Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (12): 2027-2039.doi: 10.3724/SP.J.1042.2020.02027
• Regular Articles • Previous Articles Next Articles
WANG Sheng, CHEN Yahong, WANG Jinyan()
Received:
2020-03-11
Online:
2020-12-15
Published:
2020-10-26
Contact:
WANG Jinyan
E-mail:wangjy@psych.ac.cn
CLC Number:
WANG Sheng, CHEN Yahong, WANG Jinyan. Establishment and evaluation of animal pre-attentive processing models: Based on the MMN deficit in mental disorders[J]. Advances in Psychological Science, 2020, 28(12): 2027-2039.
[1] |
Akatsuka, K., Wasaka, T., Nakata, H., Kida, T., & Kakigi, R. (2007). The effect of stimulus probability on the somatosensory mismatch field. Experimental Brain Research, 181(4), 607-614. https://doi.org/10.1007/s00221-007-0958-4
doi: 10.1007/s00221-007-0958-4 URL |
[2] |
Alain, C., Woods, D. L., & Knight, R. T. (1998). A distributed cortical network for auditory sensory memory in humans. Brain Research, 812(1-2), 23-37. https://doi.org/10.1016/S0006-8993(98)00851-8
doi: 10.1016/s0006-8993(98)00851-8 URL pmid: 9813226 |
[3] |
Aleksandrov, A. A., Knyazeva, V. M., Volnova, A. B., Dmitrieva, E. S., Polyakova, N. V., & Gainetdinov, R. R. (2019). Trace Amine-Associated Receptor 1 Agonist Modulates Mismatch Negativity-Like Responses in Mice. Frontiers in Pharmacology, 10(May). https://doi.org/10.3389/fphar.2019.00470
URL pmid: 33224034 |
[4] |
Atienza, M., Cantero, J. L., & Dominguez-Marin, E. (2002). Mismatch negativity (MMN): An objective measure of sensory memory and long-lasting memories during sleep. International Journal of Psychophysiology, 46(3), 215-225. https://doi.org/10.1016/S0167-8760(02)00113-7
doi: 10.1016/s0167-8760(02)00113-7 URL pmid: 12445949 |
[5] |
Avissar, M., Xie, S., Vail, B., Lopez-Calderon, J., Wang, Y. J., & Javitt, D. C. (2017). Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophrenia Research, 191, 25-34. https://doi.org/10.1016/j.schres.2017.07.009
doi: 10.1016/j.schres.2017.07.009 URL pmid: 28709770 |
[6] |
Baldeweg, T., & Hirsch, S. R. (2015). Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: A comparison with bipolar disorder and Alzheimer’s disease. International Journal of Psychophysiology, 95(2), 145-155. https://doi.org/10.1016/j.ijpsycho.2014.03.008
doi: 10.1016/j.ijpsycho.2014.03.008 URL pmid: 24681247 |
[7] |
Bodatsch, M., Brockhaus-Dumke, A., Klosterkötter, J., & Ruhrmann, S. (2015). Forecasting psychosis by event-related potentials - Systematic review and specific meta-analysis. Biological Psychiatry, 77(11), 951-958. https://doi.org/10.1016/j.biopsych.2014.09.025
doi: 10.1016/j.biopsych.2014.09.025 URL pmid: 25636178 |
[8] |
Bodatsch, M., Ruhrmann, S., Wagner, M., Mller, R., Schultze- Lutter, F., Frommann, I., … Brockhaus-Dumke, A. (2011). Prediction of psychosis by mismatch negativity. Biological Psychiatry, 69(10), 959-966. https://doi.org/10.1016/j.biopsych.2010.09.057
doi: 10.1016/j.biopsych.2010.09.057 URL |
[9] |
Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., … Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65(1), 28-37. https://doi.org/10.1001/archgenpsychiatry.2007.3
doi: 10.1001/archgenpsychiatry.2007.3 URL pmid: 18180426 |
[10] | Carbajal, G. V., & Malmierca,M. S. (2018). The neuronal basis of predictive coding along the auditory pathway: From the subcortical roots to cortical deviance detection. Trends in Hearing, 22, 1-13. https://doi.org/10.1177/2331216518784822 |
[11] |
Chen, I.-W., Helmchen, F., & Lutcke, H. (2015). Specific early and late oddball-evoked responses in excitatory and inhibitory neurons of mouse auditory cortex. Journal of Neuroscience., 35(36), 12560-12573. https://doi.org/10.1523/JNEUROSCI.2240-15.2015
doi: 10.1523/JNEUROSCI.2240-15.2015 URL pmid: 26354921 |
[12] |
Chen, T.-C., Hsieh, M. H., Lin, Y.-T., Chan, P.-Y.S., & Cheng, C.-H. (2020). Mismatch negativity to different deviant changes in autism spectrum disorders: A meta-analysis. Clinical Neurophysiology, 131(3), 766-777. https://doi.org/10.1016/j.clinph.2019.10.031
doi: 10.1016/j.clinph.2019.10.031 URL pmid: 31952914 |
[13] |
Cheng, C. -H., Hsu, W. -Y., & Lin, Y. -Y. (2013). Effects of physiological aging on mismatch negativity: A meta-analysis. International Journal of Psychophysiology, 90(2), 165-171. https://doi.org/10.1016/j.ijpsycho.2013.06.026
doi: 10.1016/j.ijpsycho.2013.06.026 URL |
[14] |
Chitty, K. M., Lagopoulos, J., Lee, R. S. C., Hickie, I. B., & Hermens, D. F. (2013). A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. European Neuropsychopharmacology, 23(11), 1348-1363. https://doi.org/ 10.1016/j.euroneuro.2013.07.007
doi: 10.1016/j.euroneuro.2020.09.635 URL pmid: 33077324 |
[15] |
Choi, W., Lim, M., Kim, J. S., Kim, D. J., & Chung, C. K. (2015). Impaired pre-attentive auditory processing in fibromyalgia: A mismatch negativity (MMN) study. Clinical Neurophysiology, 126(7), 1310-1318. https://doi.org/10.1016/j.clinph.2014.10.012
doi: 10.1016/j.clinph.2014.10.012 URL pmid: 25453609 |
[16] |
Choudhury, N. A., Parascando, J. A., & Benasich, A. A. (2015). Effects of presentation rate and attention on auditory discrimination: A comparison of long-latency auditory evoked potentials in school-aged children and adults. PLoS ONE, 10(9), e0138160. https://doi.org/10.1371/journal.pone.0138160
doi: 10.1371/journal.pone.0138160 URL pmid: 26368126 |
[17] |
Csépe, V., Karmos, G., & Molnár, M. (1987). Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat - animal model of mismatch negativity. Electroencephalography and Clinical Neurophysiology, 66(6), 571-578. https://doi.org/10.1016/0013-4694(87)90103-9
doi: 10.1016/0013-4694(87)90103-9 URL pmid: 2438122 |
[18] |
Daly, J. J., & Wolpaw,J. R. (2008). Brain-computer interfaces in neurological rehabilitation. The Lancet Neurology, 7(11), 1032-1043. https://doi.org/10.1016/S1474-4422(08)70223-0
doi: 10.1016/S1474-4422(08)70223-0 URL pmid: 18835541 |
[19] |
Duque, D., Pais, R., & Malmierca, M. S. (2018). Stimulus- specific adaptation in the anesthetized mouse revealed by brainstem auditory evoked potentials. Hearing Research, 370, 294-294. https://doi.org/10.1016/j.heares.2018.08.011
doi: 10.1016/j.heares.2018.08.011 URL pmid: 30196981 |
[20] |
Ehrlichman, R. S., Luminais, S. N., White, S. L., Rudnick, N. D., Ma, N., Dow, H. C., … Siegel, S. J. (2009). Neuregulin 1 transgenic mice display reduced mismatch negativity, contextual fear conditioning and social interactions. Brain Research, 1294, 116-127. https://doi.org/10.1016/j.brainres.2009.07.065
doi: 10.1016/j.brainres.2009.07.065 URL pmid: 19643092 |
[21] |
Ehrlichman, R. S., Maxwell, C. R., Majumdar, S., & Siegel, S. J. (2008). Deviance-elicited changes in event-related potentials are attenuated by ketamine in mice. Journal of Cognitive Neuroscience, 20(8), 1403-1414. https://doi.org/10.1162/jocn.2008.20097
doi: 10.1162/jocn.2008.20097 URL pmid: 18303985 |
[22] |
Erickson, M. A., Ruffle, A., & Gold, J. M. (2016). A meta-analysis of mismatch negativity in schizophrenia: From clinical risk to disease specificity and progression. Biological Psychiatry, 79(12), 980-987. https://doi.org/10.1016/j.biopsych.2015.08.025
doi: 10.1016/j.biopsych.2015.08.025 URL pmid: 26444073 |
[23] |
Fan, L., Sun, Y.-B., Sun, Z.-K., Wang, N., Luo, F., Yu, F., & Wang, J.-Y. (2018). Modulation of auditory sensory memory by chronic clinical pain and acute experimental pain: a mismatch negativity study. Scientific Reports, 8(1), 15673. https://doi.org/10.1038/s41598-018-34099-y
doi: 10.1038/s41598-018-34099-y URL pmid: 30353114 |
[24] |
Featherstone, R. E., Shin, R., Kogan, J. H., Liang, Y., Matsumoto, M., & Siegel, S. J. (2015). Mice with subtle reduction of NMDA NR1 receptor subunit expression have a selective decrease in mismatch negativity: Implications for schizophrenia prodromal population. Neurobiology of Disease, 73, 289-289. https://doi.org/10.1016/j.nbd.2014.10.010
doi: 10.1016/j.nbd.2014.10.010 URL pmid: 25461194 |
[25] |
Fishman, Y. I., & Steinschneider, M. (2012). Searching for the mismatch negativity in primary auditory cortex of the awake monkey: Deviance detection or stimulus specific adaptation? Journal of Neuroscience, 32(45), 15747-15758. https://doi.org/10.1523/JNEUROSCI.2835-12.2012
doi: 10.1523/JNEUROSCI.2835-12.2012 URL |
[26] |
Friedel, E. B. N., Bach, M., & Heinrich, S. P. (2020). Attentional interactions between vision and hearing in event-related responses to crossmodal and conjunct oddballs. Multisensory Research, 33(3), 251-275. https://doi.org/10.1163/22134808-20191329
doi: 10.1163/22134808-20191329 URL |
[27] |
Friedman, T., Sehatpour, P., Dias, E., Perrin, M., & Javitt, D. C. (2012). Differential relationships of mismatch negativity and visual P1 deficits to premorbid characteristics and functional outcome in schizophrenia. Biological Psychiatry, 71(6), 521-529. https://doi.org/10.1016/j.biopsych.2011.10.037
doi: 10.1016/j.biopsych.2011.10.037 URL |
[28] |
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815-836. https://doi.org/10.1098/rstb.2005.1622
doi: 10.1098/rstb.2005.1622 URL |
[29] |
Fusar-Poli, P., Bonoldi, I., Yung, A. R., Borgwardt, S., Kempton, M. J., Valmaggia, L., … McGuire, P. (2012). Predicting psychosis: Meta-analysis of transition outcomes in individuals at high clinical risk. Archives of General Psychiatry, 69(3), 220-229. https://doi.org/10.1001/archgenpsychiatry.2011.1472
doi: 10.1001/archgenpsychiatry.2011.1472 URL pmid: 22393215 |
[30] |
Garrido, M I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453-463. https://doi.org/10.1016/j.clinph.2008.11.029
doi: 10.1016/j.clinph.2008.11.029 URL pmid: 19181570 |
[31] |
Gil-Da-Costa, R., Stoner, G. R., Fung, R., & Albright, T. D. (2013). Nonhuman primate model of schizophrenia using a noninvasive EEG method. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15425-15430. https://doi.org/10.1073/pnas.1312264110
doi: 10.1073/pnas.1312264110 URL |
[32] |
Grimm, S., Escera, C., & Nelken, I. (2016). Early indices of deviance detection in humans and animal models. Biological Psychology, 116, 23-23. https://doi.org/10.1016/j.biopsycho.2015.11.017
doi: 10.1016/j.biopsycho.2015.11.017 URL pmid: 26656286 |
[33] |
Gunduz-Bruce, H., Reinhart, R. M. G., Roach, B. J., Gueorguieva, R., Oliver, S., D’Souza, D. C., … Mathalon, D. H. (2012). Glutamatergic Modulation of Auditory Information Processing in the Human Brain. Biological Psychiatry, 71(11), 969-977. https://doi.org/10.1016/j.biopsych.2011.09.031
doi: 10.1016/j.bpsc.2020.09.004 URL pmid: 33191160 |
[34] |
Harms, L., Fulham, W. R., Todd, J., Budd, T. W., Hunter, M., Meehan, C., … Michie, P. T. (2014). Mismatch negativity (MMN) in freely-moving rats with several experimental controls. PLoS ONE, 9(10), e110892. https://doi.org/10.1371/journal.pone.0110892
doi: 10.1371/journal.pone.0110892 URL pmid: 25333698 |
[35] |
Harms, L., Fulham, W. R., Todd, J., Meehan, C., Schall, U., Hodgson, D. M., & Michie, P. T. (2018). Late deviance detection in rats is reduced, while early deviance detection is augmented by the NMDA receptor antagonist MK-801. Schizophrenia Research, 191, 43-43. https://doi.org/10.1016/j.schres.2017.03.042
doi: 10.1016/j.schres.2017.03.042 URL pmid: 28385587 |
[36] |
Harms, L., Michie, P. T., & Näätänen, R. (2016). Criteria for determining whether mismatch responses exist in animal models: Focus on rodents. Biological Psychology, 116, 23-23. https://doi.org/10.1016/j.biopsycho.2015.07.006 006
doi: 10.1016/j.biopsycho.2015.11.017 URL pmid: 26656286 |
[37] |
Heekeren, K., Daumann, J., Neukirch, A., Stock, C., Kawohl, W., Norra, C., … Gouzoulis-Mayfrank, E. (2008). Mismatch negativity generation in the human 5HT2A agonist and NMDA antagonist model of psychosis. Psychopharmacology, 199(1), 77-88. https://doi.org/10.1007/s00213-008-1129-4
doi: 10.1007/s00213-008-1129-4 URL pmid: 18488201 |
[38] |
Holliday, W. B., Gurnsey, K., Sweet, R. A., & Teichert, T. (2018). A putative electrophysiological biomarker of auditory sensory memory encoding is sensitive to pharmacological alterations of excitatory/inhibitory balance in male macaque monkeys. Journal of Psychiatry and Neuroscience, 43(3), 182-193. https://doi.org/10.1503/jpn.170093
URL pmid: 29688874 |
[39] |
Howell, T. J., Conduit, R., Toukhsati, S., & Bennett, P. (2012). Auditory stimulus discrimination recorded in dogs, as indicated by mismatch negativity (MMN). Behavioural Processes, 89(1), 8-13. https://doi.org/10.1016/j.beproc.2011.09.009
doi: 10.1016/j.beproc.2011.09.009 URL |
[40] |
Jääskeläinen, I. P., Ahveninen, J., Bonmassar, G., Dale, A. M., Ilmoniemi, R. J., Levänen, S., … Belliveau, J. W. (2004). Human posterior auditory cortex gates novel sounds to consciousness. Proceedings of the National Academy of Sciences of the United States of America, 101(17), 6809-6814. https://doi.org/10.1073/pnas.0303760101
doi: 10.1073/pnas.0303760101 URL pmid: 15096618 |
[41] |
Jääskeläinen, I. P., Pekkonen, E., Hirvonen, J., Sillanaukee, P., & Näätänen, R. (1996). Mismatch negativity subcomponents and ethyl alcohol. Biological Psychology, 43(1), 13-25. https://doi.org/10.1016/0301-0511(95)05174-0
doi: 10.1016/0301-0511(95)05174-0 URL pmid: 8739611 |
[42] |
Javitt, D. C., Grochowski, S., Shelley, A.-M., & Ritter, W. (1998). Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalography and Clinical Neurophysiology, 108(2), 143-153. https://doi.org/ 10.1016/S0168-5597(97)00073-7
doi: 10.1016/s0168-5597(97)00073-7 URL pmid: 9566627 |
[43] |
Javitt, D. C., Steinschneider, M., Schroeder, C. E., & Arezzo, J. C. (1996). Role of cortical N-methyl-D-aspartate receptors in auditory sensory memory and mismatch negativity generation: Implications for schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 93(21), 11962-11967. https://doi.org/10.1073/pnas.93.21.11962
doi: 10.1073/pnas.93.21.11962 URL pmid: 8876245 |
[44] |
Jodo, E., Inaba, H., Narihara, I., Sotoyama, H., Kitayama, E., Yabe, H., … Nawa, H. (2019). Neonatal exposure to an inflammatory cytokine, epidermal growth factor, results in the deficits of mismatch negativity in rats. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43923-y
doi: 10.1038/s41598-019-56816-x URL pmid: 31892720 |
[45] |
Kantar-Gok, D., Hidisoglu, E., Er, H., Acun, A. D., Olgar, Y., & Yargıcoglu, P. (2017). Changes of auditory event-related potentials in ovariectomized rats injected with D-galactose: Protective role of rosmarinic acid. NeuroToxicology, 62, 64-74. https://doi.org/10.1016/j.neuro.2017.05.003
doi: 10.1016/j.neuro.2017.05.003 URL pmid: 28501655 |
[46] |
Kantar-Gok, D., Hidisoglu, E., Ocak, G. A., Er, H., Acun, A. D., & Yargıcoglu, P. (2018). Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochemistry International, 118, 1-13. https://doi.org/10.1016/j.neuint.2018.04.008
doi: 10.1016/j.neuint.2018.04.008 URL pmid: 29655652 |
[47] |
Kaser, M., Soltesz, F., Lawrence, P., Miller, S., Dodds, C., Croft, R., … Nathan, P. J. (2013). Oscillatory underpinnings of mismatch negativity and their relationship with cognitive function in patients with schizophrenia. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0083255
doi: 10.1371/journal.pone.0085737 URL pmid: 24392029 |
[48] |
Kovarski, K., Latinus, M., Charpentier, J., Cléry, H., Roux, S., Houy-Durand, E., … Gomot, M. (2017). Facial expression related vMMN: Disentangling emotional from neutral change detection. Frontiers in Human Neuroscience. https://doi.org/10.3389/fnhum.2017.00018
doi: 10.3389/fnhum.2020.588671 URL pmid: 33192424 |
[49] |
Lee, M., Balla, A., Sershen, H., Sehatpour, P., Lakatos, P., & Javitt, D. C. (2018). Rodent mismatch negativity/theta neuro-oscillatory response as a translational neurophysiological biomarker for N-Methyl-D-Aspartate receptor-based new treatment development in schizophrenia. Neuropsychopharmacology, 43(3), 571-582. https://doi.org/10.1038/npp.2017.176
doi: 10.1038/npp.2017.176 URL pmid: 28816240 |
[50] |
Leitman, D. I., Sehatpour, P., Higgins, B. A., Foxe, J. J., Silipo, G., & Javitt, D. C. (2010). Sensory deficits and distributed hierarchical dysfunction in schizophrenia. American Journal of Psychiatry, 167(7), 818-827. https://doi.org/10.1176/appi.ajp.2010.09030338
doi: 10.1176/appi.ajp.2010.09030338 URL pmid: 20478875 |
[51] |
Leung, S., Croft, R. J., Baldeweg, T., & Nathan, P. J. (2007). Acute dopamine D1 and D2 receptor stimulation does not modulate mismatch negativity (MMN) in healthy human subjects. Psychopharmacology, 194(4), 443-451. https://doi.org/10.1007/s00213-007-0865-1
doi: 10.1007/s00213-007-0865-1 URL pmid: 17611739 |
[52] |
Leung, S., Croft, R. J., Guille, V., Scholes, K., O’Neill, B. V., Phan, K. L., & Nathan, P. J. (2010). Acute dopamine and/or serotonin depletion does not modulate mismatch negativity (MMN) in healthy human participants. Psychopharmacology, 208(2), 233-244. https://doi.org/10.1007/s00213-009-1723-0
doi: 10.1007/s00213-009-1723-0 URL pmid: 20012022 |
[53] |
Light, G. A., & Swerdlow,N. R. (2015). Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Annals of the New York Academy of Sciences, 1344(1), 105-119. https://doi.org/10.1111/nyas.12730
doi: 10.1111/nyas.2015.1344.issue-1 URL |
[54] |
Light, G. A., Swerdlow, N. R., Rissling, A. J., Radant, A., Sugar, C. A., Sprock, J., … Braff, D. L. (2012). Characterization of neurophysiologic and neurocognitive biomarkers for use in genomic and clinical outcome studies of schizophrenia. PLoS ONE, 7(7), e39434. https://doi.org/10.1371/journal.pone.0039434
doi: 10.1371/journal.pone.0039434 URL pmid: 22802938 |
[55] |
Light, G. A., & Näätänen, R. (2013). Mismatch negativity is a breakthrough biomarker for understanding and treating psychotic disorders. Proceedings of the National Academy of Sciences of the United States of America, 110(38), 15175-15176. https://doi.org/10.1073/pnas.1313287110
doi: 10.1073/pnas.1313287110 URL pmid: 23995447 |
[56] |
Magazzini, L., Muthukumaraswamy, S. D., Campbell, A. E., Hamandi, K., Lingford-Hughes, A., Myers, J. F. M., … Singh, K. D. (2016). Significant reductions in human visual gamma frequency by the gaba reuptake inhibitor tiagabine revealed by robust peak frequency estimation. Human Brain Mapping, 37(11), 3882-3896. https://doi.org/10.1002/hbm.23283
doi: 10.1002/hbm.23283 URL pmid: 27273695 |
[57] |
Matusz, P. J., Retsa, C., & Murray, M. M. (2016). The context-contingent nature of cross-modal activations of the visual cortex. NeuroImage, 125, 996-996. https://doi.org/10.1016/j.neuroimage.2015.11.016
doi: 10.1016/j.neuroimage.2015.11.016 URL pmid: 26564531 |
[58] |
May, P. J. C., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology, 47(1), 66-122. https://doi.org/10.1111/j.1469-8986.2009.00856.x
doi: 10.1111/j.1469-8986.2009.00856.x URL pmid: 19686538 |
[59] |
Menning, H., Renz, A., Seifert, J., & Maercker, A. (2008). Reduced mismatch negativity in posttraumatic stress disorder: A compensatory mechanism for chronic hyperarousal? International Journal of Psychophysiology, 68(1), 27-34. https://doi.org/10.1016/j.ijpsycho.2007.12.003
doi: 10.1016/j.ijpsycho.2007.12.003 URL pmid: 18262297 |
[60] |
Molholm, S., Martinez, A., Ritter, W., Javitt, D. C., & Foxe, J. J. (2005). The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators. Cerebral Cortex, 15(5), 545-551. https://doi.org/10.1093/cercor/bhh155
doi: 10.1093/cercor/bhh155 URL pmid: 15342438 |
[61] |
Morlet, D., & Fischer, C. (2014). MMN and novelty P3 in coma and other altered states of consciousness: A review. Brain Topography, 27(4), 467-479. https://doi.org/10.1007/s10548-013-0335-5
doi: 10.1007/s10548-013-0335-5 URL |
[62] |
Näätänen, R., & Alho, K. (1995). Mismatch negativity-a unique measure of sensory processing in audition. International Journal of Neuroscience, 80(1-4), 317-337. https://doi.org/10.3109/00207459508986107
doi: 10.3109/00207459508986107 URL pmid: 7775056 |
[63] |
Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313-329. https://doi.org/10.1016/0001-6918(78)90006-9
doi: 10.1016/0001-6918(78)90006-9 URL pmid: 685709 |
[64] |
Näätänen,R., & Michie,P. T. (1979). Early selective- attention effects on the evoked potential: A critical review and reinterpretation. Biological Psychology, 8(2), 81-136. https://doi.org/10.1016/0301-0511(79)90053-X
doi: 10.1016/0301-0511(79)90053-x URL pmid: 465623 |
[65] |
Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544-2590. https://doi.org/10.1016/j.clinph.2007.04.026
doi: 10.1016/j.clinph.2007.04.026 URL pmid: 17931964 |
[66] |
Näätänen, R., Pakarinen, S., Rinne, T., & Takegata, R. (2004). The mismatch negativity (MMN): Towards the optimal paradigm. Clinical Neurophysiology, 115(1), 140-144. https://doi.org/10.1016/j.clinph.2003.04.001
doi: 10.1016/j.clinph.2003.04.001 URL pmid: 14706481 |
[67] |
Näätänen, R., Sussman, E. S., Salisbury, D., & Shafer, V. L. (2014). Mismatch Negativity (MMN) as an Index of Cognitive Dysfunction. Brain Topography, 27(4), 451-466. https://doi.org/10.1007/s10548-014-0374-6
doi: 10.1007/s10548-014-0374-6 URL |
[68] | Nawa, H., Sotoyama, H., Iwakura, Y., Takei, N., & Namba, H. (2014). Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: Their target cells and time window. BioMed Research International, 2014, 1-12. https://doi.org/10.1155/2014/697935 |
[69] |
Peng, W., Xia, X., Yi, M., Huang, G., Zhang, Z., Iannetti, G., & Hu, L. (2018). Brain oscillations reflecting pain-related behavior in freely moving rats. Pain, 159(1), 106-118. https://doi.org/10.1097/j.pain.0000000000001069
doi: 10.1097/j.pain.0000000000001069 URL pmid: 28953192 |
[70] |
Perez, V. B., Woods, S. W., Roach, B. J., Ford, J. M., McGlashan, T. H., Srihari, V. H., & Mathalon, D. H. (2014). Automatic auditory processing deficits in schizophrenia and clinical high-risk patients: Forecasting psychosis risk with mismatch negativity. Biological Psychiatry, 75(6), 459-469. https://doi.org/10.1016/j.biopsych.2013.07.038
doi: 10.1016/j.biopsych.2013.07.038 URL |
[71] |
Picton, T. W., Alain, C., Otten, L., Ritter, W., & Achim, A. (2000). Mismatch negativity: Different water in the same river. Audiology and Neuro-Otology, 5(3-4), 111-139. https://doi.org/10.1159/000013875
doi: 10.1159/000013875 URL pmid: 10859408 |
[72] |
Rico, E. P., de Oliveira, D. L., Rosemberg, D. B., Mussulini, B. H., Bonan, C. D., Dias, R. D., … Bogo, M. R. (2010). Expression and functional analysis of Na+-dependent glutamate transporters from zebrafish brain. Brain Research Bulletin, 81(4-5), 517-523. https://doi.org/10.1016/j.brainresbull.2009.11.011
doi: 10.1016/j.brainresbull.2009.11.011 URL pmid: 19941938 |
[73] |
Rissling, A. J., Braff, D. L., Swerdlow, N. R., Hellemann, G., Rassovsky, Y., Sprock, J., … Light, G. A. (2012). Disentangling early sensory information processing deficits in schizophrenia. Clinical Neurophysiology, 123(10), 1942-1949. https://doi.org/10.1016/j.clinph.2012.02.079
doi: 10.1016/j.clinph.2012.02.079 URL |
[74] |
Rissling, A. J., Park, S.-H., Young, J. W., Rissling, M. B., Sugar, C. A., Sprock, J., … Light, G. A. (2013). Demand and modality of directed attention modulate “pre-attentive” sensory processes in schizophrenia patients and nonpsychiatric controls. Schizophrenia Research, 146(1-3), 326-335. https://doi.org/10.1016/j.schres.2013.01.035
doi: 10.1016/j.schres.2013.01.035 URL pmid: 23490760 |
[75] |
Rosburg, T., & Kreitschmann-Andermahr, I. (2015). The effects of ketamine on the mismatch negativity (MMN) in humans-A meta-analysis. Clinical Neurophysiology, 127(2), 1387-1394. https://doi.org/10.1016/j.clinph.2015.10.062
doi: 10.1016/j.clinph.2015.10.062 URL pmid: 26699665 |
[76] |
Ruusuvirta, T., Lipponen, A., Pellinen, E.-K., Penttonen, M., & Astikainen, P. (2015). Auditory cortical and hippocampal local-field potentials to frequency deviant tones in urethane- anesthetized rats: An unexpected role of the sound frequencies themselves. International Journal of Psychophysiology, 96(3), 134-140. https://doi.org/10.1016/j.ijpsycho.2015.04.007
doi: 10.1016/j.ijpsycho.2015.04.007 URL pmid: 25911953 |
[77] |
Salisbury, D. F., Kuroki, N., Kasai, K., Shenton, M. E., & McCarley, R. W. (2007). Progressive and interrelated functional and structural evidence of post-onset brain reduction in schizophrenia. Archives of General Psychiatry, 64(5), 521-529. https://doi.org/10.1001/archpsyc.64.5.521
doi: 10.1001/archpsyc.64.5.521 URL pmid: 17485604 |
[78] |
Sams, M., Paavilainen, P., Alho, K., & Näätänen, R. (1985). Auditory frequency discrimination and event-related potentials. Electroencephalography and Clinical Neurophysiology/ Evoked Potentials, 62(6), 437-448. https://doi.org/10.1016/0168-5597(85)90054-1
doi: 10.1016/0168-5597(85)90054-1 URL pmid: 2415340 |
[79] |
Schall, U., Müller, B. W., Kärgel, C., & Güntürkün, O. (2015). Electrophysiological mismatch response recorded in awake pigeons from the avian functional equivalent of the primary auditory cortex. NeuroReport, 26(5), 239-244. https://doi.org/10.1097/WNR.0000000000000323
doi: 10.1097/WNR.0000000000000323 URL pmid: 25646582 |
[80] |
Schwartz, S., Shinn-Cunningham, B., & Tager-Flusberg, H. (2018). Meta-analysis and systematic review of the literature characterizing auditory mismatch negativity in individuals with autism. Neuroscience and Biobehavioral Reviews, 87(4), 106-117. https://doi.org/10.1016/j.neubiorev.2018.01.008
doi: 10.1016/j.neubiorev.2018.01.008 URL |
[81] |
Shao, Y., Yan, G., Xuan, Y., Peng, H., Huang, Q. J., Wu, R., & Xu, H. (2015). Chronic social isolation decreases glutamate and glutamine levels and induces oxidative stress in the rat hippocampus. Behavioural Brain Research, 282, 201-201. https://doi.org/10.1016/j.bbr.2015.01.005
doi: 10.1016/j.bbr.2015.01.005 URL pmid: 25591473 |
[82] |
Sivarao, D. V., Chen, P., Yang, Y., Li, Y.-W., Pieschl, R., & Ahlijanian, M. K. (2014). NR2B antagonist CP-101, 606 abolishes pitch-mediated deviance detection in awake rats. Frontiers in Psychiatry, 5(AUG). https://doi.org/10.3389/fpsyt.2014.00096
doi: 10.3389/fpsyt.2014.00181 URL pmid: 25538636 |
[83] |
Sivarao, D. V., Mikhail, F., Ping, C., Healy, F. L., Lodge, N. J., & Robert, Z. (2013). MK-801 disrupts and nicotine augments 40 Hz auditory steady state responses in the auditory cortex of the urethane-anesthetized rat. Neuropharmacology, 73, 1-1. https://doi.org/10.1016/j.neuropharm.2013.05.006
doi: 10.1016/j.neuropharm.2013.05.006 URL |
[84] |
Tervaniemi, M., Schröger, E., & Näätänen, R. (1997). Pre-attentive processing of spectrally complex sounds with asynchronous onsets: An event-related potential study with human subjects. Neuroscience Letters, 227(3), 197-200. https://doi.org/10.1016/S0304-3940(97)00346-7
doi: 10.1016/s0304-3940(97)00346-7 URL pmid: 9185684 |
[85] |
Tikhonravov, D., Neuvonen, T., Pertovaara, A., Savioja, K., Ruusuvirta, T., Näätänen, R., & Carlson, S. (2008). Effects of an NMDA-receptor antagonist MK-801 on an MMN-like response recorded in anesthetized rats. Brain Research, 1203, 97-102. https://doi.org/10.1016/j.brainres.2008.02.006
doi: 10.1016/j.brainres.2008.02.006 URL pmid: 18325485 |
[86] |
Tikhonravov, D., Neuvonen, T., Pertovaara, A., Savioja, K., Ruusuvirta, T., Näätänen, R., & Carlson, S. (2010). Dose-related effects of memantine on a mismatch negativity-like response in anesthetized rats. Neuroscience, 167(4), 1175-1182. https://doi.org/10.1016/j.neuroscience.2010.03.014
doi: 10.1016/j.neuroscience.2010.03.014 URL pmid: 20298759 |
[87] |
Todd, J., Harms, L., Schall, U., & Michie, P. T. (2013). Mismatch Negativity: Translating the Potential. Frontiers in Psychiatry, 4(DEC). https://doi.org/10.3389/fpsyt.2013.00171
doi: 10.3389/fpsyt.2013.00158 URL pmid: 24391599 |
[88] |
Ulanovsky, N., Las, L., Farkas, D., & Nelken, I. (2004). Multiple time scales of adaptation in auditory cortex neurons. Journal of Neuroscience, 24(46), 10440-10453. https://doi.org/10.1523/JNEUROSCI.1905-04.2004
doi: 10.1523/JNEUROSCI.1905-04.2004 URL pmid: 15548659 |
[89] |
Ulanovsky, N., Las, L., & Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6(4), 391-398. https://doi.org/10.1038/nn1032
doi: 10.1038/nn1032 URL pmid: 12652303 |
[90] |
Umbricht, D., & Krljesb, S. (2005). Mismatch negativity in schizophrenia: A meta-analysis. Schizophrenia Research, 76(1), 1-23. https://doi.org/10.1016/j.schres.2004.12.002
doi: 10.1016/j.schres.2004.12.002 URL pmid: 15927795 |
[91] |
Umbricht, D., Vyssotki, D., Latanov, A., Nitsch, R., & Lipp, H.-P. (2004). Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clinical Neurophysiology, 116(2), 353-363. https://doi.org/10.1016/j.clinph.2004.08.015
doi: 10.1016/j.clinph.2004.08.015 URL pmid: 15661113 |
[92] |
Verkhratsky, A., & Kirchhoff, F. (2007). NMDA receptors in glia. Neuroscientist, 13(1), 28-37. https://doi.org/10.1177/1073858406294270
doi: 10.1177/1073858406294270 URL pmid: 17229973 |
[93] |
Vlaskamp, C., Oranje, B., Madsen, G. F., Møllegaard Jepsen, J. R., Durston, S., Cantio, C., … Bilenberg, N. (2017). Auditory processing in autism spectrum disorder: Mismatch negativity deficits. Autism Research, 10(11), 1857-1865. https://doi.org/10.1002/aur.1821
doi: 10.1002/aur.1821 URL pmid: 28639417 |
[94] |
Wacongne, C., Changeux, J.-P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32(11), 3665-3678. https://doi.org/10.1523/JNEUROSCI.5003-11.2012
doi: 10.1523/JNEUROSCI.5003-11.2012 URL |
[95] |
Wacongne, C. (2016). A predictive coding account of MMN reduction in schizophrenia. Biological Psychology, 116, 68-74. https://doi.org/10.1016/j.biopsycho.2015.10.011
doi: 10.1016/j.biopsycho.2015.10.011 URL pmid: 26582536 |
[96] |
Witten, L., Oranje, B., Mørk, A., Steiniger-Brach, B., Glenthøj, B. Y., & Bastlund, J. F. (2015). Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia. Behavioural Brain Research, 266, 85-93. https://doi.org/10.1016/j.bbr.2014.02.048
doi: 10.1016/j.bbr.2014.02.048 URL pmid: 24613239 |
[97] |
Žarić, G., González, G. F., Tijms, J., van der Molen, M. W., Blomert, L., & Bonte, M. (2015). Crossmodal deficit in dyslexic children: Practice affects the neural timing of letter-speech sound integration. Frontiers in Human Neuroscience, 9 (JUNE). https://doi.org/10.3389/fnhum.2015.00369
doi: 10.3389/fnhum.2015.00722 URL pmid: 26793093 |
[1] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[2] | ZHANG Yingqian, ZHAO Guangyi, HAN Yuwei, ZHANG Jingyi, CAO Chengqi, WANG Li, ZHANG Kunlin. The mechanisms of histone modification in post-traumatic stress disorder [J]. Advances in Psychological Science, 2022, 30(1): 98-114. |
[3] | LI Gujing, ZHANG Lirong, MI Li, HE Hui, LU Jing, LUO Cheng, YAO Dezhong. Dance therapy: Explorations of a bottom-up intervention for schizophrenia [J]. Advances in Psychological Science, 2021, 29(8): 1371-1380. |
[4] | ZENG Xianqing, XU Bing, SUN Bo, YE Jiantong, FU Shimin. EMMN varies with deviant-standard stimulus pair type and emotion type: Evidence from a meta-analysis study [J]. Advances in Psychological Science, 2021, 29(7): 1163-1178. |
[5] | OU Huaxing, CHEN Weihai. Mechanisms underlying the role of D2 receptors in regulating sensory gating [J]. Advances in Psychological Science, 2021, 29(6): 1030-1041. |
[6] | ZHENG Hong, PU Cheng-cheng, WANG Yi, Raymond C. K. CHAN. The classification of schizophrenia based on brain structural features: A machine learning approach [J]. Advances in Psychological Science, 2020, 28(2): 252-265. |
[7] | DING Xiaobin, LIU Jianyi, WANG Yapeng, KANG Tiejun, DANG Chen. The automatic processing of changes in emotion: Implications from EMMN [J]. Advances in Psychological Science, 2020, 28(1): 85-97. |
[8] | CAO Yi, YANG Xiaohu. Speech perception in schizophrenia [J]. Advances in Psychological Science, 2019, 27(6): 1025-1035. |
[9] | CHEN Yahong, WANG Jinyan. The effect of music training on pre-attentive processing of the brain [J]. Advances in Psychological Science, 2019, 27(6): 1036-1043. |
[10] | LU Xuejing, HOU Xin. Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change [J]. Advances in Psychological Science, 2019, 27(12): 1996-2006. |
[11] | DENG Xiaofei, GUO Jianyou. Roles of impaired parvalbumin positive interneurons in schizophrenic pathology [J]. Advances in Psychological Science, 2018, 26(11): 1992-2002. |
[12] | XIN Xin; REN Gui-Qin; LI Jin-Cai; TANG Xiao-Yu. The characteristics and mechanisms of audiovisual integration: Evidence from mismatch negativity [J]. Advances in Psychological Science, 2017, 25(5): 757-768. |
[13] | ZHU Chuan-Lin; Li Ping; Luo Wen-Bo; Qi Zheng-Yang; He Wei-Qi. Emotion regulation in schizophrenia [J]. Advances in Psychological Science, 2016, 24(4): 556-572. |
[14] | HUANG Wenqiang; YANG Shasha; YU Ping. Neural mechanisms of risky decision-making based on rodent research [J]. Advances in Psychological Science, 2016, 24(11): 1767-1779. |
[15] | GUO Yafei; JIN Shenghua; WANG Jianping; WU Linhua; AIDI Ma. Changes of Schizophrenia Spectrum Disorder in DSM-5: #br# Dispute between Categorical and Dimensional Approaches [J]. Advances in Psychological Science, 2015, 23(8): 1428-1436. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||