Advances in Psychological Science ›› 2022, Vol. 30 ›› Issue (10): 2254-2268.doi: 10.3724/SP.J.1042.2022.02254
• Regular Articles • Previous Articles Next Articles
ZHENG Zhiwei1,2(), XIAO Fengqiu3, SHAO Qi1,2, ZHAO Xiaofeng1,2, HUANG Yan1,2, LI Juan1,2()
Received:
2021-09-10
Online:
2022-10-15
Published:
2022-08-24
Contact:
ZHENG Zhiwei,LI Juan
E-mail:zhengzw@psych.ac.cn;lijuan@psych.ac.cn
CLC Number:
ZHENG Zhiwei, XIAO Fengqiu, SHAO Qi, ZHAO Xiaofeng, HUANG Yan, LI Juan. Neural mechanisms of successful episodic memory aging[J]. Advances in Psychological Science, 2022, 30(10): 2254-2268.
[1] | 韩布新, 朱莉琪. (2012). 人类心理毕生发展理论. 中国科学院院刊, 27(增刊), 78-87. |
[2] | 霍丽娟, 郑志伟, 李瑾, 李娟. (2018). 老年人的脑可塑性: 来自认知训练的证据. 心理科学进展, 26(5), 846-858. |
[3] |
Abdulrahman, H., Fletcher, P. C., Bullmore, E., & Morcom, A. M. (2017). Dopamine and memory dedifferentiation in aging. Neuroimage, 153, 211-220.
doi: S1053-8119(15)00213-X pmid: 25800211 |
[4] |
Alghamdi, S. A., & Rugg, M. D. (2020). The effect of age on recollection is not moderated by differential estimation methods. Memory, 28(8), 1067-1077.
doi: 10.1080/09658211.2020.1813781 pmid: 32870106 |
[5] | Baltes, M. M., & Carstensen, L. L. (1996). The process of successful ageing. Ageing & Society, 16(4), 397-422. |
[6] | Baltes, P. B., & Baltes, M. M. (1990). Psychological perspectives on successful aging:The model of selective optimization with compensation. In P. B. Baltes & M. M. Baltes (Eds.), Successful aging: Perspectives from the behavioral sciences (pp. 1-34). New York: Cambridge University Press. |
[7] |
Baltes, P. B., & Smith, J. (2003). New frontiers in the future of aging: From successful aging of the young old to the dilemmas of the fourth age. Gerontology, 49(2), 123-135.
pmid: 12574672 |
[8] |
Baltes, P. B., Staudinger, U. M., & Lindenberger, U. (1999). Lifespan psychology: Theory and application to intellectual functioning. Annual Review of Psychology, 50, 471-507.
pmid: 15012462 |
[9] |
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502-509.
doi: 10.1016/j.tics.2013.08.012 pmid: 24018144 |
[10] |
Blessed, G., Tomlinson, B. E., & Roth, M. (1968). The association between quantitative measures of dementia and of senile change in the cerebral grey matter of elderly subjects. The British Journal of Psychiatry, 114(512), 797-811.
doi: 10.1192/bjp.114.512.797 URL |
[11] | Boyle, R., Knight, S. P., de Looze, C., Carey, D., Scarlett, S., Stern, Y.,... Whelan, R. (2021). Verbal intelligence is a more robust cross-sectional measure of cognitive reserve than level of education in healthy older adults. Alzheimer's Research & Therapy, 13(1), 1-18. |
[12] |
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging, 17(1), 85-100.
pmid: 11931290 |
[13] |
Cabeza, R., Albert, M., Belleville, S., Craik, F. I., Duarte, A., Grady, C. L.,... Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701-710.
doi: 10.1038/s41583-018-0068-2 pmid: 30305711 |
[14] | Cabeza, R., & Dennis, N. A. (2013). Frontal lobes and aging:Deterioration and compensation. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (2nd ed., pp. 628-652). New York: Oxford University Press. |
[15] |
Cacciaglia, R., Molinuevo, J. L., Falcón, C., Brugulat-Serrat, A., Sánchez-Benavides, G., Gramunt, N.,... Gispert, J. D. (2018). Effects of APOE-ε4 allele load on brain morphology in a cohort of middle-aged healthy individuals with enriched genetic risk for Alzheimer's disease. Alzheimer's & Dementia, 14(7), 902-912.
doi: 10.1016/j.jalz.2018.01.016 URL |
[16] |
Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefrontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462-473.
doi: 10.1016/j.cortex.2009.11.009 URL |
[17] |
Cao, M., Wang, J.-H., Dai, Z.-J., Cao, X.-Y., Jiang, L.-L., Fan, F.-M.,... He, Y. (2014). Topological organization of the human brain functional connectome across the lifespan. Developmental Cognitive Neuroscience, 7, 76-93.
doi: 10.1016/j.dcn.2013.11.004 pmid: 24333927 |
[18] | Chan, M. Y., Park, D. C., Savalia, N. K., Petersen, S. E., & Wig, G. S. (2014). Decreased segregation of brain systems across the healthy adult lifespan. Proceedings of the National Academy of Sciences, 111(46), 4997-5006. |
[19] |
Chong, J. S. X., Ng, K. K., Tandi, J., Wang, C., Poh, J. H., Lo, J. C.,... Zhou, J. H. (2019). Longitudinal changes in the cerebral cortex functional organization of healthy elderly. Journal of Neuroscience, 39(28), 5534-5550.
doi: 10.1523/JNEUROSCI.1451-18.2019 pmid: 31109962 |
[20] | Clouston, S. A., Smith, D. M., Mukherjee, S., Zhang, Y., Hou, W., Link, B. G., & Richards, M. (2020). Education and cognitive decline: An integrative analysis of global longitudinal studies of cognitive aging. The Journals of Gerontology: Series B, 75(7), 151-160. |
[21] |
Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J.,... Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316-3321.
doi: 10.1073/pnas.0400266101 URL |
[22] |
Damoiseaux, J. S. (2017). Effects of aging on functional and structural brain connectivity. Neuroimage, 160, 32-40.
doi: S1053-8119(17)30101-5 pmid: 28159687 |
[23] |
Daselaar, S. M., Fleck, M. S., Dobbins, I. G., Madden, D. J., & Cabeza, R. (2006). Effects of healthy aging on hippocampal and rhinal memory functions: An event-related fMRI study. Cerebral Cortex, 16(12), 1771-1782.
pmid: 16421332 |
[24] |
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., & Cabeza, R. (2008). Qué PASA? The posterior‐anterior shift in aging. Cerebral Cortex, 18(5), 1201-1209.
doi: 10.1093/cercor/bhm155 URL |
[25] | Dodson, C. S. (2017). Aging and memory. In J. H. Byrne (Series Ed.) & J. T. Wixted (Vol. Ed.). Learning and memory: A comprehensive reference: Vol. 2. Cognitive psychology of memory (2nd ed., pp. 403-421). Oxford: Academic Press. |
[26] | Duarte, A. & Dulas, M. R. (2020). Episodic memory decline in aging. In A. K. Thomas & A. Gutchess (Eds.), The Cambridge handbook of cognitive aging: A life course perspective (pp. 200-217). New York: Cambridge University Press. |
[27] |
Elshiekh, A., Subramaniapillai, S., Rajagopal, S., Pasvanis, S., Ankudowich, E., & Rajah, M. N. (2020). The association between cognitive reserve and performance-related brain activity during episodic encoding and retrieval across the adult lifespan. Cortex, 129, 296-313.
doi: S0010-9452(20)30188-X pmid: 32535380 |
[28] |
Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. E.,... Kramer, A. F. (2007). Training-induced functional activation changes in dual-task processing: An fMRI study. Cerebral Cortex, 17(1), 192-204.
pmid: 16467562 |
[29] |
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L.,... Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences, 108(7), 3017-3022.
doi: 10.1073/pnas.1015950108 URL |
[30] |
Folville, A., Bahri, M. A., Delhaye, E., Salmon, E., D’Argembeau, A., & Bastin, C. (2020). Age-related differences in the neural correlates of vivid remembering. NeuroImage, 206, 116336.
doi: 10.1016/j.neuroimage.2019.116336 URL |
[31] |
Geerligs, L., Renken, R. J., Saliasi, E., Maurits, N. M., & Lorist, M. M. (2015). A brain-wide study of age-related changes in functional connectivity. Cerebral Cortex, 25(7), 1987-1999.
doi: 10.1093/cercor/bhu012 URL |
[32] |
Gorbach, T., Pudas, S., Lundquist, A., Orädd, G., Josefsson, M., Salami, A.,... Nyberg, L. (2017). Longitudinal association between hippocampus atrophy and episodic-memory decline. Neurobiology of Aging, 51, 167-176.
doi: S0197-4580(16)30308-6 pmid: 28089351 |
[33] |
Grady, C. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience, 13(7), 491-505.
doi: 10.1038/nrn3256 pmid: 22714020 |
[34] |
Gutchess, A. (2014). Plasticity of the aging brain: New directions in cognitive neuroscience. Science, 346(6209), 579-582.
doi: 10.1126/science.1254604 pmid: 25359965 |
[35] |
Habib, R., Nyberg, L., & Nilsson, L.-G. (2007). Cognitive and non-cognitive factors contributing to the longitudinal identification of successful older adults in the Betula study. Aging, Neuropsychology, and Cognition, 14(3), 257-273.
pmid: 17453560 |
[36] |
Han, L., Savalia, N. K., Chan, M. Y., Agres, P. F., Nair, A. S., & Wig, G. S. (2018). Functional parcellation of the cerebral cortex across the human adult lifespan. Cerebral Cortex, 28(12), 4403-4423.
doi: 10.1093/cercor/bhy218 URL |
[37] |
Johansson, J., Salami, A., Lundquist, A., Wåhlin, A., Andersson, M., & Nyberg, L. (2020). Longitudinal evidence that reduced hemispheric encoding/retrieval asymmetry predicts episodic-memory impairment in aging. Neuropsychologia, 137, 107329.
doi: 10.1016/j.neuropsychologia.2019.107329 URL |
[38] | Johnson, M. K., Kuhl, B. A., Mitchell, K. J., Ankudowich, E., & Durbin, K. A. (2015). Age-related differences in the neural basis of the subjective vividness of memories: Evidence from multivoxel pattern classification. Cognitive, Affective, & Behavioral Neuroscience, 15(3), 644-661. |
[39] | Jonasson, L. S., Nyberg, L., Kramer, A. F., Lundquist, A., Riklund, K., & Boraxbekk, C. J. (2017). Aerobic exercise intervention, cognitive performance, and brain structure: Results from the physical influences on brain in aging (PHIBRA) study. Frontiers in Aging Neuroscience, 8, 336. |
[40] |
Josefsson, M., de Luna, X., Pudas, S., Nilsson, L.-G., & Nyberg, L. (2012). Genetic and lifestyle predictors of 15‐year longitudinal change in episodic memory. Journal of the American Geriatrics Society, 60(12), 2308-2312.
doi: 10.1111/jgs.12000 pmid: 23110764 |
[41] |
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P.,... Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138-144.
pmid: 2897823 |
[42] |
Koen, J. D., Hauck, N., & Rugg, M. D. (2019). The relationship between age, neural differentiation, and memory performance. Journal of Neuroscience, 39(1), 149-162.
doi: 10.1523/JNEUROSCI.1498-18.2018 pmid: 30389841 |
[43] |
Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in Cognitive Sciences, 23(7), 547-559.
doi: S1364-6613(19)30104-4 pmid: 31174975 |
[44] |
Koen, J. D., Srokova, S., & Rugg, M. D. (2020). Age-related neural dedifferentiation and cognition. Current Opinion in Behavioral Sciences, 32, 7-14.
doi: 10.1016/j.cobeha.2020.01.006 pmid: 32095492 |
[45] |
Köhncke, Y., Düzel, S., Sander, M. C., Lindenberger, U., Kühn, S., & Brandmaier, A. M. (2021). Hippocampal and parahippocampal gray matter structural integrity assessed by multimodal imaging is associated with episodic memory in old age. Cerebral Cortex, 31(3), 1464-1477.
doi: 10.1093/cercor/bhaa287 URL |
[46] |
Köhncke, Y., Laukka, E. J., Brehmer, Y., Kalpouzos, G., Li, T.-Q., Fratiglioni, L.,... Lövdén, M. (2016). Three year changes in leisure activities are associated with concurrent changes in white-matter microstructure and perceptual speed in individuals aged 80 years and older. Neurobiology of Aging, 41, 173-186.
doi: S0197-4580(16)00168-8 pmid: 27103530 |
[47] |
Köhncke, Y., Papenberg, G., Jonasson, L., Karalija, N., Wahlin, A., Salami, A.,... Lövdén, M. (2018). Self-rated intensity of habitual physical activities is positively associated with dopamine D2/3 receptor availability and cognition. NeuroImage, 181, 605-616.
doi: S1053-8119(18)30651-7 pmid: 30041059 |
[48] | Liem, F., Geerligs, L., Damoiseaux, J. S., & Margulies, D. S. (2021). Functional connectivity in aging. In K. W. Schaie & S. L. Willis (Eds.), Handbook of the psychology of aging (9th ed., pp. 37-51). San Diego: Academic Press. |
[49] |
Lindenberger, U. (2014). Human cognitive aging: Corriger la fortune?. Science, 346(6209), 572-578.
doi: 10.1126/science.1254403 pmid: 25359964 |
[50] |
Lindenberger, U., & Baltes, P. B. (1994). Sensory functioning and intelligence in old age: A strong connection. Psychology and Aging, 9(3), 339-355.
pmid: 7999320 |
[51] |
Lindenberger, U., Scherer, H., & Baltes, P. B. (2001). The strong connection between sensory and cognitive performance in old age: Not due to sensory acuity reductions operating during cognitive assessment. Psychology and Aging, 16(2), 196-205.
pmid: 11405308 |
[52] | Li, S.-C., & Lindenberger, U. (1999). Cross-level unification:A computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In L.-G. Nilsson & H. J. Markowitsch (Eds.), Cognitive neuroscience of memory (pp. 103-146). Seattle: Hogrefe & Huber Publishers. |
[53] |
Li, S.-C., Lindenberger, U., & Sikström, S. (2001). Aging cognition: From neuromodulation to representation. Trends in Cognitive Sciences, 5(11), 479-486.
pmid: 11684480 |
[54] |
Li, S.-C., & Rieckmann, A. (2014). Neuromodulation and aging: Implications of aging neuronal gain control on cognition. Current Opinion in Neurobiology, 29, 148-158.
doi: 10.1016/j.conb.2014.07.009 URL |
[55] |
Li, S.-C., & Sikström, S. (2002). Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neuroscience & Biobehavioral Reviews, 26(7), 795-808.
doi: 10.1016/S0149-7634(02)00066-0 URL |
[56] |
Li, X., Song, R., Qi, X., Xu, H., Yang, W., Kivipelto, M.,... Xu, W. (2021). Influence of cognitive reserve on cognitive trajectories: Role of brain pathologies. Neurology, 97(17), e1695-e1706.
doi: 10.1212/WNL.0000000000012728 pmid: 34493618 |
[57] |
Lövdén, M., Bodammer, N. C., Kühn, S., Kaufmann, J., Schütze, H., Tempelmann, C.,... Lindenberger, U. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 3878-3883.
doi: 10.1016/j.neuropsychologia.2010.08.026 pmid: 20816877 |
[58] |
Lövdén, M., Fratiglioni, L., Glymour, M. M., Lindenberger, U., & Tucker-Drob, E. M. (2020). Education and cognitive functioning across the life span. Psychological Science in the Public Interest, 21(1), 6-41.
doi: 10.1177/1529100620920576 pmid: 32772803 |
[59] | Malagurski, B., Liem, F., Oschwald, J., Mérillat, S., & Jäncke, L. (2020). Functional dedifferentiation of associative resting state networks in older adults-A longitudinal study. Neuroimage, 116680. |
[60] |
Morcom, A. M., & Henson, R. N. A. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. The Journal of Neuroscience, 38(33), 7303-7313.
doi: 10.1523/JNEUROSCI.1701-17.2018 URL |
[61] |
Mousavi-Nasab, S.-M.-H., Kormi-Nouri, R., & Nilsson, L.-G. (2014). Examination of the bidirectional influences of leisure activity and memory in old people: A dissociative effect on episodic memory. British Journal of Psychology, 105(3), 382-398.
doi: 10.1111/bjop.12044 pmid: 25040007 |
[62] |
Mukadam, N., Sommerlad, A., Huntley, J., & Livingston, P. G. (2019). Population attributable fractions for risk factors for dementia in low-income and middle-income countries: An analysis using cross-sectional survey data. The Lancet Global Health, 7(5), e596-e603.
doi: 10.1016/S2214-109X(19)30074-9 URL |
[63] |
Naveh-Benjamin, M. (2000). Adult age differences in memory performance: Tests of an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26(5), 1170-1187.
doi: 10.1037/0278-7393.26.5.1170 URL |
[64] |
Ng, K. K., Lo, J. C., Lim, J. K., Chee, M. W., & Zhou, J. (2016). Reduced functional segregation between the default mode network and the executive control network in healthy older adults: A longitudinal study. NeuroImage, 133, 321-330.
doi: S1053-8119(16)00234-2 pmid: 27001500 |
[65] |
Nyberg, L., Boraxbekk, C.-J., Sörman, D. E., Hansson, P., Herlitz, A., Kauppi, K.,... Adolfsson, R. (2020). Biological and environmental predictors of heterogeneity in neurocognitive ageing: Evidence from Betula and other longitudinal studies. Ageing Research Reviews, 64, 101184.
doi: 10.1016/j.arr.2020.101184 URL |
[66] | Nyberg, L., & Lindenberger, U. (2020). Brain maintenance and cognition in old age. In D. Poeppel, G. Mangun, & M. Gazzaniga (Eds.), The cognitive neurosciences (6th ed., pp. 81-90). Cambridge: MIT Press. |
[67] |
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292-305.
doi: 10.1016/j.tics.2012.04.005 pmid: 22542563 |
[68] |
Nyberg, L., Magnussen, F., Lundquist, A., Baare, W., Bartrés-Faz, D., Bertram, L.,... Fjell, A. M. (2021). Educational attainment does not influence brain aging. Proceedings of the National Academy of Sciences. 118(18), e2101644118.
doi: 10.1073/pnas.2101644118 URL |
[69] |
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219-243.
doi: 10.1146/annurev-psych-010418-103052 pmid: 29949727 |
[70] |
Nyberg, L., Salami, A., Andersson, M., Eriksson, J., Kalpouzos, G., Kauppi, K.,... Nilsson, L.-G. (2010). Longitudinal evidence for diminished frontal cortex function in aging. Proceedings of the National Academy of Sciences, 107(52), 22682-22686.
doi: 10.1073/pnas.1012651108 URL |
[71] |
Old, S. R., & Naveh-Benjamin, M. (2008). Differential effects of age on item and associative measures of memory: A meta-analysis. Psychology and Aging, 23(1), 104-118.
doi: 10.1037/0882-7974.23.1.104 pmid: 18361660 |
[72] |
Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299-320.
pmid: 12061414 |
[73] |
Park, D. C., Polk, T. A., Park, R., Minear, M., Savage, A., & Smith, M. R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences, 101(35), 13091-13095.
doi: 10.1073/pnas.0405148101 URL |
[74] |
Park, D. C., & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173-196.
doi: 10.1146/annurev.psych.59.103006.093656 pmid: 19035823 |
[75] |
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.-G., Ingvar, M., & Buckner, R. L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16(7), 907-915.
pmid: 16162855 |
[76] |
Persson, J., Pudas, S., Lind, J., Kauppi, K., Nilsson, L.-G., & Nyberg, L. (2012). Longitudinal structure-function correlates in elderly reveal MTL dysfunction with cognitive decline. Cerebral Cortex, 22(10), 2297-2304.
doi: 10.1093/cercor/bhr306 URL |
[77] |
Pudas, S., Josefsson, M., Rieckmann, A., & Nyberg, L. (2018). Longitudinal evidence for increased functional response in frontal cortex for older adults with hippocampal atrophy and memory decline. Cerebral Cortex, 28(3), 936-948.
doi: 10.1093/cercor/bhw418 URL |
[78] |
Pudas, S., Persson, J., Josefsson, M., de Luna, X., Nilsson, L. G., & Nyberg, L. (2013). Brain characteristics of individuals resisting age-related cognitive decline over two decades. Journal of Neuroscience, 33(20), 8668-8677.
doi: 10.1523/JNEUROSCI.2900-12.2013 pmid: 23678111 |
[79] |
Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177-182.
doi: 10.1111/j.1467-8721.2008.00570.x URL |
[80] |
Reuter-Lorenz, P. A., & Park, D. C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355-370.
doi: 10.1007/s11065-014-9270-9 pmid: 25143069 |
[81] |
Roe, J. M., Vidal-Piñeiro, D., Sneve, M. H., Kompus, K., Greve, D. N., Walhovd, K. B.,... Westerhausen, R. (2020). Age-related differences in functional asymmetry during memory retrieval revisited: No evidence for contralateral overactivation or compensation. Cerebral Cortex, 30(3), 1129-1147.
doi: 10.1093/cercor/bhz153 URL |
[82] | Rugg, M. D., Johnson, J. D., & Uncapher, M. R. (2015). Encoding and retrieval in episodic memory:Insights from fMRI. In D. R. Addis, M. Barense, & A. Duarte (Eds.), The Wiley handbook on the cognitive neuroscience of memory (pp.84-107). Chichester: John Wiley & Sons. |
[83] |
Salami, A., Pudas, S., & Nyberg, L. (2014). Elevated hippocampal resting-state connectivity underlies deficient neurocognitive function in aging. Proceedings of the National Academy of Sciences, 111(49), 17654-17659
doi: 10.1073/pnas.1410233111 URL |
[84] |
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7, 273-295
doi: 10.1037/0894-4105.7.3.273 URL |
[85] |
Schofield, P. W., Logroscino, G., Andrews, H. F., Albert, S., & Stern, Y. (1997). An association between head circumference and Alzheimer’s disease in a population-based study of aging and dementia. Neurology, 49(1), 30-37.
pmid: 9222166 |
[86] |
Seblova, D., Berggren, R., & Lövdén, M. (2020). Education and age-related decline in cognitive performance: Systematic review and meta-analysis of longitudinal cohort studies. Ageing Research Reviews, 58, 101005.
doi: 10.1016/j.arr.2019.101005 URL |
[87] |
Shing, Y. L., Werkle-Bergner, M., Brehmer, Y., Müller, V., Li, S.-C., & Lindenberger, U. (2010). Episodic memory across the lifespan: The contributions of associative and strategic components. Neuroscience & Biobehavioral Reviews, 34(7), 1080-1091.
doi: 10.1016/j.neubiorev.2009.11.002 URL |
[88] |
Soshi, T., Andersson, M., Kawagoe, T., Nishiguchi, S., Yamada, M., Otsuka, Y.,... Sekiyama, K. (2021). Prefrontal plasticity after a 3-month exercise intervention in older adults relates to enhanced cognitive performance. Cerebral Cortex, 31(10), 4501-4517.
doi: 10.1093/cercor/bhab102 URL |
[89] | Spreng, R. N., & Turner, G. R. (2019). Structure and function of the aging brain. In G. R. Samanez-Larkin (Ed.), The aging brain: Functional adaptation across adulthood (pp. 9-43). Washington, DC: American Psychological Association. |
[90] | Srokova, S., Hill, P. F., Koen, J. D., King, D. R., & Rugg, M. D. (2020). Neural differentiation is moderated by age in scene-selective, but not face-selective, cortical regions. eNeuro, 7(3), 1-16. |
[91] |
Steffener, J., Barulli, D., Habeck, C., O’Shea, D., Razlighi, Q., & Stern, Y. (2014). The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PLoS One, 9(3), e91196.
doi: 10.1371/journal.pone.0091196 URL |
[92] |
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448-460.
pmid: 11939702 |
[93] |
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028.
doi: 10.1016/j.neuropsychologia.2009.03.004 pmid: 19467352 |
[94] |
Stern, Y. (2017). An approach to studying the neural correlates of reserve. Brain Imaging and Behavior, 11(2), 410-416.
doi: 10.1007/s11682-016-9566-x pmid: 27450378 |
[95] |
Stern, Y., Arenaza‐Urquijo, E. M., Bartrés‐Faz, D., Belleville, S., Cantilon, M., Chetelat, G.,... Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer's & Dementia, 16(9), 1305-1311.
doi: 10.1016/j.jalz.2018.07.219 URL |
[96] |
Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., & Raz, N. (2019). Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 83, 124-129.
doi: S0197-4580(19)30130-7 pmid: 31732015 |
[97] |
Stern, Y., Chételat, G., Habeck, C., Arenaza-Urquijo, E. M., Vemuri, P., Estanga, A.,... Vuoksimaa, E. (2019). Mechanisms underlying resilience in ageing. Nature Reviews Neuroscience, 20(4), 246-246.
doi: 10.1038/s41583-019-0138-0 |
[98] |
Trelle, A. N., Carr, V. A., Guerin, S. A., Thieu, M. K., Jayakumar, M., Guo, W.,... Wagner, A. D. (2020). Hippocampal and cortical mechanisms at retrieval explain variability in episodic remembering in older adults. Elife, 9, e55335.
doi: 10.7554/eLife.55335 URL |
[99] | Tucker-Drob, E. M., & Salthouse, T. A. (2013). Individual differences in cognitive aging. In T. Chamorro-Premuzic, S. von Stumm, & A. Furnham (Eds.), The Wiley-Blackwell handbook of individual differences (pp. 242-267). London: Wiley-Blackwell. |
[100] |
Tulving, E. (2002). Episodic memory: From mind to brain. Annual Review of Psychology, 53(1), 1-25.
doi: 10.1146/annurev.psych.53.100901.135114 URL |
[101] |
Tulving, E., Kapur, S., Craik, F. I., Moscovitch, M., & Houle, S. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences of the United States of America, 91(6), 2016-2020.
pmid: 8134342 |
[102] | Varangis, E., & Stern, Y. (2020). Cognitive reserve. In A. K. Thomas & A. Gutchess (Eds.), The Cambridge handbook of cognitive aging: A life course perspective (pp. 32-46). New York: Cambridge University Press. |
[103] |
Voss, M. W., Soto, C., Yoo, S., Sodoma, M., Vivar, C., & van Praag, H. (2019). Exercise and hippocampal memory systems. Trends in Cognitive Sciences, 23(4), 318-333.
doi: S1364-6613(19)30023-3 pmid: 30777641 |
[104] |
Vuoksimaa, E., Panizzon, M. S., Chen, C.-H., Eyler, L. T., Fennema-Notestine, C., Fiecas, M. J. A.,... Kremen, W. S. (2013). Cognitive reserve moderates the association between hippocampal volume and episodic memory in middle age. Neuropsychologia, 51(6), 1124-1131.
doi: 10.1016/j.neuropsychologia.2013.02.022 pmid: 23499725 |
[105] | Wang, W.-C., Daselaar, S. M., & Cabeza, R. (2017). Episodic memory decline and healthy aging. In J. H. Byrne (Series Ed.) & J. T. Wixted (Vol. Ed.). Learning and memory: A comprehensive reference: Vol. 2. Cognitive psychology of memory (2nd ed., pp. 475-497). Oxford: Academic Press. |
[106] |
Wig, G. S. (2017). Segregated systems of human brain networks. Trends in Cognitive Sciences, 21(12), 981-996.
doi: S1364-6613(17)30194-8 pmid: 29100737 |
[107] |
Xu, W., Tan, L., Wang, H.-F., Tan, M.-S., Tan, L., Li, J.-Q.,... Yu, J.-T. (2016). Education and risk of dementia: Dose-response meta-analysis of prospective cohort studies. Molecular Neurobiology, 53(5), 3113-3123.
doi: 10.1007/s12035-015-9211-5 pmid: 25983035 |
[108] |
Zahodne, L. B., Mayeda, E. R., Hohman, T. J., Fletcher, E., Racine, A. M., Gavett, B.,... Mungas, D. (2019). The role of education in a vascular pathway to episodic memory: Brain maintenance or cognitive reserve?. Neurobiology of Aging, 84, 109-118.
doi: S0197-4580(19)30287-8 pmid: 31539647 |
[109] |
Zheng, L., Gao, Z., Xiao, X., Ye, Z., Chen, C., & Xue, G. (2018). Reduced fidelity of neural representation underlies episodic memory decline in normal aging. Cerebral Cortex, 28(7), 2283-2296.
doi: 10.1093/cercor/bhx130 URL |
[1] | ZHAO Xin, ZHENG Qiaoping. Childhood poverty and cognitive aging [J]. Advances in Psychological Science, 2021, 29(1): 160-166. |
[2] | SHAO Yiru, ZHOU Chu. Event segmentation: How do we perceive and remember events? [J]. Advances in Psychological Science, 2019, 27(9): 1564-1573. |
[3] | WANG Zhongjun, ZHANG Liyao, YANG Yinyin, WANG Renhua, PENG Yisheng. Job crafting in late career stage and successful aging at work [J]. Advances in Psychological Science, 2019, 27(9): 1643-1655. |
[4] | YIN Shufei, LI Tian, ZHU Xinyi. Episodic memory performance and underlying brain mechanisms in elderly with subjective memory decline [J]. Advances in Psychological Science, 2019, 27(1): 51-59. |
[5] | HE Yan; YU Lin; YAN Zhimin; ZHAO Yuhan. Quantification of Cognitive Reserve and Application Research in Cognitive Aging [J]. Advances in Psychological Science, 2015, 23(3): 430-438. |
[6] | GENG Xiexin;ZHOU Zongkui;WEI Hua;NIU Gengfeng. The Impacts of Video Games on Successful Aging [J]. Advances in Psychological Science, 2014, 22(2): 295-303. |
[7] | CHENG Kaiwen; DENG Yanhui; YAO Dezhong. Bilingualism (multilingualism) Helps Resist Alzheimer’s Disease? [J]. Advances in Psychological Science, 2014, 22(11): 1723-1732. |
[8] | QI Shenghui;YU Lin;MA Jianling. The Effect of Personality Traits on Cognitive Aging and the Mechanisms [J]. Advances in Psychological Science, 2013, 21(1): 96-107. |
[9] | SU Yan-Jie;LIU Yan-Chun. Parent-child Communications and Children’s Theory of Mind Development: Cultural Perspectives [J]. , 2012, 20(3): 317-327. |
[10] | LIU Yan;YANG Li-Zhu;XU Guo-Qing. Foresight: Future-oriented Episodic Memory and Its Reconstruction [J]. , 2010, 18(9): 1403-1412. |
[11] | BAI Wen;WANG Mei-Fang;YAN Xiu-Mei. The Development of Children’s Mental Time Travel [J]. , 2009, 17(5): 983-989. |
[12] | Qin Shaozheng;Han Buxin;Luo Jing. The Neural Mechanisms Underlying Successfully Encoding Episodic Memories: Evidence from the Subsequent Memory Paradigm [J]. , 2007, 15(3): 401-408. |
[13] |
Guo Chunyan;Liu Rong . The Interaction Between Working Memory and Episodic Memory [J]. , 2007, 15(1): 29-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||