Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 598-610.doi: 10.3724/SP.J.1042.2025.0598
• Neuropsychological Mechanisms of Autism from a Multidisciplinary Perspective: A Special Column • Previous Articles Next Articles
TIAN Renxia1, YANG Ping1(), GUO Yuanyuan1, WU Xia2
Received:
2023-05-08
Online:
2025-04-15
Published:
2025-03-05
Contact:
YANG Ping
E-mail:yangp@m.scnu.edu.cn
CLC Number:
TIAN Renxia, YANG Ping, GUO Yuanyuan, WU Xia. Treatment of autism spectrum disorder: The potential role of repetitive transcranial magnetic stimulation[J]. Advances in Psychological Science, 2025, 33(4): 598-610.
来源 | ASD人口学资料 | rTMS干预参数 | 结果评估 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本/男 | 岁数 | 智力 | 靶点 | 频率 | 强度 | 脉冲 | 刺激疗程 | 量表 | 得分 | 随访 | |
Gómez et al., | 24/- | 12.2 | - | 左侧dlPFC (F3) | 1 Hz | 90%RMT | 1500 | 1次/天, 共20次 | ADI-R | 下降*** | 6月效果持续 |
ABC | 下降*** | ||||||||||
ATEC | 下降*** | ||||||||||
吴野 等, | 48/36 | 4.1 | - | 左侧dlPFC (F3) | 10 Hz | 100%AMT | - | 1次/天, 共60次 | ABC | 101.88 to 89.64*** | - |
CARS | 38.16 to 30.96** | ||||||||||
DQ | 59.04 to 65.8** | ||||||||||
Sokhadze et al., | 27/21 | 12.5 | >80 | 双侧dlPFC (F3、F4) | 0.5 Hz | 90% RMT | 160 | 1次/周, 共18周 | ABC | 下降* | - |
RBS-R | 下降* | ||||||||||
SRS-2 | 下降*** | ||||||||||
Kang et al., | 16/13 | 7.8 | - | 双侧dlPFC (5 cm) | 1Hz | 90%MT | 180 | 2次/周, 共18次 | ABC | 下降** | - |
ABC-社交 | 下降** | ||||||||||
Casanova, Shaban, et al., | 19/14 | 14.4 | >80 | 双侧dlPFC (5 cm) | 1 Hz | 90%MT | 180 | 1次/周, 共18周 | RBS-R | 23.74 to 5.21* | - |
RBS-刻板 | 5.53 to 3.26* | ||||||||||
RBS-强迫 | 3.95 to 2* | ||||||||||
ABC-易怒 | 11.74 to 6.63* | ||||||||||
ABC-多动 | 17.47 to 8.79* | ||||||||||
ABC-社交 | 7.89 to 5.89ns | ||||||||||
Sokhadze et al., | 106/87 | 13.1 | >80 | 双侧dlPFC (5 cm) | 1 Hz | 90%MT | 180 | 1次/周, 共6/12/18周 | RBS-R | 26.5 to 14.6* | - |
RBS-仪式 | 9.61 to 5.55* | ||||||||||
RBS-刻板 | 5.71 to 2.73* | ||||||||||
ABC-社交 | 11.5 to 6.42* | ||||||||||
ABC-易怒 | 12.39 to 6.38* | ||||||||||
ABC-多动 | 18.09 to 10.75* | ||||||||||
Abujadi et al., 2018 | 10/- | 13 | ≥50 | 右侧dlPFC (T1) | iTBS | 100%MT | 900 | 5次/周, 共3周 | RBS-R | 27.4 to 13.3** to 12.2** | 5月效果持续 |
YBOCS | 11.8 to 8.5* to 6.6* | ||||||||||
WCST | 0.30 to 0.23* to 0.15* | ||||||||||
Stroop | 97.3 to 17.33** to 78.67 | ||||||||||
李梦青 等, | 60 | 5 | ≥70 | 双侧dlPFC | 1 Hz | 90%MT | 400 | 5次/周, 共12周 | RBS-R | 8.40 to 6.87* | - |
ABC | 53 to 43.2* | ||||||||||
Ni et al., | 73 | 8~17 | >70 | 双侧pSTS | iTBS | 80%AMT | 600 | 2次/周, 4/8/12周 | RBS-R | 32.2 to 24.3*** | - |
SRS | 107.3 to 97.2*** | ||||||||||
Yang et al., Jiang et al., | 24/3 | 8.04 | - | 左侧IPL (P3) | 15 Hz | 50%机器强度 | 375 | 5次/周, 共3周 | RBS-R | 25.63 to 19.71* to 20.96* | 4周效果持续 |
SRS | 107.8 to 100.6* to 102.29* | ||||||||||
ATEC-社交 | 20.88 to 16.92* to 17.79* | ||||||||||
ATEC-语言 | 12.13 to 10.29* to 11.58 | ||||||||||
Yang et al., | 11/7 | 3~12 | <70 | 左侧IPL (P3) | 20 Hz | 50%机器强度 | 500 | 5次/周, 共3周 | ATEC-社交 | 19.8 to 13.6 to 12.2* | 6周持续 |
ATEC-语言 | 16.1 to 12.1 to 9.8* |
来源 | ASD人口学资料 | rTMS干预参数 | 结果评估 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
样本/男 | 岁数 | 智力 | 靶点 | 频率 | 强度 | 脉冲 | 刺激疗程 | 量表 | 得分 | 随访 | |
Gómez et al., | 24/- | 12.2 | - | 左侧dlPFC (F3) | 1 Hz | 90%RMT | 1500 | 1次/天, 共20次 | ADI-R | 下降*** | 6月效果持续 |
ABC | 下降*** | ||||||||||
ATEC | 下降*** | ||||||||||
吴野 等, | 48/36 | 4.1 | - | 左侧dlPFC (F3) | 10 Hz | 100%AMT | - | 1次/天, 共60次 | ABC | 101.88 to 89.64*** | - |
CARS | 38.16 to 30.96** | ||||||||||
DQ | 59.04 to 65.8** | ||||||||||
Sokhadze et al., | 27/21 | 12.5 | >80 | 双侧dlPFC (F3、F4) | 0.5 Hz | 90% RMT | 160 | 1次/周, 共18周 | ABC | 下降* | - |
RBS-R | 下降* | ||||||||||
SRS-2 | 下降*** | ||||||||||
Kang et al., | 16/13 | 7.8 | - | 双侧dlPFC (5 cm) | 1Hz | 90%MT | 180 | 2次/周, 共18次 | ABC | 下降** | - |
ABC-社交 | 下降** | ||||||||||
Casanova, Shaban, et al., | 19/14 | 14.4 | >80 | 双侧dlPFC (5 cm) | 1 Hz | 90%MT | 180 | 1次/周, 共18周 | RBS-R | 23.74 to 5.21* | - |
RBS-刻板 | 5.53 to 3.26* | ||||||||||
RBS-强迫 | 3.95 to 2* | ||||||||||
ABC-易怒 | 11.74 to 6.63* | ||||||||||
ABC-多动 | 17.47 to 8.79* | ||||||||||
ABC-社交 | 7.89 to 5.89ns | ||||||||||
Sokhadze et al., | 106/87 | 13.1 | >80 | 双侧dlPFC (5 cm) | 1 Hz | 90%MT | 180 | 1次/周, 共6/12/18周 | RBS-R | 26.5 to 14.6* | - |
RBS-仪式 | 9.61 to 5.55* | ||||||||||
RBS-刻板 | 5.71 to 2.73* | ||||||||||
ABC-社交 | 11.5 to 6.42* | ||||||||||
ABC-易怒 | 12.39 to 6.38* | ||||||||||
ABC-多动 | 18.09 to 10.75* | ||||||||||
Abujadi et al., 2018 | 10/- | 13 | ≥50 | 右侧dlPFC (T1) | iTBS | 100%MT | 900 | 5次/周, 共3周 | RBS-R | 27.4 to 13.3** to 12.2** | 5月效果持续 |
YBOCS | 11.8 to 8.5* to 6.6* | ||||||||||
WCST | 0.30 to 0.23* to 0.15* | ||||||||||
Stroop | 97.3 to 17.33** to 78.67 | ||||||||||
李梦青 等, | 60 | 5 | ≥70 | 双侧dlPFC | 1 Hz | 90%MT | 400 | 5次/周, 共12周 | RBS-R | 8.40 to 6.87* | - |
ABC | 53 to 43.2* | ||||||||||
Ni et al., | 73 | 8~17 | >70 | 双侧pSTS | iTBS | 80%AMT | 600 | 2次/周, 4/8/12周 | RBS-R | 32.2 to 24.3*** | - |
SRS | 107.3 to 97.2*** | ||||||||||
Yang et al., Jiang et al., | 24/3 | 8.04 | - | 左侧IPL (P3) | 15 Hz | 50%机器强度 | 375 | 5次/周, 共3周 | RBS-R | 25.63 to 19.71* to 20.96* | 4周效果持续 |
SRS | 107.8 to 100.6* to 102.29* | ||||||||||
ATEC-社交 | 20.88 to 16.92* to 17.79* | ||||||||||
ATEC-语言 | 12.13 to 10.29* to 11.58 | ||||||||||
Yang et al., | 11/7 | 3~12 | <70 | 左侧IPL (P3) | 20 Hz | 50%机器强度 | 500 | 5次/周, 共3周 | ATEC-社交 | 19.8 to 13.6 to 12.2* | 6周持续 |
ATEC-语言 | 16.1 to 12.1 to 9.8* |
[1] | 李梦青, 姜志梅, 李雪梅, 郭岚敏. (2018). rTMS结合脑电生物反馈对孤独症谱系障碍儿童刻板行为的疗效. 中国康复, 33(2), 114-117. |
[2] | 吴野, 李新剑, 金鑫, 杨忠秀, 李之林, 吴洁, 武改, 李杰. (2016). 高频经颅磁刺激背外侧前额叶联合康复训练对孤独症谱系障碍儿童的治疗作用. 中国医药导报, 13(27), 119-122. |
[3] |
Abbott, A. E., Linke, A. C., Nair, A., Jahedi, A., Alba, L. A., Keown, C. L., Fishman, I., & Müller, R. A. (2018). Repetitive behaviors in autism are linked to imbalance of corticostriatal connectivity: A functional connectivity MRI study. Social Cognitive and Affective Neuroscience, 13(1), 32-42. https://doi.org/10.1093/scan/nsx129
doi: 10.1093/scan/nsx129 URL pmid: 29177509 |
[4] |
Abujadi, C., Croarkin, P. E., Bellini, B., Brentani, H., & Marcolin, M. (2018). Intermittent theta-burst transcranial magnetic stimulation for autism spectrum disorder: An open-label pilot study. Revista Brasileira de Psiquiatria, 40(3), 309-311. https://doi.org/10.1590/1516-4446-2017-2279
doi: S1516-44462018000300309 URL pmid: 29236921 |
[5] | Ahmad, N., Zorns, S., Chavarria, K., Brenya, J., Janowska, A., & Keenan, J. P. (2021). Are we right about the right tpj? A review of brain stimulation and social cognition in the right temporal parietal junction. Symmetry, 13(11), 2219. https://doi.org/10.3390/sym13112219 |
[6] |
Ameis, S. H., Blumberger, D. M., Croarkin, P. E., Mabbott, D. J., Lai, M. C., Desarkar, P., Szatmari, P., & Daskalakis, Z. J. (2020). Treatment of executive function deficits in autism spectrum disorder with repetitive transcranial magnetic stimulation: A double-blind, sham-controlled, pilot trial. Brain Stimulation, 13(3), 539-547. https://doi.org/10.1016/j.brs.2020.01.007
doi: S1935-861X(20)30007-3 URL pmid: 32289673 |
[7] | Barahona-Corrêa, J. B., Velosa, A., Chainho, A., Lopes, R., & Oliveira-Maia, A. J. (2018). Repetitive transcranial magnetic stimulation for treatment of autism spectrum disorder: A systematic review and meta-analysis. Frontiers in Integrative Neuroscience, 12, 27. https://doi.org/10.3389/fnint.2018.00027 |
[8] | Baruth, J. M., Casanova, M. F., El-Baz, A., Horrell, T., Mathai, G., Sears, L., & Sokhadze, E. (2010). Low- frequency repetitive transcranial magnetic stimulation (rTMS) modulates evoked-gamma frequency oscillations in autism spectrum disorder. Journal of Neurotherapy, 14(3), 179-194. https://doi.org/10.1080/10874208.2010.501500 |
[9] | Casanova, M. F., Shaban, M., Ghazal, M., El-Baz, A. S., Casanova, E. L., Opris, I., & Sokhadze, E. M. (2020). Effects of transcranial magnetic stimulation therapy on evoked and induced gamma oscillations in children with autism spectrum disorder. Brain Sciences, 10(7), 423. https://doi.org/10.3390/brainsci10070423 |
[10] | Casanova, M. F., Sokhadze, E. M., Casanova, E. L., & Li, X. (2020). Transcranial magnetic stimulation in autism spectrum disorders: Neuropathological underpinnings and clinical correlations. Seminars in Pediatric Neurology, 35, 100832. https://doi.org/10.1016/j.spen.2020.100832 |
[11] |
Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased functional connectivity between subcortical and cortical resting-state networks in autism spectrum disorder. JAMA Psychiatry, 72(8), 767-777. https://doi.org/10.1001/jamapsychiatry.2015.0101
doi: 10.1001/jamapsychiatry.2015.0101 URL pmid: 26061743 |
[12] | Chervyakov, A. V., Chernyavsky, A. Y., Sinitsyn, D. O., & Piradov, M. A. (2015). Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Frontiers in Human Neuroscience, 9, 303. https://doi.org/10.3389/fnhum.2015.00303 |
[13] | Cole, E. J., Enticott, P. G., Oberman, L. M., Gwynette, M. F., Casanova, M. F., Jackson, S. L. J., ... Puts, N. A. J. (2019). The potential of repetitive transcranial magnetic stimulation for autism spectrum disorder: A consensus statement. Biological Psychiatry, 85(4), e21-e22. https://doi.org/10.1016/j.biopsych.2018.06.003 |
[14] |
Di Martino, A., Kelly, C., Grzadzinski, R., Zuo, X.-N., Mennes, M., Mairena, M. A., Lord, C., Castellanos, F. X., & Milham, M. P. (2011). Aberrant striatal functional connectivity in children with autism. Biological Psychiatry, 69(9), 847-856. https://doi.org/10.1016/j.biopsych.2010.10.029
doi: 10.1016/j.biopsych.2010.10.029 URL pmid: 21195388 |
[15] |
Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., ... Milham, M. P. (2014). The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659-667. https://doi.org/10.1038/mp.2013.78
doi: 10.1038/mp.2013.78 URL pmid: 23774715 |
[16] |
Dickinson, A., Jones, M., & Milne, E. (2016). Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain Research, 1648, 277-289. https://doi.org/10.1016/j.brainres.2016.07.011
doi: S0006-8993(16)30484-X URL pmid: 27421181 |
[17] |
Enticott, P. G., Fitzgibbon, B. M., Kennedy, H. A., Arnold, S. L., Elliot, D., Peachey, A., Zangen, A., & Fitzgerald, P. B. (2014). A double-blind, randomized trial of deep repetitive transcranial magnetic stimulation (rTMS) for autism spectrum disorder. Brain Stimulation, 7(2), 206-211. https://doi.org/10.1016/j.brs.2013.10.004
doi: 10.1016/j.brs.2013.10.004 URL pmid: 24280031 |
[18] |
Estes, A., Munson, J., Rogers, S. J., Greenson, J., Winter, J., & Dawson, G. (2015). Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 54(7), 580-587. https://doi.org/10.1016/j.jaac.2015.04.005
doi: 10.1016/j.jaac.2015.04.005 URL pmid: 26088663 |
[19] |
Estes, A., Shaw, D. W. W., Sparks, B. F., Friedman, S., Giedd, J. N., Dawson, G., Bryan, M., & Dager, S. R. (2011). Basal ganglia morphometry and repetitive behavior in young children with autism spectrum disorder. Autism Research, 4(3), 212-220. https://doi.org/10.1002/aur.193
doi: 10.1002/aur.193 URL pmid: 21480545 |
[20] | First, M. B. (2013). Diagnostic and statistical manual of mental disorders, 5th edition, and clinical utility. The Journal of Nervous and Mental Disease, 201(9), 727-729. https://doi.org/10.1097/NMD.0b013e3182a2168a |
[21] |
Fox, M. D., Halko, M. A., Eldaief, M. C., & Pascual-Leone, A. (2012). Measuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS). NeuroImage, 62(4), 2232-2243. https://doi.org/10.1016/j.neuroimage.2012.03.035
doi: 10.1016/j.neuroimage.2012.03.035 URL pmid: 22465297 |
[22] | Frye, R. E., Casanova, M. F., Fatemi, S. H., Folsom, T. D., Reutiman, T. J., Brown, G. L., ... Adams, J. B. (2016). Neuropathological mechanisms of seizures in autism spectrum disorder. Frontiers in Neuroscience, 10, 192. https://doi.org/10.3389/fnins.2016.00192 |
[23] | Gao, L., Wang, C., Song, X. R., Tian, L., Qu, Z. Y., Han, Y., & Zhang, X. (2022). The sensory abnormality mediated partially the efficacy of repetitive transcranial magnetic stimulation on treating comorbid sleep disorder in autism spectrum disorder children. Frontiers in Psychiatry, 12, 820598. https://doi.org/10.3389/fpsyt.2021.820598 |
[24] |
Gliga, T., Jones, E. J. H., Bedford, R., Charman, T., & Johnson, M. H. (2014). From early markers to neuro- developmental mechanisms of autism. Developmental Review, 34(3), 189-207. https://doi.org/10.1016/j.dr.2014.05.003
URL pmid: 25187673 |
[25] | Gómez, L., Vidal, B., Maragoto, C., Morales, L. M., Berrillo, S., Cuesta, H. V., … Robinson M. (2017). Non-invasive brain stimulation for children with autism spectrum disorders: A short-term outcome study. Behavioral Sciences, 7(3), 1-12. https://doi.org/10.3390/bs7030063 |
[26] |
Grothe, B., & Klump, G. M. (2000). Temporal processing in sensory systems. Current Opinion in Neurobiology, 10(4), 467-473. https://doi.org/10.1016/s0959-4388(00)00115-x
URL pmid: 10981615 |
[27] | Hazlett, H. C., Gu, H., Munsell, B. C., Kim, S. H., Styner, M., Wolff, J. J., ... Piven, J. (2017). Early brain development in infants at high risk for autism spectrum disorder. Nature, 542(7641), 348-351. https://doi.org/10.1038/nature21369 |
[28] |
Hill, E. L. (2004). Executive dysfunction in autism. Trends in Cognitive Sciences, 8(1), 26-32. https://doi.org/10.1016/j.tics.2003.11.003
doi: 10.1016/j.tics.2003.11.003 URL pmid: 14697400 |
[29] | Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-state functional connectivity in autism spectrum disorders: A review. Frontiers in Psychiatry, 7, 205. https://doi.org/10.3389/fpsyt.2016.00205 |
[30] | Hyman, S. L., Levy, S. E., & Myers, S. M. (2020). Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics, 145(1), e20193447. https://doi.org/10.1542/peds.2019-3447 |
[31] |
Iwabuchi, S. J., Raschke, F., Auer, D. P., Liddle, P. F., Lankappa, S. T., & Palaniyappan, L. (2017). Targeted transcranial theta-burst stimulation alters fronto-insular network and prefrontal GABA. NeuroImage, 146, 395-403. https://doi.org/10.1016/j.neuroimage.2016.09.043
doi: S1053-8119(16)30520-1 URL pmid: 27651067 |
[32] | Jiang, L., He, R., Li, Y., Yi, C., Peng, Y., Yao, D., Wang, Y., Li, F., Xu, P., & Yang, Y. (2022). Predicting the long-term after-effects of rTMS in autism spectrum disorder using temporal variability analysis of scalp EEG. Journal of Neural Engineering, 19(5). https://doi.org/10.1088/1741-2552/ac999d |
[33] |
Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders. Physics of Life Reviews, 8(4), 410-437. https://doi.org/10.1016/j.plrev.2011.10.001
doi: 10.1016/j.plrev.2011.10.001 URL pmid: 22018722 |
[34] | Kang, J. N., Song, J. J., Casanova, M. F., Sokhadze, E. M., & Li, X. L. (2019). Effects of repetitive transcranial magnetic stimulation on children with low-function autism. CNS Neuroscience and Therapeutics, 25(11), 1254-1261. https://doi.org/10.1111/cns.13150 |
[35] |
Keil, A., Gruber, T., & Müller, M. M. (2001). Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neuroscience and Biobehavioral Reviews, 25(6), 527-534. https://doi.org/10.1016/s0149-7634(01)00031-8
URL pmid: 11595272 |
[36] |
Kennedy, D. P., & Courchesne, E. (2008). The intrinsic functional organization of the brain is altered in autism. NeuroImage, 39(4), 1877-1885. https://doi.org/10.1016/j.neuroimage.2007.10.052
doi: 10.1016/j.neuroimage.2007.10.052 URL pmid: 18083565 |
[37] |
Keown, C. L., Shih, P., Nair, A., Peterson, N., Mulvey, M. E., & Müller, R.-A. (2013). Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Reports, 5(3), 567-572. https://doi.org/10.1016/j.celrep.2013.10.003
doi: 10.1016/j.celrep.2013.10.003 URL pmid: 24210815 |
[38] |
Kirkovski, M., Enticott, P. G., Hughes, M. E., Rossell, S. L., & Fitzgerald, P. B. (2016). Atypical neural activity in males but not females with autism spectrum disorder. Journal of Autism and Developmental Disorders, 46(3), 954-963. https://doi.org/10.1007/s10803-015-2639-7
doi: 10.1007/s10803-015-2639-7 URL pmid: 26520145 |
[39] |
Klausberger, T., & Somogyi, P. (2008). Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science, 321(5885), 53-57. https://doi.org/10.1126/science.1149381
doi: 10.1126/science.1149381 URL pmid: 18599766 |
[40] |
Klin, A., Shultz, S., & Jones, W. (2015). Social visual engagement in infants and toddlers with autism: Early developmental transitions and a model of pathogenesis. Neuroscience and Biobehavioral Reviews, 50, 189-203. https://doi.org/10.1016/j.neubiorev.2014.10.006
doi: 10.1016/j.neubiorev.2014.10.006 URL pmid: 25445180 |
[41] | Liu, P., Xiao, G., He, K., Zhang, L., Wu, X., Li, D., ... Wang, K. (2020). Increased accuracy of emotion recognition in individuals with autism-like traits after five days of magnetic stimulations. Neural Plasticity, 2020, 9857987. https://doi.org/10.1155/2020/9857987 |
[42] |
Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., & Baron- Cohen, S. (2011). Specialization of right temporo-parietal junction for mentalizing and its relation to social impairments in autism. NeuroImage, 56(3), 1832-1838. https://doi.org/10.1016/j.neuroimage.2011.02.067
doi: 10.1016/j.neuroimage.2011.02.067 URL pmid: 21356316 |
[43] |
Long, D., Yang, T., Chen, J., Dai, Y., Chen, L., Jia, F., ... Li, T. (2022). Age of diagnosis and demographic factors associated with autism spectrum disorders in chinese children: A multi-center survey. Neuropsychiatric Disease and Treatment, 18, 3055-3065. https://doi.org/10.2147/NDT.S374840
doi: 10.2147/NDT.S374840 URL pmid: 36606184 |
[44] | Maenner, M. J., Shaw, K. A., Baio, J., Washington, A., Patrick, M., DiRienzo, M., ... Dietz, P. M. (2020). Prevalence of autism spectrum disorder among children aged 8 years -- Autism and developmental disabilities monitoring network, 11 sites, United States, 2016. Morbidity and Mortality Weekly Report. Surveillance Summaries, 69(4), 1-12. https://doi.org/10.15585/mmwr.ss6904a1 |
[45] | McPartland, J. C., Bernier, R. A., Jeste, S. S., Dawson, G., Nelson, C. A., Chawarska, K., ... Webb, S. J. (2020). The autism biomarkers consortium for clinical trials (ABC-CT): Scientific context, study design, and progress toward biomarker qualification. Frontiers in Integrative Neuroscience, 14, 16. https://doi.org/10.3389/fnint.2020.00016 |
[46] |
Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S.-J., Carrasco, M., Risi, S., & Lord, C. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage, 47(2), 764-772. https://doi.org/10.1016/j.neuroimage.2009.04.069
doi: 10.1016/j.neuroimage.2009.04.069 URL pmid: 19409498 |
[47] | Ni, H. C., Chen, Y. L., Chao, Y. P., Wu, C. T., Chen, R. S., Chou, T. L., Gau, S. S. F., & Lin, H. Y. (2023). A lack of efficacy of continuous theta burst stimulation over the left dorsolateral prefrontal cortex in autism: A double blind randomized sham-controlled trial. Autism Research, 16(6), 1247-1262. https://doi.org/10.1002/aur.2954 |
[48] | Ni, H. C., Chen, Y. L., Chao, Y. P., Wu, C. T., Wu, Y. Y., Liang, S. H. Y., ... Lin, H. Y. (2021). Intermittent theta burst stimulation over the posterior superior temporal sulcus for children with autism spectrum disorder: A 4-week randomized blinded controlled trial followed by another 4-week open-label intervention. Autism, 25(5), 1279-1294. https://doi.org/10.1177/1362361321990534 |
[49] | Oblak, A. L., Gibbs, T. T., & Blatt, G. J. (2010). Decreased GABA (B) receptors in the cingulate cortex and fusiform gyrus in autism. Journal of Neurochemistry, 114(5), 1414-1423. https://doi.org/10.1111/j.1471-4159.2010.06858.x |
[50] |
Patriquin, M. A., DeRamus, T., Libero, L. E., Laird, A., & Kana, R. K. (2016). Neuroanatomical and neurofunctional markers of social cognition in autism spectrum disorder. Human Brain Mapping, 37(11), 3957-3978. https://doi.org/10.1002/hbm.23288
doi: 10.1002/hbm.23288 URL pmid: 27329401 |
[51] |
Philip, R. C. M., Dauvermann, M. R., Whalley, H. C., Baynham, K., Lawrie, S. M., & Stanfield, A. C. (2012). A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 36(2), 901-942. https://doi.org/10.1016/j.neubiorev.2011.10.008
doi: 10.1016/j.neubiorev.2011.10.008 URL pmid: 22101112 |
[52] |
Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835-1842. https://doi.org/10.1016/s1053-8119(03)00230-1
doi: 10.1016/s1053-8119(03)00230-1 URL pmid: 12948738 |
[53] | Sheldrick, R. C., Maye, M. P., & Carter, A. S. (2017). Age at first identification of autism spectrum disorder: An analysis of two US surveys. Journal of the American Academy of Child and Adolescent Psychiatry, 56(4), 313-320. https://doi.org/10.1016/j.jaac.2017.01.012 |
[54] | Sokhadze, E., Baruth, J., Tasman, A., Mansoor, M., Ramaswamy, R., Sears, L., Mathai, G., El-Baz, A., & Casanova, M. F. (2010). Low-frequency repetitive transcranial magnetic stimulation (rTMS) affects event- related potential measures of novelty processing in autism. Applied Psychophysiology Biofeedback, 35(2), 147-161. https://doi.org/10.1007/s10484-009-9121-2 |
[55] |
Sokhadze, E. M., El-Baz, A., Baruth, J., Mathai, G., Sears, L., & Casanova, M. F. (2009). Effects of low frequency repetitive transcranial magnetic stimulation (rTMS) on gamma frequency oscillations and event-related potentials during processing of illusory figures in autism. Journal of Autism and Developmental Disorders, 39(4), 619-634. https://doi.org/10.1007/s10803-008-0662-7
doi: 10.1007/s10803-008-0662-7 URL pmid: 19030976 |
[56] | Sokhadze, E. M., Lamina, E. V., Casanova, E. L., Kelly, D. P., Opris, I., Tasman, A., & Casanova, M. F. (2018). Exploratory study of rTMS neuromodulation effects on electrocortical functional measures of performance in an oddball test and behavioral symptoms in autism. Frontiers in Systems Neuroscience, 12, 20. https://doi.org/10.3389/fnsys.2018.00020 |
[57] | Sokhadze, G. E., Casanova, M. F., Kelly, D. P., Casanova, E. L., Russell, B., & Sokhadze, E. M. (2017). Neuromodulation based on rTMS affects behavioral measures and autonomic nervous system activity in children with autism. NeuroRegulation, 4(2), 65-78. https://doi.org/10.15540/nr.4.2.65 |
[58] |
Solomon, M., Ozonoff, S. J., Cummings, N., & Carter, C. S. (2008). Cognitive control in autism spectrum disorders. International Journal of Developmental Neuroscience, 26(2), 239-247. https://doi.org/10.1016/j.ijdevneu.2007.11.001
doi: 10.1016/j.ijdevneu.2007.11.001 URL pmid: 18093787 |
[59] |
Sperduti, M., Guionnet, S., Fossati, P., & Nadel, J. (2014). Mirror neuron system and mentalizing system connect during online social interaction. Cognitive Processing, 15(3), 307-316. https://doi.org/10.1007/s10339-014-0600-x
doi: 10.1007/s10339-014-0600-x URL pmid: 24414614 |
[60] | Sun, X., Allison, C., Wei, L., Matthews, F. E., Auyeung, B., Wu, Y. Y., ... Brayne, C. (2019). Autism prevalence in China is comparable to western prevalence. Molecular Autism, 10, 7. https://doi.org/10.1186/s13229-018-0246-0 |
[61] | Tan, T., Wang, W., Xu, H., Huang, Z., Wang, Y. T., & Dong, Z. (2018). Low-frequency rTMS ameliorates autistic-like behaviors in rats induced by neonatal isolation through regulating the synaptic GABA transmission. Frontiers in Cellular Neuroscience, 12, 46. https://doi.org/10.3389/fncel.2018.00046 |
[62] | Towle, P. O., Patrick, P. A., Ridgard, T., Pham, S., & Marrus, J. (2020). Is earlier better? The relationship between age when starting early intervention and outcomes for children with autism spectrum disorder: A selective review. Autism Research and Treatment, 2020, 7605876. https://doi.org/10.1155/2020/7605876 |
[63] |
Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., & Menon, V. (2013). Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70(8), 869-879. https://doi.org/10.1001/jamapsychiatry.2013.104
doi: 10.1001/jamapsychiatry.2013.104 URL pmid: 23803651 |
[64] | Uddin, L. Q., Supekar, K., & Menon, V. (2010). Typical and atypical development of functional human brain networks: Insights from resting-state FMRI. Frontiers in Systems Neuroscience, 4, 21. https://doi.org/10.3389/fnsys.2010.00021 |
[65] | Vivanti, G., Prior, M., Williams, K., & Dissanayake, C. (2014). Predictors of outcomes in autism early intervention: Why don’t we know more. Frontiers in Pediatrics, 2, 58. https://doi.org/10.3389/fped.2014.00058 |
[66] | Wang, W., Liu, J., Shi, S., Liu, T., Ma, L., Ma, X., Tian, J., Gong, Q., & Wang, M. (2018). Altered resting-state functional activity in patients with autism spectrum disorder: A quantitative meta-analysis. Frontiers in Neurology, 9, 556. https://doi.org/10.3389/fneur.2018.00556 |
[67] | Wang, Y., Hensley, M. K., Tasman, A., Sears, L., Casanova, M. F., & Sokhadze, E. M. (2016). Heart rate variability and skin conductance during repetitive TMS course in children with autism. Applied Psychophysiology Biofeedback, 41(1), 47-60. https://doi.org/10.1007/s10484-015-9311-z |
[68] |
Yang, Y., Jiang, L., He, R., Song, P., Xu, P., Wang, Y., & Li, F. (2023). Repetitive transcranial magnetic stimulation modulates long-range functional connectivity in autism spectrum disorder. Journal of Psychiatric Research, 160, 187-194. https://doi.org/10.1016/j.jpsychires.2023.02.021
doi: 10.1016/j.jpsychires.2023.02.021 URL pmid: 36841084 |
[69] | Yang, Y., Wang, H., Xue, Q., Huang, Z., & Wang, Y. (2019). High-frequency repetitive transcranial magnetic stimulation applied to the parietal cortex for low- functioning children with autism spectrum disorder: A case series. Frontiers in Psychiatry, 10, 293. https://doi.org/10.3389/fpsyt.2019.00293 |
[70] | Yuan, L. X., Wang, X. K., Yang, C., Zhang, Q. R., Ma, S. Z., Zang, Y. F., & Dong, W. Q. (2024). A systematic review of transcranial magnetic stimulation treatment for autism spectrum disorder. Heliyon, 10(11), e32251. https://doi.org/10.1016/j.heliyon.2024.e32251 |
[71] | Zapparrata, N. M., Brooks, P. J., & Ober, T. M. (2023). Slower processing speed in autism spectrum disorder: A meta-analytic investigation of time-based tasks. Journal of Autism and Developmental Disorders, 53(12), 4618-4640. https://doi.org/10.1007/s10803-022-05736-3 |
[72] |
Zewdie, E., Ciechanski, P., Kuo, H. C., Giuffre, A., Kahl, C., King, R., ... Kirton, A. (2020). Safety and tolerability of transcranial magnetic and direct current stimulation in children: Prospective single center evidence from 3.5 million stimulations. Brain Stimulation, 13(3), 565-575. https://doi.org/10.1016/j.brs.2019.12.025
doi: S1935-861X(19)30496-6 URL pmid: 32289678 |
[1] | TU Haixia, WENG Xuchu, XU Bo. The relationship between abnormal cerebellar development and Autism Spectrum Disorder [J]. Advances in Psychological Science, 2025, 33(4): 565-573. |
[2] | YANG Ping, FANG Runqiu, WENG Xuchu. Atypical facial expression characteristics in children with autism spectrum disorder and their application in early screening [J]. Advances in Psychological Science, 2025, 33(4): 588-597. |
[3] | FAN Guirong, WENG Xuchu, GENG Hongyan. Relationship between inflammatory bowel disease and autism spectrum disorder in children [J]. Advances in Psychological Science, 2025, 33(4): 611-619. |
[4] | ZHOU Aibao, YUAN Yue. Self-processing mechanisms and interventions for children with autism spectrum disorders [J]. Advances in Psychological Science, 2025, 33(2): 212-222. |
[5] | FU Chunye, LI Aixin, LYU Xiaokang, WANG Chongying. Visual perception in individuals with autism spectrum disorder: Bayesian and predictive coding-based perspective [J]. Advances in Psychological Science, 2024, 32(7): 1164-1178. |
[6] | JING Wei, CHEN Qi, XUE Yun Qing, YANG Miao, ZHANG Jie. Predictive coding deficits in autism: Abnormalities in feedback or feedforward connectivities? [J]. Advances in Psychological Science, 2024, 32(5): 813-833. |
[7] | GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders [J]. Advances in Psychological Science, 2024, 32(5): 834-844. |
[8] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
[9] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[10] | LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. Perception, discrimination, and learning of speech in newborns [J]. Advances in Psychological Science, 2023, 31(12): 2295-2305. |
[11] | XIAO Shihua, LI Jing. Implementation of Naturalistic Developmental Behavioral Interventions: An early intervention program for children with autism spectrum disorder [J]. Advances in Psychological Science, 2023, 31(12): 2350-2367. |
[12] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[13] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[14] | CHEN Guanghua, TAO Guanpeng, ZHAI Luyu, BAI Xuejun. Early screening tools for Autism Spectrum Disorder in infancy and toddlers [J]. Advances in Psychological Science, 2022, 30(4): 738-760. |
[15] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 230
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||