Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 620-631.doi: 10.3724/SP.J.1042.2025.0620
• Conceptual Framework • Previous Articles Next Articles
DENG Hu1(), FU Yanran1, WU Gang2(
)
Received:
2024-10-24
Online:
2025-04-15
Published:
2025-03-05
Contact:
DENG Hu, WU Gang
E-mail:denghu501@163.com;738446124@qq.com
CLC Number:
DENG Hu, FU Yanran, WU Gang. The effectiveness and brain region specificity of temporal interference stimulation for working memory deficits in schizophrenia and the mechanism of cross-frequency coupling[J]. Advances in Psychological Science, 2025, 33(4): 620-631.
[1] | Abubaker, M., Al Qasem, W., & Kvašňák, E. (2021). Working memory and cross-frequency coupling of neuronal oscillations. Frontiers in Psychology, 12, 756661. |
[2] |
Adaikkan, C., & Tsai, L. H. (2020). Gamma entrainment: Impact on neurocircuits, glia, and therapeutic opportunities. Trends in Neurosciences, 43(1), 24-41.
doi: S0166-2236(19)30202-4 pmid: 31836315 |
[3] |
Adams, R. A., Bush, D., Zheng, F., Meyer, S. S., Kaplan, R., Orfanos, S., ... Burgess, N. (2020). Impaired theta phase coupling underlies frontotemporal dysconnectivity in schizophrenia. Brain, 143(4), 1261-1277.
doi: 10.1093/brain/awaa035 pmid: 32236540 |
[4] |
Alekseichuk, I., Turi, Z., Amador de Lara, G., Antal, A., & Paulus, W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Current Biology, 26(12), 1513-1521.
doi: S0960-9822(16)30358-X pmid: 27238283 |
[5] |
Aleman, A., Hijman, R., de Haan, E. H., & Kahn, R. S. (1999). Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry, 156(9), 1358-1366.
doi: 10.1176/ajp.156.9.1358 pmid: 10484945 |
[6] |
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
doi: 10.1126/science.1736359 pmid: 1736359 |
[7] |
Barr, M. S., Rajji, T. K., Zomorrodi, R., Radhu, N., George, T. P., Blumberger, D. M., & Daskalakis, Z. J. (2017). Impaired theta-gamma coupling during working memory performance in schizophrenia. Schizophrenia Research, 189, 104-110.
doi: S0920-9964(17)30057-9 pmid: 28148460 |
[8] |
Bender, M., Romei, V., & Sauseng, P. (2019). Slow theta tACS of the right parietal cortex enhances contralateral visual working memory capacity. Brain Topography, 32(3), 477-481.
doi: 10.1007/s10548-019-00702-2 pmid: 30694422 |
[9] | Booth, S. J., Taylor, J. R., Brown, L. J. E., & Pobric, G. (2022). The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex, 147, 112-139. |
[10] |
Brzezicka, A., Kamiński, J., Reed, C. M., Chung, J. M., Mamelak, A. N., & Rutishauser, U. (2019). Working memory load- related theta power decreases in dorsolateral prefrontal cortex predict individual differences in performance. Journal of Cognitive Neuroscience, 31(9), 1290-1307.
doi: 10.1162/jocn_a_01417 pmid: 31037988 |
[11] | Cao, J. M., & Grover, P. (2019). Stimulus: Noninvasive dynamic patterns of neurostimulation using spatio-temporal interference. IEEE Transactions on Biomedical Engineering, 67(3), 726-737. |
[12] |
Chander, B. S., Witkowski, M., Braun, C., Robinson, S. E., Born, J., Cohen, L. G., ... Soekadar, S. R. (2016). tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Frontiers in Cellular Neuroscience, 10, 120.
doi: 10.3389/fncel.2016.00120 pmid: 27199669 |
[13] |
Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., & Haynes, J. D. (2017). The distributed nature of working memory. Trends in Cognitive Sciences, 21(2), 111-124.
doi: S1364-6613(16)30217-0 pmid: 28063661 |
[14] | Collavini, S., Fernández-Corazza, M., Oddo, S., Princich, J. P., Kochen, S., & Muravchik, C. H. (2021). Improvements on spatial coverage and focality of deep brain stimulation in pre-surgical epilepsy mapping. Journal of Neural Engineering, 18(4), 046004. |
[15] | Daniel, T. A., Katz, J. S., & Robinson, J. L. (2016). Delayed match-to-sample in working memory: A BrainMap meta- analysis. Biological Psychology, 120, 10-20. |
[16] |
Deserno, L., Sterzer, P., Wüstenberg, T., Heinz, A., & Schlagenhauf, F. (2012). Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. Journal of Neuroscience, 32(1), 12-20.
doi: 10.1523/JNEUROSCI.3405-11.2012 pmid: 22219266 |
[17] |
Elyamany, O., Leicht, G., Herrmann, C. S., & Mulert, C. (2021). Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. European Archives of Psychiatry and Clinical Neuroscience, 271(1), 135-156.
doi: 10.1007/s00406-020-01209-9 pmid: 33211157 |
[18] |
Fang, X. J., Wang, Y. L., Cheng, L. Q., Zhang, Y. C., Zhou, Y., Wu, S. H., ... Jiang, T. Z. (2018). Prefrontal dysconnectivity links to working memory deficit in first-episode schizophrenia. Brain Imaging and Behavior, 12(2), 335-344.
doi: 10.1007/s11682-017-9692-0 pmid: 28290073 |
[19] |
Fryer, S. L., Roach, B. J., Ford, J. M., Turner, J. A., van Erp, T. G., Voyvodic, J., ... Mathalon, D. H. (2015). Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology, 40(12), 2705-2714.
doi: 10.1038/npp.2015.119 pmid: 25944410 |
[20] |
Griesmayr, B., Gruber, W. R., Klimesch, W., & Sauseng, P. (2010). Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiology of Learning and Memory, 93(2), 208-215.
doi: 10.1016/j.nlm.2009.09.013 pmid: 19808098 |
[21] |
Grossman, N., Bono, D., Dedic, N., Kodandaramaiah, S. B., Rudenko, A., Suk, H. J., ... Boyden, E. S. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169(6), 1029-1041.
doi: S0092-8674(17)30584-6 pmid: 28575667 |
[22] |
Grossman, N., Okun, M. S., & Boyden, E. S. (2018). Translating Temporal interference brain stimulation to treat neurological and psychiatric conditions. JAMA Neurology, 75(11), 1307-1308.
doi: 10.1001/jamaneurol.2018.2760 pmid: 30264149 |
[23] |
Grover, S., Wen, W., Viswanathan, V., Gill, C. T., & Reinhart, R. M. G. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nature Neuroscience, 25(9), 1237-1246.
doi: 10.1038/s41593-022-01132-3 pmid: 35995877 |
[24] | Guo, W., He, Y., Zhang, W., Sun, Y., Wang, J., Liu, S., & Ming, D. (2023). A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Frontiers in Neuroscience, 17, 1092539. |
[25] |
Hahn, B., Robinson, B. M., Leonard, C. J., Luck, S. J., & Gold, J. M. (2018). Posterior parietal cortex dysfunction is central to working memory storage and broad cognitive deficits in schizophrenia. Journal of Neuroscience, 38(39), 8378-8387.
doi: 10.1523/JNEUROSCI.0913-18.2018 pmid: 30104335 |
[26] | Hasselmo, M. E., & Stern, C. E. (2014). Theta rhythm and the encoding and retrieval of space and time. Neuroimage, 85, 656-666. |
[27] |
Herweg, N. A., Solomon, E. A., & Kahana, M. J. (2020). Theta oscillations in human memory. Trends in Cognitive Sciences, 24(3), 208-227.
doi: S1364-6613(19)30294-3 pmid: 32029359 |
[28] | Howell, B., & McIntyre, C. C. (2021). Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale. Neuromodulation: Technology at the Neural Interface, 24(5), 843-853. |
[29] | Hoy, K. E., Whitty, D., Bailey, N., & Fitzgerald, P. B. (2016). Preliminary investigation of the effects of aγ-tACS on working memory in schizophrenia. Journal of Neural Transmission, 123(10), 1205-1212. |
[30] |
Huang, Y. Q., Wang, Y., Wang, H., Liu, Z. R., Yu, X., Yan, J., ... Wu, Y. (2019). Prevalence of mental disorders in China: A cross-sectional epidemiological study. Lancet Psychiatry, 6(3), 211-224.
doi: S2215-0366(18)30511-X pmid: 30792114 |
[31] |
Jaušovec, N., & Jaušovec, K. (2014). Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biological Psychology, 96, 42-47.
doi: 10.1016/j.biopsycho.2013.11.006 pmid: 24291565 |
[32] |
Jaušovec, N., Jaušovec, K., & Pahor, A. (2014). The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychologica, 146, 1-6.
doi: 10.1016/j.actpsy.2013.11.011 pmid: 24361739 |
[33] |
Kochunov, P., Huang, J., Chen, S., Li, Y., Tan, S., Fan, F., ... Hong, L. E. (2019). White matter in schizophrenia treatment resistance. American Journal of Psychiatry, 176(10), 829-838.
doi: 10.1176/appi.ajp.2019.18101212 pmid: 31352812 |
[34] | Lisman, J. (2010). Working memory: The importance of theta and gamma oscillations. Current Biology, 20(11), R490-492. |
[35] |
Lisman, J., & Buzsáki, G. (2008). A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophrenia Bulletin, 34(5), 974-980.
doi: 10.1093/schbul/sbn060 pmid: 18559405 |
[36] |
Lisman, J. E., & Jensen, O. (2013). The theta-gamma neural code. Neuron, 77(6), 1002-1016.
doi: 10.1016/j.neuron.2013.03.007 pmid: 23522038 |
[37] | Liu, L., Deng, H., Tang, X., Lu, Y., Zhou, J., Wang, X., ... Shi, Y. (2021). Specific electromagnetic radiation in the wireless signal range increases wakefulness in mice. Proceedings of the National Academy of Sciences, 118(31), e2105838118. |
[38] |
Liu, S. F., Wang, H. Y., Song, M., Lv, L. X., Cui, Y., Liu, Y., ... Sui, J. (2019). Linked 4-way multimodal brain differences in schizophrenia in a large Chinese Han population. Schizophrenia Bulletin, 45(2), 436-449.
doi: 10.1093/schbul/sby045 pmid: 29897555 |
[39] | Lynn, P. A., & Sponheim, S. R. (2016). Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia. Neuropsychiatric Electrophysiology, 2(7), 1-30. |
[40] | Ma, R., Xia, X., Zhang, W., Lu, Z., Wu, Q., Cui, J., ... Zhang, X. (2021). High gamma and beta temporal interference stimulation in the human motor cortex improves motor functions. Frontiers in Neuroscience, 15, 800436. |
[41] |
Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811-822.
doi: 10.1001/archgenpsychiatry.2009.91 pmid: 19652121 |
[42] |
Mirzakhalili, E., Barra, B., Capogrosso, M., & Lempka, S. F. (2020). Biophysics of temporal interference stimulation. Cell Systems, 11(6), 557-572.
doi: 10.1016/j.cels.2020.10.004 pmid: 33157010 |
[43] | Moran, L. V., & Hong, L. E. (2011). High vs low frequency neural oscillations in schizophrenia. Schizophrenia Bulletin, 37(4), 659-663. |
[44] |
Nazeri, A., Mulsant, B. H., Rajji, T. K., Levesque, M. L., Pipitone, J., Stefanik, L., ... Voineskos, A. N. (2017). Gray matter neuritic microstructure deficits in schizophrenia and bipolar disorder. Biological Psychiatry, 82(10), 726-736.
doi: S0006-3223(16)33066-9 pmid: 28073491 |
[45] | Pahor, A., & Jaušovec, N. (2018). The effects of theta and gamma tACS on working memory and electrophysiology. Frontiers in Human Neuroscience, 11, 651. |
[46] |
Palva, S., & Palva, J. M. (2011). Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Frontiers in Psychology, 2, 204.
doi: 10.3389/fpsyg.2011.00204 pmid: 21922012 |
[47] | Piao, Y., Ma, R., Weng, Y., Fan, C., Xia, X., Zhang, W., ... Zhang, X. (2022). Safety evaluation of employing temporal interference transcranial alternating current stimulation in human studies. Brain Sciences, 12(9), 1194. |
[48] | Pignatelli, M., Beyeler, A., & Leinekugel, X. (2012). Neural circuits underlying the generation of theta oscillations. Journal of Physiology-Paris, 106(3-4), 81-92. |
[49] | Rampersad, S., Roig-Solvas, B., Yarossi, M., Kulkarni, P. P., Santarnecchi, E., Dorval, A. D., & Brooks, D. H. (2019). Prospects for transcranial temporal interference stimulation in humans: A computational study. Neuroimage, 202, 116124. |
[50] |
Reinhart, R. M. G., & Nguyen, J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820-827.
doi: 10.1038/s41593-019-0371-x pmid: 30962628 |
[51] | Sauseng, P., Griesmayr, B., Freunberger, R., & Klimesch, W. (2010). Control mechanisms in working memory: A possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022. |
[52] |
Senkowski, D., & Gallinat, J. (2015). Dysfunctional prefrontal gamma-band oscillations reflect working memory and other cognitive deficits in schizophrenia. Biological Psychiatry, 77(12), 1010-1019.
doi: 10.1016/j.biopsych.2015.02.034 pmid: 25847179 |
[53] | Smucny, J., Dienel, S. J., Lewis, D. A., & Carter, C. S. (2022). Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology, 47(1), 292-308. |
[54] | Song, X., Zhao, X., Li, X., Liu, S., & Ming, D. (2021). Multi-channel transcranial temporally interfering stimulation (tTIS): Application to living mice brain. Journal of Neural Engineering, 18(3), 036003. |
[55] |
Sreeraj, V. S., Shanbhag, V., Nawani, H., Shivakumar, V., Damodharan, D., Bose, A., ... Venkatasubramanian, G. (2017). Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian Journal of Psychological Medicine, 39(1), 92-95.
doi: 10.4103/0253-7176.198937 pmid: 28250567 |
[56] | Sreeraj, V. S., Shivakumar, V., Sowmya, S., Bose, A., Nawani, H., Narayanaswamy, J. C., & Venkatasubramanian, G. (2019). Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: A case report and review of literature. The Journal of ECT, 35(2), 139-143. |
[57] | Stoupis, D., & Samaras, T. (2022). Non-invasive stimulation with temporal interference: Optimization of the electric field deep in the brain with the use of a genetic algorithm. Journal of Neural Engineering, 19(5), 056018. |
[58] |
Tavakoli, A. V., & Yun, K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience, 11, 214.
doi: 10.3389/fncel.2017.00214 pmid: 28928634 |
[59] |
Uhlhaas, P. J., & Singer, W. (2010). Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuroscience, 11(2), 100-113.
doi: 10.1038/nrn2774 pmid: 20087360 |
[60] |
Van Snellenberg, J. X., Girgis, R. R., Horga, G., van de Giessen, E., Slifstein, M., Ojeil, N., ... Abi-Dargham, A. (2016). Mechanisms of working memory impairment in schizophrenia. Biological Psychiatry, 80(8), 617-626.
doi: 10.1016/j.biopsych.2016.02.017 pmid: 27056754 |
[61] |
Vassiliadis, P., Beanato, E., Popa, T., Windel, F., Morishita, T., Neufeld, E., ... Hummel, F. C. (2024). Non-invasive stimulation of the human striatum disrupts reinforcement learning of motor skills. Nature Human Behaviour, 8(8), 1581-1598.
doi: 10.1038/s41562-024-01901-z pmid: 38811696 |
[62] |
Violante, I. R., Alania, K., Cassarà, A. M., Neufeld, E., Acerbo, E., Carron, R., ... Grossman, N. (2023). Non- invasive temporal interference electrical stimulation of the human hippocampus. Nature Neuroscience, 26(11), 1994-2004.
doi: 10.1038/s41593-023-01456-8 pmid: 37857775 |
[63] | Vogel, P., Hahn, J., Duvarci, S., & Sigurdsson, T. (2022). Prefrontal pyramidal neurons are critical for all phases of working memory. Cell Reports, 39(2), 110659. |
[64] |
Vosskuhl, J., Huster, R. J., & Herrmann, C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Frontiers in Human Neuroscience, 9, 257.
doi: 10.3389/fnhum.2015.00257 pmid: 26005411 |
[65] |
Wang, C., Deng, H., & Kuang, S. (2021). Restoring Vision Naturally and Noninvasively. Neuroscience Bulletin, 37(11), 1642-1644.
doi: 10.1007/s12264-021-00760-2 pmid: 34383235 |
[66] |
Wang, X., Cheng, B., Roberts, N., Wang, S., Luo, Y., Tian, F., & Yue, S. (2021). Shared and distinct brain fMRI response during performance of working memory tasks in adult patients with schizophrenia and major depressive disorder. Human Brain Mapping, 42(16), 5458-5476.
doi: 10.1002/hbm.25618 pmid: 34431584 |
[67] |
Wheeler, A. L., Chakravarty, M. M., Lerch, J. P., Pipitone, J., Daskalakis, Z. J., Rajji, T. K., ... Voineskos, A. N. (2014). Disrupted prefrontal interhemispheric structural coupling in schizophrenia related to working memory performance. Schizophrenia Bulletin, 40(4), 914-924.
doi: 10.1093/schbul/sbt100 pmid: 23873858 |
[68] | Wolinski, N., Cooper, N. R., Sauseng, P., & Romei, V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biology, 16(3), e2005348. |
[69] |
Wu, D., & Jiang, T. (2020). Schizophrenia-related abnormalities in the triple network: A meta-analysis of working memory studies. Brain Imaging and Behavior, 14(4), 971-980.
doi: 10.1007/s11682-019-00071-1 pmid: 30820860 |
[70] | Zhang, Y., Zhou, Z., Zhou, J., Qian, Z., Lü, J., Li, L., & Liu, Y. (2022). Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Frontiers in Human Neuroscience, 16, 918470. |
[71] | Zhu, Z., Xiong, Y., Chen, Y., Jiang, Y., Qian, Z., Lu, J., ... Zhuang, J. (2022). Temporal interference (TI) stimulation boosts functional connectivity in human motor cortex: A comparison study with transcranial direct current stimulation (tDCS). Neural Plasticity, 2022(1), 7605046. |
[1] | Kaiyue Wang, Jiehui Qian. Separate Stores of Absolute and Relative Depth in VWM [J]. Advances in Psychological Science, 2023, 31(suppl.): 73-73. |
[2] | Jiaqi Li, Ling Liu, Huan Luo. Probing Spatiotemporal Neural Dynamics of Working Memory Reactivation [J]. Advances in Psychological Science, 2023, 31(suppl.): 74-74. |
[3] | Suqi Huang, Yiping Ge, Li Wang, Yi Jiang. Biological Motion Cues Modulate Visual Working Memory [J]. Advances in Psychological Science, 2023, 31(suppl.): 85-85. |
[4] | Yongyue Wang, Zhe Qu. The Influence of Dynamic Attention in Working Memory on Feature Binding [J]. Advances in Psychological Science, 2023, 31(suppl.): 91-91. |
[5] | Mengxuan Sun, Qi Zhang. Simultaneous or Switching? Electrophysiological Measures of the Mechanism During Multiple Object Searching in Real-world Scenes [J]. Advances in Psychological Science, 2023, 31(suppl.): 92-92. |
[6] | Shirong Wu, Zhe Qu. The Occurrence of Attentional White Bear Is Not Influenced by the Probe Task [J]. Advances in Psychological Science, 2023, 31(suppl.): 99-99. |
[7] | Wanru Li, Jia Yang, Pinglei Bao. The Neural Basis of Visual Working Memory of Real-World Object [J]. Advances in Psychological Science, 2023, 31(suppl.): 102-102. |
[8] | Yuanxiu Zhao, Yang Guo, Wenmin Li, Yuxuan Luo, Qikai Zhang, Mowei Shen. Cortical-layer Interplay Affects Working Memory-Perception Interaction: Evidence from Working Memory Load Impairing Visual Detection [J]. Advances in Psychological Science, 2023, 31(suppl.): 103-103. |
[9] | Yanming Wang, Huan Wang, Benedictor Alexander Nguchu, Du Zhang, Xiaoxiao Wang, Bensheng Qiu. Population Receptive Field and Top-down Information Transmission Properties in Sub-bundles of the Human Optic Radiation [J]. Advances in Psychological Science, 2023, 31(suppl.): 151-151. |
[10] | Gantian Huang, Longqian Liu, Ping Jiang. fMRI Study of Implicit Emotion Processing and Regulation Under High Working Memory Load Situations [J]. Advances in Psychological Science, 2023, 31(suppl.): 12-12. |
[11] | LIU Yong, CHEN Hong. Neural mechanism of food-related working memory in individuals with overweight/obesity and related intervention [J]. Advances in Psychological Science, 2023, 31(10): 1775-1784. |
[12] | ZHOU Zhenyou, KONG Li, CHAN Raymond. The relationship between gut microbiota and brain imaging and clinical manifestation in schizophrenia [J]. Advances in Psychological Science, 2022, 30(8): 1856-1869. |
[13] | WANG Xinlin, QIU Xiaoyue, WENG Xuchu, YANG Ping. Modulating working memory related-oscillation via entrainment of neural oscillation [J]. Advances in Psychological Science, 2022, 30(4): 802-816. |
[14] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[15] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 163
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||