Advances in Psychological Science ›› 2019, Vol. 27 ›› Issue (1): 60-69.doi: 10.3724/SP.J.1042.2019.00060
• Regular Articles • Previous Articles Next Articles
WU Jing1, CUI Ruisi1, SUN Cuicui2, LI Xinwang1()
Received:
2018-05-03
Online:
2019-01-15
Published:
2018-11-23
CLC Number:
WU Jing, CUI Ruisi, SUN Cuicui, LI Xinwang. Reward circuits and opioid addiction: The moderating effect of the rostromedial tegmental nucleus[J]. Advances in Psychological Science, 2019, 27(1): 60-69.
1 |
Adamantidis A. R., Tsai H-C., Boutrel B., Zhang F., Stuber G. D., Budygin E. A ., et al. de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. The Journal of Neuroscience, 31(30), 10829-10835.
doi: 10.1523/JNEUROSCI.2246-11.2011 URL pmid: 3171183 |
2 | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing. |
3 | Balcita-Pedicino J. J., Omelchenko N., Bell R., & Sesack S. R . (2015). The inhibitory influence of the lateral habenula on midbrain dopamine cells: Ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. Journal of Comparative Neurology, 519(6), 1143-1164. |
4 |
Bourdy R., & Barrot M. (2012). A new control center for dopaminergic systems: Pulling the VTA by the tail. Trends in Neurosciences, 35(11), 681-690.
doi: 10.1016/j.tins.2012.06.007 URL pmid: 22824232 |
5 |
Bowers M. S., Chen B. T., & Bonci A . (2010). AMPA receptor synaptic plasticity induced by psychostimulants: The past, present, and therapeutic future. Neuron, 67(1), 11-24.
doi: 10.1016/j.neuron.2010.06.004 URL pmid: 2904302 |
6 |
Brown P. L., Palacorolla H., Brady D., Riegger K., Elmer G. I., & Shepard P. D . (2017). Habenula-induced inhibition of midbrain dopamine neurons is diminished by lesions of the rostromedial tegmental nucleus. The Journal of Neuroscience, 37(1), 217-225.
doi: 10.1523/JNEUROSCI.1353-16.2017 URL pmid: 5214632 |
7 | Fields H.L., &Margolis E.B . (2015). Understanding opioid reward. Trends in Neurosciences, 38(4), 217-225. |
8 |
Friedman A., Lax E., Dikshtein Y., Abraham L., Flaumenhaft Y., Sudai E ., et al. Yadid, G. (2010). Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology, 59(6), 452-459.
doi: 10.1016/j.neuropharm.2010.06.008 URL pmid: 20600170 |
9 |
Gysling K., &Wang R.Y . (1983). Morphine-induced activation of A10 dopamine neurons in the rat. Brain Research, 277(1), 119-127.
doi: 10.1016/0006-8993(83)90913-7 URL pmid: 6315137 |
10 |
Haber S.N., & Knutson B. (2009). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35, 4-26.
doi: 10.1038/npp.2009.129 URL pmid: 19812543 |
11 |
Hong S., & Hikosaka O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron, 60(4), 720-729.
doi: 10.1016/j.neuron.2008.09.035 URL pmid: 19038227 |
12 |
Hong S., Jhou T. C., Smith M., Saleem K. S., & Hikosaka O . (2011). Negative reward signals from lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. The Journal of Neuroscience, 31(32), 11457-11471.
doi: 10.1523/JNEUROSCI.1384-11.2011 URL pmid: 21832176 |
13 |
Huff M.L., &LaLumiere R.T . (2015). The rostromedial tegmental nucleus modulates behavioral inhibition following cocaine self-administration in rats. Neuropsychopharmacology, 40(4), 861-873.
doi: 10.1038/npp.2014.260 URL pmid: 4330500 |
14 | Ikemoto S., & Bonci A. (2014). Neurocircuitry of drug reward. Neuropharmacology, 76(Part B), 329-341. |
15 |
Jalabert M., Bourdy R., Courtin J., Veinante P., Manzoni O. J., Barrot M., & Georges F . (2011). Neuronal circuits underlying acute morphine action on dopamine neurons. Proceedings of the National Academy of Sciences of the United States of America, 108(39), 16446-16450.
doi: 10.1073/pnas.1105418108 URL pmid: 21930931 |
16 |
Jennings J. H., Sparta D. R., Stamatakis A. M., Ung R. L., Pleil K. E., Kash T. L., & Stuber G. D . (2013). Distinct extended amygdala circuits for divergent motivational states. Nature, 496(7444), 224-228.
doi: 10.1038/nature12041 URL pmid: 3778934 |
17 |
Jhou T. C., Fields H. L., Baxter M. G., Saper C. B., & Holland P. C . (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron, 61(5), 786-800.
doi: 10.1016/j.neuron.2009.02.001 |
18 |
Jhou T. C., Geisler S., Marinelli M., Degarmo B. A., & Zahm D. S . (2009). The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. Journal of Comparative Neurology, 513(6), 566-596.
doi: 10.1002/cne.21891 URL pmid: 3116663 |
19 |
Jhou T. C., Good C. H., Rowley C. S., Xu S-P., Wang H., Burnham N. W ., et al. Ikemoto, S. (2013). Cocaine drives aversive conditioning via delayed activation of dopamine- responsive habenular and midbrain pathways. The Journal of Neuroscience, 33(17), 7501-7512.
doi: 10.1523/JNEUROSCI.3634-12.2013 URL pmid: 23616555 |
20 |
Ji H., &Shepard P.D . (2007). Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA (A) receptor-mediated mechanism. The Journal of Neuroscience, 27(26), 6923-6930.
doi: 10.1523/JNEUROSCI.0958-07.2007 URL pmid: 17596440 |
21 |
Johnson L. R., Aylward R. L. M., Hussain Z., & Totterdell S . (1994). Input from the amygdala to the rat nucleus accumbens: Its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience, 61(4), 851-865.
doi: 10.1016/0306-4522(94)90408-1 URL pmid: 7530817 |
22 | Johnson S.W., &North R.A . (1992). Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of Neuroscience, 12(2), 483-488. |
23 |
Juarez B., & Han M-H. (2016). Diversity of dopaminergic neural circuits in response to drug exposure. Neuropsychopharmacology, 41(10), 2424-2446.
doi: 10.1038/npp.2016.32 URL pmid: 26934955 |
24 |
Kaufling J., & Aston-Jones G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35(28), 10290-10303.
doi: 10.1523/JNEUROSCI.0715-15.2015 URL pmid: 26180204 |
25 |
Kaufling J., Veinante P., Pawlowski S. A., Freund-Mercier M-J., & Barrot M . (2009). Afferents to the GABAergic tail of the ventral tegmental area in the rat. The Journal of Comparative Neurology, 513(6), 597-621.
doi: 10.1002/cne.21983 URL pmid: 19235223 |
26 |
Kotecki L., Hearing M., McCall N. M., de Velasco, E. M. F., Pravetoni M., Arora D ., et al. Wickman, K. (2015). GIRK channels modulate opioid-induced motor activity in a cell type- and subunit-dependent manner. The Journal of Neuroscience, 35(18), 7131-7142.
doi: 10.1523/JNEUROSCI.5051-14.2015 URL pmid: 4420781 |
27 |
Lammel S., Hetzel A., Häckel O., Jones I., Liss B., & Roeper J . (2008). Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron, 57(5), 760-773.
doi: 10.1016/j.neuron.2008.01.022 URL pmid: 18341995 |
28 |
Lammel S., Ion D. I., Roeper J., & Malenka R. C . (2011). Projection-Specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron, 70(5), 855-862.
doi: 10.1016/j.neuron.2011.03.025 URL pmid: 21658580 |
29 |
Lammel S., Lim B. K., Ran C., Huang K. W., Betley M. J., Tye K. M ., et al. Malenka, R. C. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature, 491(7423), 212-217.
doi: 10.1038/nature11527 URL pmid: 23064228 |
30 |
Lavezzi H.N., &Zahm D.S . (2011). The mesopontine rostromedial tegmental nucleus: An integrative modulator of the reward system. Basal Ganglia, 1(4), 191-200.
doi: 10.1016/j.baga.2011.08.003 URL pmid: 3233474 |
31 |
Lecca S., Melis M., Luchicchi A., Ennas M. G., Castelli M. P., Muntoni A. L., & Pistis M . (2011). Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells. Neuropsychopharmacology, 36(3), 589-602.
doi: 10.1038/npp.2010.190 URL pmid: 3055682 |
32 |
Lecca S., Melis M., Luchicchi A., Muntoni A. L., & Pistis M . (2012). Inhibitory inputs from rostromedial tegmental neurons regulate spontaneous activity of midbrain dopamine cells and their responses to drugs of abuse. Neuropsychopharmacology, 37(5), 1164-1176.
doi: 10.1038/npp.2011.302 URL pmid: 3306878 |
33 |
Lobb C. J., Wilson C. J., & Paladini C. A . (2010). A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol, 104(1), 403-413.
doi: 10.1152/jn.00204.2010 URL pmid: 20445035 |
34 |
Matsui A., Jarvie B. C., Robinson B. G., Hentges S. T., & Williams J. T . (2014). Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance, and expression of withdrawal. Neuron, 82(6), 1346-1356.
doi: 10.1016/j.neuron.2014.04.030 URL pmid: 24857021 |
35 |
Matsui A., &Williams J.T . (2011). Opioid-Sensitive GABA inputs from rostromedial tegmental nucleus synapse onto midbrain dopamine neurons. The Journal of Neuroscience, 31(48), 17729-17735.
doi: 10.1523/JNEUROSCI.4570-11.2011 URL pmid: 22131433 |
36 |
Matsumoto M., & Hikosaka O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature, 447(7148), 1111-1115.
doi: 10.1038/nature05860 URL pmid: 17522629 |
37 | Matsumoto M., & Hikosaka O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature, 459(7248), 837-841. |
38 | Miesenböck G. . (2009). The optogenetic catechism. Science, 326(5951), 395-399. |
39 |
Paladini C. A., Celada P., & Tepper J. M . (1999). Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABAA receptors in vivo. Neuroscience, 89(3), 799-812.
doi: 10.1016/S0306-4522(98)00355-8 URL pmid: 10199614 |
40 |
Petzel A., Bernard R., Poller W. C., & Veh R. W . (2017). Anterior and posterior parts of the rat ventral tegmental area and the rostromedial tegmental nucleus receive topographically distinct afferents from the lateral habenular complex. The Journal of Comparative neurology, 525(10), 2310-2327.
doi: 10.1002/cne.24200 URL pmid: 28295296 |
41 |
Pignatelli M., & Bonci A. (2015). Role of dopamine neurons in reward and aversion: A synaptic plasticity perspective. Neuron, 86(5), 1145-1157.
doi: 10.1016/j.neuron.2015.04.015 URL pmid: 26050034 |
42 |
Rezayof A., Nazari-Serenjeh F., Zarrindast M-R., Sepehri H., & Delphi L . (2007). Morphine-induced place preference: Involvement of cholinergic receptors of the ventral tegmental area. European Journal of Pharmacology, 562(1-2), 92-102.
doi: 10.1016/j.ejphar.2007.01.081 URL pmid: 17336285 |
43 |
Russo S.J., &Nestler E.J . (2013). The brain reward circuitry in mood disorders. Nature Reviews Neuroscience, 14(9), 609-625.
doi: 10.1038/nrn3381 |
44 |
Sánchez-Catalán M. J., Faivre F., Yalcin I., Muller M. A., Massotte D., Majchrzak M., & Barrot M . (2017). Response of the tail of the ventral tegmental area to aversive stimuli. Neuropsychopharmacology, 42(3), 638-648.
doi: 10.1038/npp.2016.139 URL pmid: 27468916 |
45 |
Salas R., Baldwin P., de Biasi M., & Montague P. R . (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 36. doi: 10.3389/fnhum.2010.00036
doi: 10.3389/fnhum.2010.00036 URL pmid: 20485575 |
46 |
Sanchez-Catalan M. J., Kaufling J., Georges F., Veinante P., & Barrot M . (2014). The antero-posterior heterogeneity of the ventral tegmental area. Neuroscience, 282, 198-216.
doi: 10.1016/j.neuroscience.2014.09.025 URL pmid: 25241061 |
47 |
Stamatakis A. M., Jennings J. H., Ung R. L., Blair G. A., Weinberg R. J., Neve R. L ., et al. Stuber, G. D. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039-1053.
doi: 10.1016/j.neuron.2013.08.023 URL pmid: 3873746 |
48 |
Stamatakis A.M., &Stuber G.D . (2012). Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nature Neuroscience, 15(8), 1105-1107.
doi: 10.1038/nn.3145 URL pmid: 3411914 |
49 | Steffensen S. C., Svingos A. L., Pickel V. M., & Henriksen S. J . (1998). Electrophysiological characterization of GABAergic neurons in the ventral tegmental area. The Journal of Neuroscience, 18(19), 8003-8015. |
50 |
Steidl S., Dhillon E. S., Sharma N., & Ludwig J . (2017). Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice. Behavioural Brain Research, 323, 111-116.
doi: 10.1016/j.bbr.2017.01.039 URL pmid: 28143769 |
51 |
Steidl S., Miller A. D., Blaha C. D., & Yeomans J. S . (2011). M5 muscarinic receptors mediate striatal dopamine activation by ventral tegmental morphine and pedunculopontine stimulation in mice. PLoS ONE, 6(11), e27538.
doi: 10.1371/journal.pone.0027538 URL pmid: 22102904 |
52 |
Steidl S., Myal S., & Wise R. A . (2015). Supplemental morphine infusion into the posterior ventral tegmentum extends the satiating effects of self-administered intravenous heroin. Pharmacology Biochemistry and Behavior, 134, 1-5.
doi: 10.1016/j.pbb.2015.04.006 URL pmid: 25913296 |
53 |
Steidl S., Wasserman D. I., Blaha C. D., & Yeomans J. S . (2017). Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience & Biobehavioral Reviews, 83, 72-82.
doi: 10.1016/j.neubiorev.2017.09.022 URL pmid: 28951251 |
54 |
Steinberg E. E., Keiflin R., Boivin J. R., Witten I. B., Deisseroth K., & Janak P. H . (2013). A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 16(7), 966-973.
doi: 10.1038/nn.3413 URL pmid: 23708143 |
55 |
Wasserman D. I., Tan J. M. J., Kim J. C., & Yeomans J. S . (2016). Muscarinic control of rostromedial tegmental nucleus GABA neurons and morphine-induced locomotion. European Journal of Neuroscience, 44(1), 1761-1770.
doi: 10.1111/ejn.13237 URL pmid: 26990801 |
56 |
Wasserman D. I., Wang H. G., Rashid A. J., Josselyn S. A., & Yeomans J. S . (2013). Cholinergic control of morphine- induced locomotion in rostromedial tegmental nucleus versus ventral tegmental area sites. European Journal of Neuroscience, 38(5), 2774-2785.
doi: 10.1111/ejn.12279 URL pmid: 23773170 |
57 | World Health Organ . (2010). ATLAS on substance use (2010): Resources for the prevention and treatment of substance use disorders. World Health Organ. Geneva. |
[1] | LIU Haoran, ZHANG Chenfeng, YANG Li. The neural mechanism underlying resilience [J]. Advances in Psychological Science, 2019, 27(2): 312-321. |
[2] | ZENG Hong;YE Haosheng;YANG Wendeng. The Role and Mechanism of Mirror Neuro System in the Forming Process of Drug Cue-induced Craving [J]. Advances in Psychological Science, 2013, 21(4): 581-588. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||