Advances in Psychological Science ›› 2026, Vol. 34 ›› Issue (3): 499-514.doi: 10.3724/SP.J.1042.2026.0499
• Regular Articles • Previous Articles Next Articles
ZHANG Qiuxia, CHEN Weihai
Received:2025-05-17
Online:2026-03-15
Published:2026-01-07
ZHANG Qiuxia, CHEN Weihai. Theta-gamma phase-amplitude coupling in the prefrontal-hippocampal- medial septal circuit: Mechanisms of cross-regional coordination and working memory regulation[J]. Advances in Psychological Science, 2026, 34(3): 499-514.
| [1] 张力新, 王发颀, 王玲, 杨佳佳, 万柏坤.(2017). 认知功能研究中神经振荡交叉节律耦合应用研究进展. 生理学报, 69(6), 805-816. https://doi.org/10.13294/j.aps.2017.0041 [2] Abad-Perez,P., Molina-Payá, F. J., Martínez-Otero, L., Borrell, V., Redondo, R. L., & Brotons-Mas, J. R.(2023). Theta/ gamma co-modulation disruption after NMDAr blockade by MK-801 is associated with spatial working memory deficits in mice. Neuroscience, 519, 162-176. https://doi.org/10.1016/j.neuroscience.2023.03.022 [3] Adams E. J., Nguyen A. T., & Cowan N. (2018). Theories of working memory: Differences in definition, degree of modularity, role of attention, and purpose. Language, Speech, and Hearing Services in Schools, 49(3), 340-355. https://doi.org/10.1044/2018_LSHSS-17-0114 [4] Alekseichuk I., Turi Z.,Amador de Lara, G., Antal, A., & Paulus, W.(2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 262016.04.035 [5] Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., & Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3228- 3233. https://doi.org/10.1073/pnas.0911531107 [6] Baddeley, A. (2003). Working memory: Looking back and looking forward. Nature Reviews. Neuroscience, 4(10), 829-839. https://doi.org/10.1038/nrn1201 [7] Barr M. S., Rajji T. K., Zomorrodi R., Radhu N., George T. P., Blumberger D. M.,& Daskalakis, Z. J.(2017). Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophrenia Research, 189, 104-110. https://doi.org/10.1016/j.schres.2017.01.044 [8] Benchenane K., Peyrache A., Khamassi M., Tierney P. L., Gioanni Y., Battaglia F. P.,& Wiener, S. I.(2010). Coherent theta oscillations and reorganization of spike timing in the hippocampal- prefrontal network upon learning. Neuron, 662010.05.013 [9] Benchenane K., Tiesinga P. H.,& Battaglia, F. P.(2011). Oscillations in the prefrontal cortex: A gateway to memory and attention. Current Opinion in Neurobiology, 212011.01.004 [10] Bonnefond M., Kastner S., & Jensen O. (2017). Communication between brain areas based on nested oscillations. eNeuro, 4(2), e0153-16.2017. https://doi.org/10.1523/ENEURO.0153-16.2017 [11] Bortz D. M., Feistritzer C. M., & Grace A. A. (2023). Medial prefrontal cortex to medial septum pathway activation improves cognitive flexibility in rats. The International Journal of Neuropsychopharmacology, 26(6), 426-437. https://doi.org/10.1093/ijnp/pyad019 [12] Buchanan S. L., Thompson R. H., Maxwell B. L., & Powell D. A. (1994). Efferent connections of the medial prefrontal cortex in the rabbit. Experimental Brain Research, 100(3), 469-483. https://doi.org/10.1007/BF02738406 [13] Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325-340. https://doi.org/10.1016/s0896-6273(02)00586-x [14] Cassaday, H. J., Nelson, A. J.D., & Pezze, M. A.(2014). From attention to memory along the dorsal-ventral axis of the medial prefrontal cortex: Some methodological considerations. Frontiers in Systems Neuroscience, 8, 160. https://doi.org/10.3389/fnsys.2014.00160 [15] Chai W. J.,Abd Hamid, A. I., & Abdullah, J. M.(2018). Working memory from the psychological and neurosciences perspectives: A review. Frontiers in Psychology, 9, 401. https://doi.org/10.3389/fpsyg.2018.00401 [16] Chaieb L., Leszczynski M., Axmacher N., Höhne M., Elger C.,E., & Fell, J.(2015). Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cognitive Neuroscience, 62015.1058254 [17] Chiba T., Kayahara T., & Nakano K. (2001). Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Research, 888(1), 83-101. https://doi.org/10.1016/s0006-8993(00)03013-4 [18] Cissé R. S., Krebs-Kraft D. L., & Parent M. B. (2008). Septal infusions of the hyperpolarization-activated cyclic nucleotide-gated channel (HCN-channel) blocker ZD7288 impair spontaneous alternation but not inhibitory avoidance. Behavioral Neuroscience, 122(3), 549-556. https://doi.org/10.1037/0735-7044.122.3.549 [19] Colgin L. L., Denninger T., Fyhn M., Hafting T., Bonnevie T., Jensen O., Moser M. -B., & Moser E. I. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353-357. https://doi.org/10.1038/nature08573 [20] Colgin, L. L., & Moser, E. I. (2010). Gamma oscillations in the hippocampus. Physiology, 25(5), 319-329. https://doi.org/10.1152/physiol.00021.2010 [21] Constantinidis, C., & Goldman-Rakic, P. S. (2002). Correlated discharges among putative pyramidal neurons and interneurons in the primate prefrontal cortex. Journal of Neurophysiology, 88(6), 3487-3497. https://doi.org/10.1152/jn.00188.2002 [22] Curtis C. E.,& Sprague, T. C.(2021). Persistent activity during working memory from front to back. Frontiers in Neural Circuits, 15, 696060. https://doi.org/10.3389/fncir.2021.696060 [23] Daume J., Kamiński J., Schjetnan A. G. P., Salimpour Y., Khan U., Kyzar M., … Rutishauser U. (2024). Control of working memory by phase-amplitude coupling of human hippocampal neurons. Nature, 629(8011), 393-401. https://doi.org/10.1038/s41586-024-07309-z [24] De Almeida L., Idiart M., & Lisman J. E. (2009). A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire. The Journal of Neuroscience, 29(23), 7497-7503. https://doi.org/10.1523/JNEUROSCI.6044-08.2009 [25] De Mooij-van Malsen, J. G., Röhrdanz, N., Buschhoff, A. -S., Schiffelholz, T., Sigurdsson, T., & Wulff, P.(2023). Task- specific oscillatory synchronization of prefrontal cortex, nucleus reuniens, and hippocampus during working memory. iScience, 262023. 107532 [26] Fernández A., Pinal D., Díaz F.,& Zurrón, M.(2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiology of Learning and Memory, 183, 107476. https://doi.org/10.1016/j.nlm.2021.107476 [27] Fries, P. (2015). Rhythms for cognition: Communication through coherence. Neuron, 88(1), 220-235. https://doi.org/10.1016/j.neuron.2015.09.034 [28] Fuster, J. M., & Alexander, G. E. (1971). Neuron activity related to short-term memory. Science, 173(3997), 652- 654. https://doi.org/10.1126/science.173.3997.652 [29] Gemzik Z. M., Donahue M. M., & Griffin A. L. (2021). Optogenetic suppression of the medial septum impairs working memory maintenance. Learning & Memory, 28(10), 361-370. https://doi.org/10.1101/lm.053348.120 [30] Gemzik, Z. M., & Griffin, A. L. (2025). Medial septal theta stimulation enhances spatial working memory performance in rats. Learning & Memory, 32(4), a054075. https://doi. org/10.1101/lm.054075.124 [31] Gregoriou G. G., Gotts S. J., Zhou H., & Desimone R. (2009). High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science, 324(5931), 1207-1210. https://doi.org/10.1126/science.1171402 [32] György, B. (2006). Rhythms of the brain (pp.136-174). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195301069.001.0001 [33] He Y., Guo W., Ren Z., Liu S.,& Ming, D.(2023). Gamma rhythm and theta-gamma coupling alternation in chronic unpredictable stress (CUS)-induced depression rats. 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2023.10340209 [34] Jensen O.,& Colgin, L. L.(2007). Cross-frequency coupling between neuronal oscillations. Trends in Cognitive Sciences, 112007.05.003 [35] Jimura K., Chushak M. S., Westbrook A., & Braver T. S. (2018). Intertemporal decision-making involves prefrontal control mechanisms associated with working memory. Cerebral Cortex, 28(4), 1105-1116. https://doi.org/10.1093/cercor/bhx015 [36] Jones K. T., Johnson E. L.,& Berryhill, M. E.(2020). Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. NeuroImage, 211, 116615. https://doi.org/10.1016/j.neuroimage.2020.116615 [37] Kim C., Kroger J. K., Calhoun V. D.,& Clark, V. P.(2015). The role of the frontopolar cortex in manipulation of integrated information in working memory. Neuroscience Letters, 595, 25-29. https://doi.org/10.1016/j.neulet.2015.03.044 [38] Király B., Domonkos A., Jelitai M., Lopes-Dos-Santos V., Martínez-Bellver S., Kocsis B., … Hangya B. (2023). The medial septum controls hippocampal supra-theta oscillations. Nature Communications, 14(1), 6159. https://doi.org/10.1038/s41467-023-41746-0 [39] Kramis R., Vanderwolf C. H., & Bland B. H. (1975). Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Experimental Neurology, 49(1), 58-85. https://doi.org/10.1016/0014-4886(75)90195-8 [40] Leung, L. S. (1998). Generation of theta and gamma rhythms in the hippocampus. Neuroscience and Biobehavioral Reviews, 22(2), 275-290. https://doi.org/10.1016/s0149-7634(97)00014-6 [41] Leutgeb S., Leutgeb J. K., Barnes C. A., Moser E. I., McNaughton B. L., & Moser M. -B. (2005). Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science, 309(5734), 619-623. https://doi.org/10.1126/science.1114037 [42] Li J., Cao D., Yu S., Xiao X., Imbach L., Stieglitz L., Sarnthein J., & Jiang T. (2023). Functional specialization and interaction in the amygdala-hippocampus circuit during working memory processing. Nature Communications, 14(1), 2921. https://doi.org/10.1038/s41467-023-38571-w [43] Li L.-B., Zhang, L., Sun, Y. -N., Han, L. -N., Wu, Z. -H., Zhang, Q. -J., & Liu, J.(2015). Activation of serotonin2A receptors in the medial septum-diagonal band of broca complex enhanced working memory in the hemiparkinsonian rats. Neuropharmacology, 91, 23-33. https://doi.org/10.1016/j.neuropharm.2014.11.025 [44] Lisman, J., & Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bulletin, 34(5), 974-980. https://doi.org/10.1093/schbul/sbn060 [45] Lisman, J. E., & Idiart, M. A. (1995). Storage of 7 +/- 2 short-term memories in oscillatory subcycles. Science, 267(5203), 1512-1515. https://doi.org/10.1126/science.7878473 [46] Lisman J. E.,& Jensen, O.(2013). The θ-γ neural code. Neuron, 77 2013.03.007 [47] Liu J., Tabisola K. M., & Morilak D. A. (2025). A projection from the medial prefrontal cortex to the lateral septum modulates coping behavior on the shock-probe test. Neuropsychopharmacology, 50(8), 1245-1255. https://doi.org/10.1038/s41386-025-02074-7 [48] López-Vázquez,M. Á., López-Loeza, E., Lajud Ávila, N., Gutiérrez-Guzmán, B. E., Hernández-Pérez, J. J., Reyes, Y. E., & Olvera-Cortés, M. E.(2014). Septal serotonin depletion in rats facilitates working memory in the radial arm maze and increases hippocampal high-frequency theta activity. European Journal of Pharmacology, 734, 105-113. https://doi.org/10.1016/j.ejphar.2014.04.005 [49] Manseau F., Danik M.,& Williams, S.(2005). A functional glutamatergic neurone network in the medial septum and diagonal band area. The Journal of Physiology, 5662005.089664 [50] Moore A. B., Li Z., Tyner C. E., Hu X., & Crosson B. (2013). Bilateral basal ganglia activity in verbal working memory. Brain and Language, 125(3), 316-323. https://doi.org/10.1016/j.bandl.2012.05.003 [51] Müller, C., & Remy, S. (2018). Septo-hippocampal interaction. Cell and Tissue Research, 373(3), 565-575. https://doi.org/10.1007/s00441-017-2745-2 [52] Murty V. P., Sambataro F., Radulescu E., Altamura M., Iudicello J., Zoltick B., … Mattay, V. S.(2011). Selective updating of working memory content modulates meso- cortico-striatal activity. NeuroImage, 572011.05.006 [53] O’Keefe, J., & Conway, D. H. (1978). Hippocampal place units in the freely moving rat: Why they fire where they fire. Experimental Brain Research, 31(4), 573-590. https://doi.org/10.1007/BF00239813 [54] O’Neill P. -K., Gordon J. A., & Sigurdsson T. (2013). Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. The Journal of Neuroscience, 33(35), 14211-14224. https://doi.org/10.1523/JNEUROSCI.2378-13.2013 [55] Pouille, F., & Scanziani, M. (2001). Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science, 293(5532), 1159-1163. https://doi.org/10.1126/science.1060342 [56] Roland J. J., Stewart A. L., Janke K. L., Gielow M. R., Kostek J. A., Savage L. M., Servatius R. J., & Pang, K. C. H. (2014). Medial septum-diagonal band of broca (MSDB) GABAergic regulation of hippocampal acetylcholine efflux is dependent on cognitive demands. The Journal of Neuroscience, 34(2), 506-514. https://doi.org/10.1523/JNEUROSCI.2352-13.2014 [57] Rose N. S., LaRocque J. J., Riggall A. C., Gosseries O., Starrett M. J., Meyering E. E., & Postle B. R. (2016). Reactivation of latent working memories with transcranial magnetic stimulation. Science, 354(6316), 1136-1139. https://doi.org/10.1126/science.aah7011 [58] Schneider M., Walter H., Moessnang C., Schäfer A., Erk S., Mohnke S., … Tost H. (2017). Altered DLPFC- hippocampus connectivity during working memory: Independent replication and disorder specificity of a putative genetic risk phenotype for schizophrenia. Schizophrenia Bulletin, 43(5), 1114-1122. https://doi.org/10.1093/schbul/sbx001 [59] Sesack S. R., Deutch A. Y., Roth R. H., & Bunney B. S. (1989). Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: An anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. The Journal of Comparative Neurology, 290(2), 213-242. https://doi.org/10.1002/cne.902900205 [60] Shirvalkar P. R., Rapp P. R., & Shapiro M. L. (2010). Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proceedings of the National Academy of Sciences of the United States of America, 107(15), 7054-7059. https://doi.org/10.1073/pnas.0911184107 [61] Singer, W. (1993). Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology, 55, 349-374. https://doi.org/10.1146/annurev.ph.55.030193.002025 [62] Solari, N., & Hangya, B. (2018). Cholinergic modulation of spatial learning, memory and navigation. The European Journal of Neuroscience, 48(5), 2199-2230. https://doi.org/10.1111/ejn.14089 [63] Spellman T., Rigotti M., Ahmari S. E., Fusi S., Gogos J. A., & Gordon J. A. (2015). Hippocampal-prefrontal input supports spatial encoding in working memory. Nature, 522(7556), 309-314. https://doi.org/10.1038/nature14445 [64] Stackman, R. W., & Walsh, T. J. (1992). Chlordiazepoxide- induced working memory impairments: Site specificity and reversal by flumazenil (RO15-1788). Behavioral and Neural Biology, 57(3), 233-243. https://doi.org/10.1016/0163-1047(92)90206-j [65] Swanson, L. W., & Cowan, W. M. (1979). The connections of the septal region in the rat. The Journal of Comparative Neurology, 186(4), 621-655. https://doi.org/10.1002/cne.901860408 [66] Takeuchi Y., Nagy A. J., Barcsai L., Li Q., Ohsawa M., Mizuseki K.,& Berényi, A.(2021). The medial septum as a potential target for treating brain disorders associated with oscillopathies. Frontiers in Neural Circuits, 15, 701080. https://doi.org/10.3389/fncir.2021.701080 [67] Tang Y., Xing Y., Sun L., Wang Z., Wang C., Yang K., … Zhao G. (2024). Transcranial alternating current stimulation for patients with mild Alzheimer’s disease (TRANSFORM- AD): A randomized controlled clinical trial. Alzheimer’s Research & Therapy, 16(1), 203. https://doi.org/10.1186/s13195-024-01570-0 [68] Tort A. B. L., Kramer M. A., Thorn C., Gibson D. J., Kubota Y., Graybiel A. M., & Kopell N. J. (2008). Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20517- 20522. https://doi.org/10.1073/pnas.0810524105 [69] Tsanov, M. (2018). Differential and complementary roles of medial and lateral septum in the orchestration of limbic oscillations and signal integration. The European Journal of Neuroscience, 48(8), 2783-2794. https://doi.org/10.1111/ejn.13746 [70] Unal G., Joshi A., Viney T. J., Kis V., & Somogyi P. (2015). Synaptic targets of medial septal projections in the hippocampus and extrahippocampal cortices of the mouse. The Journal of Neuroscience, 35(48), 15812-15826. https://doi.org/10.1523/JNEUROSCI.2639-15.2015 [71] Van Den Berg,M., Toen, D., Verhoye, M., & Keliris, G. A.(2023). Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Frontiers in Aging Neuroscience, 15, 1081058. https://doi.org/10.3389/fnagi.2023.1081058 [72] Von Der Malsburg, C. (1985). Nervous structures with dynamical links. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 89(6), 703-710. https://doi.org/10.1002/bbpc.19850890625 [73] Von Der Malsburg, C. (1994). The correlation theory of brain function. In E. Domany, J. L. van Hemmen, & K. Schulten (Eds), Models of Neural Networks: Temporal Aspects of Coding and Information Processing in Biological Systems(pp. 95-119). Springer. https://doi.org/10.1007/978-1-4612-4320-5_2 [74] Wulff P., Ponomarenko A. A., Bartos M., Korotkova T. M., Fuchs E. C., Bähner F., … Monyer H. (2009). Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3561-3566. https://doi.org/10.1073/pnas.0813176106 [75] Zhang W., Guo L., & Liu D. (2022). Concurrent interactions between prefrontal cortex and hippocampus during a spatial working memory task. Brain Structure & Function, 227(5), 1735-1755. https://doi.org/10.1007/s00429-022-02469-y [76] Zhang X., Zhong W., Brankačk J., Weyer S. W., Müller U. C., Tort A. B. L., & Draguhn A. (2016). Impaired theta- gamma coupling in APP-deficient mice. Scientific Reports, 6, 21948. https://doi.org/10.1038/srep21948 [77] Zhang Y., Cao L., Varga V., Jing M., Karadas M., Li Y., & Buzsáki G. (2021). Cholinergic suppression of hippocampal sharp-wave ripples impairs working memory. Proceedings of the National Academy of Sciences of the United States of America, 118(15), e2016432118. https://doi.org/10.1073/pnas.2016432118 [78] Zhang Y., Zhang Y., Yu H., Yang Y., Li W.,& Qian, Z.(2017). Theta-gamma coupling in hippocampus during working memory deficits induced by low frequency electromagnetic field exposure. Physiology & Behavior, 179, 135-142. https://doi.org/10.1016/j.physbeh.2017.05.033 [79] Zutshi I., Brandon M. P., Fu M. L., Donegan M. L., Leutgeb J. K.,& Leutgeb, S.(2018). Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerated oscillation frequencies. Current Biology, 282018.02.061 |
| [1] | TIAN Renxia, YANG Ping, GUO Yuanyuan, WU Xia. Treatment of autism spectrum disorder: The potential role of repetitive transcranial magnetic stimulation [J]. Advances in Psychological Science, 2025, 33(4): 598-610. |
| [2] | DENG Hu, FU Yanran, WU Gang. The effectiveness and brain region specificity of temporal interference stimulation for working memory deficits in schizophrenia and the mechanism of cross-frequency coupling [J]. Advances in Psychological Science, 2025, 33(4): 620-631. |
| [3] | FENG Pan, ZHAO Hengyue, JIANG Yumeng, ZHANG Yuetong, FENG Tingyong. Cognitive neural mechanisms underlying the impact of oxytocin on conditioned fear processing [J]. Advances in Psychological Science, 2024, 32(4): 557-567. |
| [4] | ZHOU Fan, TIAN Haoyue, JIANG Yingjie. Rapid memory consolidation: Schema-based learning and repeated reactivation [J]. Advances in Psychological Science, 2024, 32(11): 1854-1871. |
| [5] | Kaiyue Wang, Jiehui Qian. Separate Stores of Absolute and Relative Depth in VWM [J]. Advances in Psychological Science, 2023, 31(suppl.): 73-73. |
| [6] | Jiaqi Li, Ling Liu, Huan Luo. Probing Spatiotemporal Neural Dynamics of Working Memory Reactivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 74-74. |
| [7] | Suqi Huang, Yiping Ge, Li Wang, Yi Jiang. Biological Motion Cues Modulate Visual Working Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 85-85. |
| [8] | Yongyue Wang, Zhe Qu. The Influence of Dynamic Attention in Working Memory on Feature Binding [J]. Advances in Psychological Science, 2023, 31(suppl.): 91-91. |
| [9] | Mengxuan Sun, Qi Zhang. Simultaneous or Switching? Electrophysiological Measures of the Mechanism During Multiple Object Searching in Real-world Scenes [J]. Advances in Psychological Science, 2023, 31(suppl.): 92-92. |
| [10] | Shirong Wu, Zhe Qu. The Occurrence of Attentional White Bear Is Not Influenced by the Probe Task [J]. Advances in Psychological Science, 2023, 31(suppl.): 99-99. |
| [11] | Wanru Li, Jia Yang, Pinglei Bao. The Neural Basis of Visual Working Memory of Real-World Object [J]. Advances in Psychological Science, 2023, 31(suppl.): 102-102. |
| [12] | Yuanxiu Zhao, Yang Guo, Wenmin Li, Yuxuan Luo, Qikai Zhang, Mowei Shen. Cortical-layer Interplay Affects Working Memory-Perception Interaction: Evidence from Working Memory Load Impairing Visual Detection [J]. Advances in Psychological Science, 2023, 31(suppl.): 103-103. |
| [13] | Ye Xie, Tinghao Zhao, Wei Zhang, Yunxia Li, Yixuan Ku. Hippocampal Deterioration and Frontal Compensation of Amnestic Mild Cognitive Impairment in Visual Short-term Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 105-105. |
| [14] | Yanming Wang, Huan Wang, Benedictor Alexander Nguchu, Du Zhang, Xiaoxiao Wang, Bensheng Qiu. Population Receptive Field and Top-down Information Transmission Properties in Sub-bundles of the Human Optic Radiation [J]. Advances in Psychological Science, 2023, 31(suppl.): 151-151. |
| [15] | Gantian Huang, Longqian Liu, Ping Jiang. fMRI Study of Implicit Emotion Processing and Regulation Under High Working Memory Load Situations [J]. Advances in Psychological Science, 2023, 31(suppl.): 12-12. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||