., Guerreiro, S., da Rocha, B. M.,... Castro Caldas, A. (2017). An fMRI paradigm based on Williams inhibition test to study the neural substrates of attention and inhibitory control. Neurological Sciences, 38(12), 2145-2152.
doi: 10.1007/s10072-017-3104-5 pmid: 28963587 |
[21] |
Ellrich, J. (2019). Transcutaneous auricular vagus nerve stimulation. Journal of Clinical Neurophysiology, 36(6), 437-442.
doi: 10.1097/WNP.0000000000000576 pmid: 31688327 |
[22] | Farmer, A. D., Strzelczyk, A., Finisguerra, A., Gourine, A. V., Gharabaghi, A., Hasan, A.,... Koenig, J. (2021). International consensus based review and recommendations for minimum reporting standards in research on transcutaneous vagus nerve stimulation (version 2020). Frontiers in Human Neuroscience, 14, 409. |
[23] | Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cognitive, Affective & Behavioral Neuroscience, 18(4), 680-693. |
[24] |
George, M. S., & Aston-Jones, G. (2010). Noninvasive techniques for probing neurocircuitry and treating illness: Vagus nerve stimulation (VNS), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). Neuropsychopharmacology, 35(1), 301-316.
doi: 10.1038/npp.2009.87 pmid: 19693003 |
[25] |
Henssen, D., Derks, B., van Doorn, M., Verhoogt, N., van Cappellen van Walsum, A. M., Staats, P., & Vissers, K. (2019). Vagus nerve stimulation for primary headache disorders: An anatomical review to explain a clinical phenomenon. Cephalalgia, 39(9), 1180-1194.
doi: 10.1177/0333102419833076 pmid: 30786731 |
[26] |
Hermans, L., Leunissen, I., Pauwels, L., Cuypers, K., Peeters, R., Puts, N. A. J.,... Swinnen, S. P. (2018). Brain GABA levels are associated with inhibitory control deficits in older adults. The Journal of Neuroscience, 38(36), 7844-7851.
doi: 10.1523/JNEUROSCI.0760-18.2018 URL |
[27] |
Hoffmann, A., Ettinger, U., Montoro, C., Reyes Del Paso, G. A., & Duschek, S. (2019). Cerebral blood flow responses during prosaccade and antisaccade preparation in major depression. European Archives of Psychiatry and Clinical Neuroscience, 269(7), 813-822.
doi: 10.1007/s00406-018-0956-5 pmid: 30421150 |
[28] |
Hung, Y., Gaillard, S. L., Yarmak, P., & Arsalidou, M. (2018). Dissociations of cognitive inhibition, response inhibition, and emotional interference: Voxelwise ALE meta-analyses of fMRI studies. Human Brain Mapping, 39(10), 4065-4082.
doi: 10.1002/hbm.24232 pmid: 29923271 |
[29] |
Keute, M., Barth, D., Liebrand, M., Heinze, H.-J., Kraemer, U., & Zaehle, T. (2020). Effects of transcutaneous vagus nerve stimulation (tVNS) on conflict-related behavioral performance and frontal midline theta activity. Journal of Cognitive Enhancement, 4(2), 121-130.
doi: 10.1007/s41465-019-00152-5 URL |
[30] |
Keute, M., Boehrer, L., Ruhnau, P., Heinze, H. J., & Zaehle, T. (2019). Transcutaneous vagus nerve stimulation (tVNS) and the dynamics of visual bistable perception. Frontiers in Neuroscience, 13, 227.
doi: 10.3389/fnins.2019.00227 pmid: 30906250 |
[31] |
Kong, J., Fang, J., Park, J., Li, S., & Rong, P. (2018). Treating depression with transcutaneous auricular vagus nerve stimulation: State of the art and future perspectives. Front Psychiatry, 9, 20.
doi: 10.3389/fpsyt.2018.00020 pmid: 29459836 |
[32] |
Larsen, R. S., & Waters, J. (2018). Neuromodulatory correlates of pupil dilation. Frontiers in Neural Circuits, 12, 21.
doi: 10.3389/fncir.2018.00021 pmid: 29593504 |
[33] |
Lee, T. H., Greening, S. G., Ueno, T., Clewett, D., Ponzio, A., Sakaki, M., & Mather, M. (2018). Arousal increases neural gain via the locus coeruleus-norepinephrine system in younger adults but not in older adults. Nature Human Behaviour, 2(5), 356-366.
doi: 10.1038/s41562-018-0344-1 URL |
[34] |
Li, S., Wang, Y., Gao, G., Guo, X., Zhang, Y., Zhang, Z.,... Rong, P. (2020). Transcutaneous auricular vagus nerve stimulation at 20 Hz improves depression-like behaviors and down-regulates the hyperactivity of HPA axis in chronic unpredictable mild stress model rats. Frontiers in Neuroscience, 14, 680.
doi: 10.3389/fnins.2020.00680 pmid: 32765210 |
[35] | Li, T., Wang, L., Huang, W., Zhen, Y., Zhong, C., Qu, Z., & Ding, Y. (2020). Onset time of inhibition of return is a promising index for assessing cognitive functions in older adults. The Journals of Gerontology: Series B, 75(4), 753-761. |
[36] |
Montefinese, M., Vinson, D., & Ambrosini, E. (2018). Recognition memory and featural similarity between concepts: The pupil's point of view. Biological Psychology, 135, 159-169.
doi: S0301-0511(18)30243-6 pmid: 29665431 |
[37] |
Murley, A. G., Rouse, M. A., Jones, P. S., Ye, R., Hezemans, F. H., O'Callaghan, C.,... Rowe, J. B. (2020). GABA and glutamate deficits from frontotemporal lobar degeneration are associated with disinhibition. Brain, 143(11), 3449-3462.
doi: 10.1093/brain/awaa305 pmid: 33141154 |
[38] |
Murphy, P. R., O'Connell, R. G., O'Sullivan, M., Robertson, I. H., & Balsters, J. H. (2014). Pupil diameter covaries with bold activity in human locus coeruleus. Human Brain Mapping, 35(8), 4140-4154.
doi: 10.1002/hbm.22466 pmid: 24510607 |
[39] |
Nater, U. M., & Rohleder, N. (2009). Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: Current state of research. Psychoneuroendocrinology, 34(4), 486-496.
doi: 10.1016/j.psyneuen.2009.01.014 pmid: 19249160 |
[40] |
Nguyen, A. T., Moyle, J. J., & Fox, A. M. (2016). N2 and P3 modulation during partial inhibition in a modified go/nogo task. International Journal of Psychophysiology, 107, 63-71.
doi: 10.1016/j.ijpsycho.2016.07.002 pmid: 27394185 |
[41] |
Nielsen, S. E., Segal, S. K., Worden, I. V., Yim, I. S., & Cahill, L. (2013). Hormonal contraception use alters stress responses and emotional memory. Biological Psychology, 92(2), 257-266.
doi: 10.1016/j.biopsycho.2012.10.007 pmid: 23131613 |
[42] |
O'Callaghan, C., Hezemans, F. H., Ye, R., Rua, C., Jones, P. S., Murley, A. G.,... Rowe, J. B. (2021). Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson's disease. Brain, 144(8), 2513-2526.
doi: 10.1093/brain/awab142 pmid: 33783470 |
[43] |
Passamonti, L., Lansdall, C. J., & Rowe, J. B. (2018). The neuroanatomical and neurochemical basis of apathy and impulsivity in frontotemporal lobar degeneration. Current Opinion in Behavioral Sciences, 22, 14-20.
doi: 10.1016/j.cobeha.2017.12.015 pmid: 31032387 |
[44] |
Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15(1), 35-37.
pmid: 11835542 |
[45] |
Pihlaja, M., Failla, L., Peräkylä, J., & Hartikainen, K. M. (2020). Reduced frontal Nogo-N2 with uncompromised response inhibition during transcutaneous vagus nerve stimulation-more efficient cognitive control? Frontiers in Human Neuroscience, 14, 561780.
doi: 10.3389/fnhum.2020.561780 URL |
[46] |
Pineda, J. A., Foote, S. L., & Neville, H. J. (1989). Effects of locus coeruleus lesions on auditory, long-latency, event-related potentials in monkey. The Journal of Neuroscience, 9(1), 81-93.
doi: 10.1523/JNEUROSCI.09-01-00081.1989 URL |
[47] |
Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.
doi: 10.1016/j.clinph.2007.04.019 pmid: 17573239 |
[48] | Rajkowski, J., Kubiak, P., & Aston-Jones, G. (1994). Locus coeruleus activity in monkey: Phasic and tonic changes are associated with altered vigilance. Brain Research Bulletin, 35(5-6), 607-616. |
[49] |
Redgrave, J., Day, D., Leung, H., Laud, P. J., Ali, A., Lindert, R., & Majid, A. (2018). Safety and tolerability of transcutaneous vagus nerve stimulation in humans; a systematic review. Brain Stimulation, 11(6), 1225-1238.
doi: S1935-861X(18)30293-6 pmid: 30217648 |
[50] | Schevernels, H., van Bochove, M. E., de Taeye, L., Bombeke, K., Vonck, K., van Roost, D.,... Boehler, C. N. (2016). The effect of vagus nerve stimulation on response inhibition. Epilepsy & Behavior, 64, 171-179. |
[51] |
Sclocco, R., Garcia, R. G., Kettner, N. W., Fisher, H. P., Isenburg, K., Makarovsky, M.,... Napadow, V. (2020). Stimulus frequency modulates brainstem response to respiratory-gated transcutaneous auricular vagus nerve stimulation. Brain Stimulation, 13(4), 970-978.
doi: S1935-861X(20)30064-4 pmid: 32380448 |
[52] |
Sellaro, R., van Leusden, J. W., Tona, K. D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. Journal of Cognitive Neuroscience, 27(11), 2126-2132.
doi: 10.1162/jocn_a_00851 pmid: 26226074 |
[53] |
Sharon, O., Fahoum, F., & Nir, Y. (2021). Transcutaneous vagus nerve stimulation in humans induces pupil dilation and attenuates alpha oscillations. The Journal of Neuroscience, 41(2), 320-330.
doi: 10.1523/JNEUROSCI.1361-20.2020 URL |
[54] |
Sumner, P., Edden, R. A., Bompas, A., Evans, C. J., & Singh, K. D. (2010). More GABA, less distraction: A neurochemical predictor of motor decision speed. Nature Neuroscience, 13(7), 825-827.
doi: 10.1038/nn.2559 pmid: 20512136 |
[55] |
Toffa, D. H., Touma, L., El Meskine, T., Bouthillier, A., & Nguyen, D. K. (2020). Learnings from 30 years of reported efficacy and safety of vagus nerve stimulation (VNS) for epilepsy treatment: A critical review. Seizure, 83, 104-123.
doi: 10.1016/j.seizure.2020.09.027 pmid: 33120323 |
[56] |
Tomassini, A., Hezemans, F. H., Ye, R., Tsvetanov, K. A., Wolpe, N., & Rowe, J. B. (2021). Prefrontal cortical connectivity mediates locus coeruleus noradrenergic regulation of inhibitory control in older adults. Journal of Neuroscience, 42(16), 3484-3493.
doi: 10.1523/JNEUROSCI.1361-21.2022 URL |
[57] |
Ventura-Bort, C., Wirkner, J., Genheimer, H., Wendt, J., Hamm, A. O., & Weymar, M. (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: A pilot study. Frontiers in Human Neuroscience, 12, 202.
doi: 10.3389/fnhum.2018.00202 pmid: 29977196 |
[58] |
Ventureyra, E. C. G. (2000). Transcutaneous vagus nerve stimulation for partial onset seizure therapy. Child's Nervous System, 16(2), 101-102.
doi: 10.1007/s003810050021 URL |
[59] |
Waller, D. A., Hazeltine, E., & Wessel, J. R. (2021). Common neural processes during action-stopping and infrequent stimulus detection: The frontocentral P3 as an index of generic motor inhibition. International Journal of Psychophysiology, 163, 11-21.
doi: 10.1016/j.ijpsycho.2019.01.004 pmid: 30659867 |
[60] |
Wang, J., & Dai, B. (2020). Event-related potentials in a two-choice oddball task of impaired behavioral inhibitory control among males with tendencies towards cybersex addiction. Journal of Behavioral Addictions, 9(3), 785-796.
doi: 10.1556/2006.2020.00059 URL |
[61] |
Warren, C. V., Maraver, M. J., de Luca, A., & Kopp, B. (2020). The effect of transcutaneous auricular vagal nerve stimulation (taVNS) on P3 event-related potentials during a Bayesian oddball task. Brain Sciences, 10(6), 404.
doi: 10.3390/brainsci10060404 URL |
[62] |
Yakunina, N., Kim, S. S., & Nam, E. C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation: Technology at the Neural Interface, 20(3), 290-300.
doi: 10.1111/ner.12541 URL |
[63] |
Yap, J. Y. Y., Keatch, C., Lambert, E., Woods, W., Stoddart, P. R., & Kameneva, T. (2020). Critical review of transcutaneous vagus nerve stimulation: Challenges for translation to clinical practice. Frontiers in Neuroscience, 14, 284.
doi: 10.3389/fnins.2020.00284 pmid: 32410932 |
[64] |
Zhao, X., Liu, X., & Maes, J. H. R. (2018). Male smokers’ behavioral and brain responses to deviant cigarette-related stimuli in a two-choice oddball paradigm. Journal of Psychophysiology, 32(4), 172-181.
doi: 10.1027/0269-8803/a000195 URL |
[65] | Zhu, S., Zhang, X., Qing, Y., Zhang, Y., Yao, S., Kendrick, K., & Zhao, W. (2021). Transcutaneous auricular vagus nerve stimulation increases eye-gaze to salient facial features and oxytocin release. Brain Stimulation, 14(6), 1639. |
[66] |
Ziemann, U., Reis, J., Schwenkreis, P., Rosanova, M., Strafella, A., Badawy, R., & Müller-Dahlhaus, F. (2015). TMS and drugs revisited 2014. Clinical Neurophysiology, 126(10), 1847-1868.
doi: 10.1016/j.clinph.2014.08.028 pmid: 25534482 |
[1] | WANG Xieshun, SU Yanjie. From motor imitation to social cognition: The role of self-other control [J]. Advances in Psychological Science, 2019, 27(4): 636-645. |
[2] | WANG Shaorui, CHEN Hong. Why trying to lose weight brings fat? Psychological mechanisms and influencing factors of overeating among restrained eaters [J]. Advances in Psychological Science, 2019, 27(2): 322-328. |
[3] | WEI Hua, ZHOU Renlai. The current status and controversy of inhibitory control deficits in anxiety: A perspective from attentional control theory [J]. Advances in Psychological Science, 2019, 27(11): 1853-1862. |
[4] | WU Jing, CUI Ruisi, SUN Cuicui, LI Xinwang. Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus [J]. Advances in Psychological Science, 2019, 27(1): 60-69. |
[5] | SUN Yan, FANG Lin, WANG Tingyu, CUI Li. The influence factors and neural mechanisms of inhibitory control in autism spectrum disorders [J]. Advances in Psychological Science, 2018, 26(8): 1450-1464. |
[6] | ZHOU Jing, XUAN Bin. Effects of transcranial direct current stimulation (tDCS) on the frontal lobe region on inhibitory control [J]. Advances in Psychological Science, 2018, 26(11): 1976-1991. |
[7] | CHANG Xin, BAI He, WANG Pei. The influenced factors of bilinguals’ language switching costs [J]. Advances in Psychological Science, 2017, 25(9): 1469-1478. |
[8] | DENG Zhijun, WU Huizhong, CHEN Yinghe. The working memory account of the spatial-numerical associations [J]. Advances in Psychological Science, 2017, 25(9): 1492-1502. |
[9] | XU Hang, CHEN Huanxin, WANG Weiwen. The role of stress-induced GABAergic system alteration in depression [J]. Advances in Psychological Science, 2017, 25(12): 2075-2081. |
[10] | CHEN Jie, LIU Lei, WANG Rong, SHEN Haizhou. The effect of musical training on executive functions [J]. Advances in Psychological Science, 2017, 25(11): 1854-1864. |
[11] | YANG Ling, MA Xue, CAO Hua, SU BoBo, XU Jing, CAI YuTong. The injury, reversibility and intervention strategies of inhibitory control for methamphetamine users [J]. Advances in Psychological Science, 2017, 25(10): 1769-1779. |
[12] | YAN Wansen; ZHANG Ranran; LIU Sujiao. The neural mechanisms of impulsivity implicated in drug addiction and non-drug addiction [J]. Advances in Psychological Science, 2016, 24(2): 159-172. |
[13] | PENG Suhao;TANG Qian;XUAN Bin. A Unified Framework of the Genes-Brain-Behavior for Inhibitory Control with Aging [J]. Advances in Psychological Science, 2014, 22(8): 1236-1245. |
[14] | YANG Ling;ZHANG Gengsheng;ZHAO Xin. The Injury Mechanism and Reversibility on Inhibitory Control Function of Heroin Addicts [J]. Advances in Psychological Science, 2014, 22(3): 439-447. |
[15] | WANG Jun;CHEN Tian-Yong. Inhibitory Control and Higher Cognitive Functions [J]. Advances in Psychological Science, 2012, 20(11): 1768-1778. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||