Advances in Psychological Science ›› 2020, Vol. 28 ›› Issue (10): 1777-1788.doi: 10.3724/SP.J.1042.2020.01777
• Research Method • Previous Articles
ZHANG Lijin1, WEI Xiayan2, LU Jiaqi2, PAN Junhao1()
Received:
2019-12-13
Online:
2020-10-15
Published:
2020-08-24
Contact:
PAN Junhao
E-mail:panjunh@mail.sysu.edu.cn
CLC Number:
ZHANG Lijin, WEI Xiayan, LU Jiaqi, PAN Junhao. Lasso regression: From explanation to prediction[J]. Advances in Psychological Science, 2020, 28(10): 1777-1788.
系数估计值(p值) | |||
---|---|---|---|
预测变量 | OLS | Lasso | Relaxed Lasso |
age | -0.206(0.009)** | -(0.072) | - |
famrel | 0.36(0.001)** | -(0.699) | - |
freetime | 0.058(0.57) | -(0.913) | - |
gout | -0.014(0.891) | -(0.981) | - |
dalc | -0.108(0.448) | -(0.646) | - |
walc | 0.17(0.105) | -(0.294) | - |
health | 0.046(0.509) | -(0.899) | - |
absences | 0.042(0.001)** | -(0.089) | - |
G1 | 0.164(0.003)** | 0.057(0.005)** | 0.153(0.007)** |
G2 | 0.977(<0.001)*** | 0.903(<0.001)*** | 0.987(<0.001)*** |
R2 | 0.835 | - | 0.822 |
adjusted R2 | 0.831 | - | 0.821 |
Mean Square Error | 3.446 | - | 3.723 |
系数估计值(p值) | |||
---|---|---|---|
预测变量 | OLS | Lasso | Relaxed Lasso |
age | -0.206(0.009)** | -(0.072) | - |
famrel | 0.36(0.001)** | -(0.699) | - |
freetime | 0.058(0.57) | -(0.913) | - |
gout | -0.014(0.891) | -(0.981) | - |
dalc | -0.108(0.448) | -(0.646) | - |
walc | 0.17(0.105) | -(0.294) | - |
health | 0.046(0.509) | -(0.899) | - |
absences | 0.042(0.001)** | -(0.089) | - |
G1 | 0.164(0.003)** | 0.057(0.005)** | 0.153(0.007)** |
G2 | 0.977(<0.001)*** | 0.903(<0.001)*** | 0.987(<0.001)*** |
R2 | 0.835 | - | 0.822 |
adjusted R2 | 0.831 | - | 0.821 |
Mean Square Error | 3.446 | - | 3.723 |
student <- read.table("mat_2.txt",sep="\t",header=FALSE) IV<-(student[,1:10]) IV1=scale(IV,FALSE,FALSE) ## 不对自变量进行标准化处理 ## 十重交叉验证 install.packages(‘glmnet’) library(glmnet) set.seed(1222) ## 设定随机数种子, 保证每次运行十重交叉验证的结果一样 Lambda=cv.glmnet(IV1,student[,11]) ## lasso回归结果 coef(Lambda, s=Lambda\$lambda.1se) ## 绘图 plot(Lambda) ## 横坐标为lambda, 纵坐标为均方误差MSE savePlot(filename = "lambda", type ="png", device = dev.cur(), restoreConsole = TRUE) RegCoef=glmnet(IV1,student[,11],family = "gaussian",alpha = 1) plot(RegCoef, xvar="lambda",ylim=c(-1.5,1.5), lwd=1.8 ) ## 横坐标为lambda, 纵坐标为系数估计值 abline(v=log(Lambda\$lambda.1se)) abline(v=log(Lambda\$lambda.min)) savePlot(filename = "loglambda", type ="png", device = dev.cur(), restoreConsole = TRUE) ## 采用covTest包计算p值 library('devtools') install_github('cran/covTest') ## coveTest 软件包目前无法从CRAN上下载, 因此采用devtools软件包从github上下载 library(covTest) IV<-student[,1:10] df=nrow(IV)-1 IV2=scale(IV,TRUE,TRUE)/sqrt(df) ## 标准化自变量 LarsCoef=lars(IV2,student[,11]) covTest(LarsCoef,IV2,student[,11]) ## 计算p值 |
student <- read.table("mat_2.txt",sep="\t",header=FALSE) IV<-(student[,1:10]) IV1=scale(IV,FALSE,FALSE) ## 不对自变量进行标准化处理 ## 十重交叉验证 install.packages(‘glmnet’) library(glmnet) set.seed(1222) ## 设定随机数种子, 保证每次运行十重交叉验证的结果一样 Lambda=cv.glmnet(IV1,student[,11]) ## lasso回归结果 coef(Lambda, s=Lambda\$lambda.1se) ## 绘图 plot(Lambda) ## 横坐标为lambda, 纵坐标为均方误差MSE savePlot(filename = "lambda", type ="png", device = dev.cur(), restoreConsole = TRUE) RegCoef=glmnet(IV1,student[,11],family = "gaussian",alpha = 1) plot(RegCoef, xvar="lambda",ylim=c(-1.5,1.5), lwd=1.8 ) ## 横坐标为lambda, 纵坐标为系数估计值 abline(v=log(Lambda\$lambda.1se)) abline(v=log(Lambda\$lambda.min)) savePlot(filename = "loglambda", type ="png", device = dev.cur(), restoreConsole = TRUE) ## 采用covTest包计算p值 library('devtools') install_github('cran/covTest') ## coveTest 软件包目前无法从CRAN上下载, 因此采用devtools软件包从github上下载 library(covTest) IV<-student[,1:10] df=nrow(IV)-1 IV2=scale(IV,TRUE,TRUE)/sqrt(df) ## 标准化自变量 LarsCoef=lars(IV2,student[,11]) covTest(LarsCoef,IV2,student[,11]) ## 计算p值 |
[1] |
胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题: 从危机到契机. 心理科学进展, 24(9), 1504-1518.
doi: 10.3724/SP.J.1042.2016.01504 URL |
[2] | 刘建伟, 崔立鹏, 刘泽宇, 罗雄麟. (2015). 正则化稀疏模型. 计算机学报, 38(7), 1307-1325. |
[3] | 彭运石, 李璜. (2011, 十月). 论西方心理学发展中的说明与理解之争. 文章展示于第十四届全国心理学学术会议, 北京. |
[4] | 邱怡轩. 统计之都访谈第 9 期:Hadley Wickham. 2019-8-30 取自 https://mp.weixin.qq.com/s/IPejDdwIFIx93UxsRwtQ1Q |
[5] | 吴喜之. (2019). 从模型驱动的集体推断到数据驱动的个体预测. 第12届中国R语言会议, 北京. |
[6] | 谢宇. (2010). 回归分析. 北京: 社会科学文献出版社. |
[7] | 许树红, 王慧, 孙红卫, 王彤. (2017). 基于lasso类方法的Ⅰ类错误的控制. 中国卫生统计, 4, 660-667. |
[8] | 张凤莲. (2010). 多元线性回归中多重共线性问题的解决办法探讨(硕士学位论文). 华南理工大学, 广州. |
[9] | 张厚粲, 徐建平. (2015). 现代心理与教育统计学. 北京: 北京师范大学出版社. |
[10] | 张沥今, 陆嘉琦, 魏夏琰, 潘俊豪. (2019). 贝叶斯结构方程模型及其研究现状. 心理科学进展, 27(11), 1812-1825. |
[11] |
Ayers, K. L., & Cordell, H. J. (2010). SNP selection in genome-wide and candidate gene studies via penalized logistic regression. Genetic Epidemiology, 34(8), 879-891.
doi: 10.1002/gepi.20543 URL pmid: 21104890 |
[12] |
Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine, 66, 411-421.
doi: 10.1097/01.psy.0000127692.23278.a9 URL pmid: 15184705 |
[13] |
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B., Wagenmakers, E. J., Berk, R., & Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behaviour, 2, 6-10.
doi: 10.1038/s41562-017-0189-z URL pmid: 30980045 |
[14] |
Candes, E., & Tao, T. (2007). The dantzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35(6), 2313-2351.
doi: 10.1214/009053606000001523 URL |
[15] | Chartterjee, S., & Hadi, A. S. (2006). Regression by Example: 4th Edition. Hoboken: John Wiley and Sons. |
[16] | Chartterjee, S., Hadi, A. S., & Price, B. (2000). Regression by Example: 3rd Edition. Hoboken: John Wiley and Sons. |
[17] | Cho, S., Kim, H., Oh, S., Kim, K., & Park, T. (2009). Elastic-net regularization approaches for genome wide association studies of rheumatoid arthritis. BioMed Central Procedings. 3(Suppl.7), S7-S25. |
[18] | Cho, S., Kim, K., Kim, Y. J., Lee, J. K., Cho, Y. S., Lee, J. Y., … Park, T. (2010). Joint identification of multiple genetic variants via elastic net variable selection in a genome-wide association analysis. American Journal of Human Genetics, 74(5), 416-428. |
[19] | Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis for the behavioral sciences (3rd ed.). Mahwah, NJ: Erlbaum. |
[20] | Cortez, P., & Silva, A. (2008, April). Using Data Mining to Predict Secondary School Student Performance. In A. Brito and J. Teixeira Eds. Proceedings of 5th FUture BUsiness TEChnology Conference(pp. 5-12). Porto, Portugal. |
[21] |
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mottus, R., Waldorp, L. J., & Cramer, A. O. J. (2015a). State of the aRt personality research: A tutorial on network analysis of personality data in R. Journal of Research in Personality, 54(1), 13-29.
doi: 10.1016/j.jrp.2014.07.003 URL |
[22] |
Costantini, G., Richetin, J., Borsboom, D., Fried, E., Rhemtulla, M., & Perugini, M. (2015b). Development of indirect measures of conscientiousness: Combining a facets approach and network analysis. European Journal of Personality, 29(5), 548-567.
doi: 10.1002/per.v29.5 URL |
[23] |
Costantini, G., Richetin, J., Preti, E., Casini, E., Epskamp, S., & Perugini, M. (2019). Stability and variability of personality networks. A tutorial on recent developments in network psychometrics. Personality and Individual Differences, 136, 68-78.
doi: 10.1016/j.paid.2017.06.011 URL |
[24] | D’Angelo, G. M., Rao, D., & Gu, C. C. (2009). Combining least absolute shrinkage and selection operator (LASSO) and principal-components analysis for detection of gene-gene interactions in genome-wide association studies. BioMed Central Procedings, 3(Suppl.7), S7-S62. |
[25] |
Di Pierro, R., Costantini, G., Benzi, I. M. A., Madeddu, F., & Preti, E. (2018). Grandiose and entitled, but still fragile: A network analysis of pathological narcissistic traits. Personality and Individual Differences, 140, 15-20.
doi: 10.1016/j.paid.2018.04.003 URL |
[26] |
Demjaha, A., Lappin, J. M., Stahl, D., Patel, M. X., Maccabe, J. H., & Howes, O. D., … Murray, R. M. (2017). Antipsychotic treatment resistance in first-episode psychosis: Prevalence, subtypes and predictors. Psychological Medicine, 47(11), 1-9.
doi: 10.1017/S0033291716002075 URL |
[27] |
Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265-282.
doi: 10.1111/bmsp.1992.45.issue-2 URL |
[28] |
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals of Statistics, 32, 407-499.
doi: 10.1214/009053604000000067 URL |
[29] |
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195-212.
doi: 10.3758/s13428-017-0862-1 URL pmid: 28342071 |
[30] | Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). qgraph: Network visualization of relationships in psychometric data. Journal of Statistical Software, 48(4), 1018. |
[31] |
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348-1360.
doi: 10.1198/016214501753382273 URL |
[32] |
Fan, J., & Peng, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics, 32(3), 928-961.
doi: 10.1214/009053604000000256 URL |
[33] | Fomby, T. B., Hill, R. C., & Johnson, S. R. (1984). Advanced Econometric Methods. New York, Berlin, Heidelberg, London, Paris, Tokyo: Springer-Verlag. |
[34] | Fontanarosa, J. B., & Dai, Y. (2011). Using lasso regression to detect predictive aggregate effects in genetic studies. BioMed Central Procedings, 5(Suppl.9), 69-74. |
[35] | Frank, L. E., & Heiser, W. J. (2011). Feature selection in feature network models: Finding predictive subsets of features with the positive lasso. British Journal of Mathematical & Statistical Psychology, 61(1), 1-27. |
[36] |
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
URL pmid: 20808728 |
[37] | Friedman, J., Hastie, T., & Tibshirani, R. (2019). Bayesian Lasso/NG, Horseshoe, and Ridge Regression. Retrieved August 30, 2019, from https://www.rdocumentation.org/packages/monomvn/versions/1.9-10/topics/blasso |
[38] |
Giordano, C., & Waller, N, G. (2019). A neglected aspect of the reproducibility crisis: Factor analytic monte carlo studies. Multivariate Behavioral Research, 55(1), 152.
doi: 10.1080/00273171.2019.1697864 URL |
[39] |
Hans, C. (2009). Bayesian Lasso regression. Biometrika, 96(4), 835-845.
doi: 10.1093/biomet/asp047 URL |
[40] | Harrell, F. E. Jr. (2015). Regression modeling strategies: with applications to linear models, logistic and ordinal regression, and survival analysis, 2nd. New York: Springer-Verlag. |
[41] |
Hartmann, A., Zeeck, A., & Barrett, M. S. (2010). Interpersonal problems in eating disorders. International Journal of Eating Disorders, 43(7), 619-627.
URL pmid: 19718674 |
[42] |
Helwig, N. E. (2017). Adding bias to reduce variance in psychological results: A tutorial on penalized regression. The Quantitative Methods for Psychology, 13(1), 1-19.
doi: 10.20982/tqmp.13.1.p001 URL |
[43] |
Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and $\ell $ 1 penalized regression: A review. Statistics Surveys, 2, 61-93.
doi: 10.1214/08-SS035 URL |
[44] | Hirose, K. (2019). Retrieved August 19, 2019, from https://www.rdocumentation.org/packages/msgps/versions/1.3.1 |
[45] | Jacobucci, R. (2019). regsem: regularized structural equation models. R package version 1.3.9. Retrieved June 01, 2019, from https://cran.r-project.org/web/packages/regsem/index.html |
[46] |
Jacobucci, R., Brandmaier, A., & Kievit, R. (2019). A practical guide to variable selection in structural equation models with regularized MIMIC models. Advances in Methods and Practices in Psychological Science, 2(1), 55-76.
doi: 10.1177/2515245919826527 URL pmid: 31463424 |
[47] |
Johnson, M., & Sinharay, S. (2011). Remarks from the new editors. Journal of Educational and Behavioral Statistics, 36(1), 3-5.
doi: 10.3102/1076998610387267 URL |
[48] |
Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Hua, X., & Rajagopalan, P., … Thompson, P. M. (2012). Discovery and replication of gene influences on brain structure using lasso regression. Frontiers in Neuroscience, 6, 1-13.
doi: 10.3389/fnins.2012.00001 URL pmid: 22294978 |
[49] |
Kooperberg, C., LeBlanc, M., & Obenchain, V. (2010). Risk prediction using genome-wide association studies. Genetic Epidemiology, 34(7), 643-652.
doi: 10.1002/gepi.20509 URL pmid: 20842684 |
[50] | Kraemer, N., & Schaefer, J. (2019). parcor: Regularized estimation of partial correlation matrices. Retrieved September 04, from https://www.rdocumentation.org/packages/parcor/versions/0.2-6 |
[51] |
Kyung, M., Gill, J., Ghosh, M., & Casella, G. (2010). Penalized regression, standard errors, and Bayesian lassos. Bayesian Analysis, 5(2), 369-411.
doi: 10.1214/10-BA607 URL |
[52] |
Lee, T. F., Chao, P. J., Ting, H. M., Chang, L., Huang, Y. J., Wu, J. M., … Leung, S. W. (2014). Using multivariate regression model with Least Absolute Shrinkage and Selection Operator (LASSO) to predict the incidence of xerostomia after intensity-modulated radiotherapy for head and neck cancer. PLoS ONE, 9(2), e89700.
doi: 10.1371/journal.pone.0089700 URL pmid: 24586971 |
[53] |
Li, J., Das, K., Fu, G., Li, R., & Wu, R. (2011). The Bayesian lasso for genome-wide association studies. Bioinformatics, 27(4), 516-523.
doi: 10.1093/bioinformatics/btq688 URL |
[54] | Lin, Y., Zhang, M., Wang, L., Pungpapong, V., Fleet, J. C., & Zhang, D. (2009). Simultaneous genome-wide association studies of anti-cyclic citrullinated peptide in rheumatoid arthritis using penalized orthogonal-components regression. BioMed Central Procedings, 3(Suppl.20), S17-S20. |
[55] |
Lippke, S., & Ziegelmann, J. P. (2010). Theory-based health behavior change: Developing, testing, and applying theories for evidence-based interventions. Applied Psychology, 57(4), 698-716.
doi: 10.1111/apps.2008.57.issue-4 URL |
[56] |
Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2014). A significance test for the lasso. The Annals of Statistics, 42, 413-468.
doi: 10.1214/13-AOS1175 URL pmid: 25574062 |
[57] | Maddala, G. S. (2002). Introduction to Econometrics: 3rd Edition. John Willey and Sons Limited, England. |
[58] |
Malo, N., Libiger, O., & Schork, N. J. (2008). Accommodating linkage disequilibrium in genetic-association analyses via ridge regression. American Journal of Human Genetics, 82(2), 375-385.
doi: 10.1016/j.ajhg.2007.10.012 URL pmid: 18252218 |
[59] |
Marcus, D. K., Preszler, J., & Zeigler-Hill, V. (2017). A network of dark personality traits: What lies at the heart of darkness? Journal of Research in Personality, 73, 56-62.
doi: 10.1016/j.jrp.2017.11.003 URL |
[60] |
Mcneish, D. M. (2015). Using Lasso for predictor selection and to assuage overfitting: A method long overlooked in behavioral sciences. Multivariate Behavioral Research, 50(5), 471-484.
doi: 10.1080/00273171.2015.1036965 URL pmid: 26610247 |
[61] |
Meinshausen, N. (2007). Relaxed lasso. Computational Statistics and Data Analysis, 52(1), 374-393.
doi: 10.1016/j.csda.2006.12.019 URL |
[62] | Meinshausen, N. (2019). Relaxed Lasso. Retrieved June 01, 2019, from https://www.rdocumentation.org/packages/relaxo/versions/0.1-2 |
[63] |
Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313-335.
doi: 10.1037/a0026802 URL pmid: 22962886 |
[64] | Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus User’s Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén. |
[65] |
Nguyen, T., Duong, T., Venkatesh, S., & Phung, D. (2015). Autism blogs: Expressed emotion, language styles and concerns in personal and community settings. IEEE Transactions on Affective Computing, 6(3), 312-323.
doi: 10.1109/TAFFC.2015.2400912 URL |
[66] |
Nuzzo, R. (2014). Scientific method: Statistical errors. Nature, 506(7487), 150-152.
URL pmid: 24522584 |
[67] | Obuchi, T., & Kabashima, Y. (2016). Cross validation in lasso and its acceleration. Journal of Statistical Mechanics: Theory and Experiment, 2016(5), 1-37. |
[68] |
Pan, J. H., Ip, E. H., & Dubé, L. (2017). An alternative to post hoc model modification in confirmatory factor analysis: The Bayesian lasso. Psychological Methods, 22(4), 687-704.
doi: 10.1037/met0000112 URL pmid: 29265848 |
[69] | Pan, J. H., Zhang, L.J., & Ip, E. H. (2019). blcfa: Bayesian Lasso Confirmatory Factor Analysis. Retrieved August 30, 2019, from https://github.com/zhanglj37/blcfa |
[70] |
Park, T., & Casella, G. (2008). The bayesian lasso. Journal of the American Statistical Association, 103(482), 681-686.
doi: 10.1198/016214508000000337 URL |
[71] |
Rao, C. R. (1976). Estimation of parameters in a linear model. The Annals of Statistics, 4(6), 1023-1037.
doi: 10.1214/aos/1176343639 URL |
[72] | Richetin, J., Preti, E., Costantini, G., & De Panfilis, C. (2017). The centrality of affective instability and identity in Borderline Personality Disorder: Evidence from network analysis. PLoS One, 12(10), 1-14. |
[73] |
Rosenberg, M. D., Casey, B. J., & Holmes, A. J. (2018). Prediction complements explanation in understanding the developing brain. Nature Communications, 9(1), 1-13.
doi: 10.1038/s41467-017-02088-w URL pmid: 29317637 |
[74] |
Scheidt, C. E., Hasenburg, A., Kunze, M., Waller, E., Pfeifer, R., Zimmermann, P., … Waller, N. (2012). Are individual differences of attachment predicting bereavement outcome after perinatal loss? A prospective cohort study. Journal of Psychosomatic Research, 73(5), 375-382.
doi: 10.1016/j.jpsychores.2012.08.017 URL pmid: 23062812 |
[75] | Schmid, N. S., Taylor, K. I., Foldi, N. S., Berres, M., & Monsch, A. U. (2013). Neuropsychological signs of Alzheimer’s disease 8 years prior to diagnosis. Journal of Alzheimer’s Disease, 34(2), 537-546. |
[76] |
Serang, S., Jacobucci, R., Brimhall, K. C., & Grimm, K. J. (2017). Exploratory mediation analysis via regularization. Structural Equation Modeling: A Multidisciplinary Journal, 24(5), 733-744.
doi: 10.1080/10705511.2017.1311775 URL |
[77] |
Shi, G., Boerwinkle, E., Morrison, A. C., Gu, C. C., Chakravarti, A., & Rao, D. C. (2011). Mining gold dust under the genome wide significance level: A two-stage approach to analysis of GWAS. Genetic Epidemiology, 35(2), 111-118.
URL pmid: 21254218 |
[78] |
Spellman, B. A. (2015). A short (personal) future history of revolution 2.0. Perspectives on Psychological Science, 10(6), 886-899
URL pmid: 26581743 |
[79] |
Thompson, B. (2001). Significance, effect sizes, stepwise methods, and other issues: Strong arguments move the field. The Journal of Experimental Education, 70(1), 80-93.
doi: 10.1080/00220970109599499 URL |
[80] | Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, 58(1), 267-288. |
[81] | Tibshirani, R., Friedman, J., Hastie, T., Narasimhan, B., Simon, N., & Qian, J. (2019). glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models. Retrieved May 18, 2019, from https://www.rdocumentation.org/packages/glmnet/versions/2.0-18 |
[82] | Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., & Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistic Society. 67(1), 91-108. |
[83] |
van de Schoot, R., Winter, S. D., Ryan, O., Zondervan- Zwijnenburg, M., & Depaoli, S. (2017). A systematic review of Bayesian articles in psychology: The last 25 years. Psychological Methods, 22(2), 217-239.
URL pmid: 28594224 |
[84] | Waldmann, P., Mészáros, G., Gredler, B., Fuerst, C., & Sölkner, J. (2013). Corrigendum: evaluation of the lasso and the elastic net in genome-wide association studies. Frontiers in Genetics, 4(4), 270. |
[85] |
Wilkinson, L. (1979). Tests of significance in stepwise regression. Psychological Bulletin, 86(1), 168-174.
doi: 10.1037/0033-2909.86.1.168 URL |
[86] |
Wu, T. T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, 2(1), 224-244.
doi: 10.1214/07-AOAS147 URL |
[87] |
Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons from machine learning. Perspectives on Psychological Science A Journal of the Association for Psychological Science, 12(6), 1100-1122.
URL pmid: 28841086 |
[88] |
Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1), 49-67.
doi: 10.1111/rssb.2006.68.issue-1 URL |
[89] |
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of American Statistical Association, 101(476), 1418-1429.
doi: 10.1198/016214506000000735 URL |
[90] | Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistic Society, 67(1), 301-320. |
[91] |
Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the Lasso. The Annals of Statistics, 35(5), 2173-2192.
doi: 10.1214/009053607000000127 URL |
[1] | LU Jingyi, QIU Tian, CHEN Yuqi, FANG Qingwen, SHANG Xuesong. Inaccurate mind reading: The misprediction in conflicts and its mechanisms [J]. Advances in Psychological Science, 2022, 30(7): 1439-1447. |
[2] | FANG Jie, WEN Zhonglin. Moderation analysis and its effect size based on a two-level regression model [J]. Advances in Psychological Science, 2022, 30(5): 1183-1190. |
[3] | LI Junjiao, CHEN Wei, SHI Pei, DONG Yuanyuan, ZHENG Xifu. The function and mechanisms of prediction error in updating fear memories [J]. Advances in Psychological Science, 2022, 30(4): 834-850. |
[4] | LI Lin, ZHAO Sainan, ZHANG Lijuan, WANG Jingxin. Understanding mechanisms of prediction error cost in Chinese reading for older adults [J]. Advances in Psychological Science, 2022, 30(1): 1-14. |
[5] | ZHANG Wen, HU Na, DING Xuechen, LI Junyi. The relationship between rejection sensitivity and borderline personality features: A meta-analysis [J]. Advances in Psychological Science, 2021, 29(7): 1179-1194. |
[6] | HUANG Guanlan, ZHOU Xiaolu. The linguistic patterns of depressed patients [J]. Advances in Psychological Science, 2021, 29(5): 838-848. |
[7] | SU Yue, LIU Mingming, ZHAO Nan, LIU Xiaoqian, ZHU Tingshao. Identifying psychological indexes based on social media data: A machine learning method [J]. Advances in Psychological Science, 2021, 29(4): 571-585. |
[8] | HUANG Qi, CHEN Chunping, LUO Yuejia, WU Haiyan. The mechanism and function of curiosity [J]. Advances in Psychological Science, 2021, 29(4): 723-736. |
[9] | FANG Junyan, ZHANG Minqiang. What is the minimum number of effect sizes required in meta-regression? An estimation based on statistical power and estimation precision [J]. Advances in Psychological Science, 2020, 28(4): 673-680. |
[10] | DONG Jianyu, WEI Wenqi, WU Ke, NI Na, WANG Canfei, FU Ying, PENG Xin. The application of machine learning in depression [J]. Advances in Psychological Science, 2020, 28(2): 266-274. |
[11] | LU Xuejing, HOU Xin. Predictive coding in auditory cortex: The neural responses to sound repetition and auditory change [J]. Advances in Psychological Science, 2019, 27(12): 1996-2006. |
[12] | LI Danyang, LI Peng, LI Hong. The updated theories of feedback-related negativity in the last decade [J]. Advances in Psychological Science, 2018, 26(9): 1642-1650. |
[13] | ZHANG Xinyue, YU Lin. The early stages of Alzheimer’s disease: Subjective cognitive impairment? [J]. Advances in Psychological Science, 2018, 26(3): 488-495. |
[14] | LI Lin, LIU Wen, SUI Xue. Prediction effect during syntactic processing and experimental evidence [J]. Advances in Psychological Science, 2017, 25(7): 1122-1131. |
[15] | RAN Guang-Ming; CHEN Xu; ZHANG Xing; MA Yuan-Xiao. The neural mechanism for the superiority effect of social prediction [J]. Advances in Psychological Science, 2016, 24(5): 684-691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||