Advances in Psychological Science ›› 2025, Vol. 33 ›› Issue (4): 565-573.doi: 10.3724/SP.J.1042.2025.0565
• Neuropsychological Mechanisms of Autism from a Multidisciplinary Perspective: A Special Column • Previous Articles Next Articles
TU Haixia1,2, WENG Xuchu3, XU Bo1,2()
Received:
2024-07-06
Online:
2025-04-15
Published:
2025-03-05
Contact:
XU Bo
E-mail:bxu@tyxx.ecnu.edu.cn
CLC Number:
TU Haixia, WENG Xuchu, XU Bo. The relationship between abnormal cerebellar development and Autism Spectrum Disorder[J]. Advances in Psychological Science, 2025, 33(4): 565-573.
[1] | 胡格格, 姜志梅, 蔡佳莹, 曹越. (2022). 性别对孤独症谱系障碍儿童临床症状的影响. 中国康复, 37(9), 563-567. |
[2] | 王多浩, 林兴建, 祝东林, 田敏捷, 姚群, 石静萍. (2020). 小脑与认知功能关系的研究. 临床神经病学杂志, 33(1), 73-76. |
[3] |
武文佼, 张鹏. (2016). 自闭症谱系障碍的生物基础. 心理科学进展, 24(5), 739-752.
doi: 10.3724/SP.J.1042.2016.00739 |
[4] |
张芬, 王穗苹, 杨娟华, 冯刚毅. (2015). 自闭症谱系障碍者异常的大脑功能连接. 心理科学进展, 23(7), 1196-1204.
doi: 10.3724/SP.J.1042.2015.01196 |
[5] |
Alaerts, K., Swinnen, S. P., & Wenderoth, N. (2016). Sex differences in autism: A resting-state fMRI investigation of functional brain connectivity in males and females. Social Cognitive and Affective Neuroscience, 11(6), 1002-1016. http://doi.org/10.1093/scan/nsw027
doi: 10.1093/scan/nsw027 URL pmid: 26989195 |
[6] |
Böckers, T. M., Segger-Junius, M., Iglauer, P., Bockmann, J., Gundelfinger, E. D., Kreutz, M. R., ... Kreienkamp, H. J. (2004). Differential expression and dendritic transcript localization of shank family members: Identification of a dendritic targeting element in the 3' untranslated region of shank1 mrna. Molecular and Cellular Neuroscience, 26(1), 182-190. http://doi.org/10.1016/j.mcn.2004.01.009
URL pmid: 15121189 |
[7] | Bolduc, M. E., du Plessis, A. J., Sullivan, N., Guizard, N., Zhang, X., Robertson, R. L., & Limperopoulos, C. (2012). Regional cerebellar volumes predict functional outcome in children with cerebellar malformations. Cerebellum, 11(2), 531-542. http://doi.org/10.1007/s12311-011-0312-z |
[8] | Carey, M. R. (2024). The cerebellum. Current Biology, 34(1), R7-R11. http://doi.org/10.1016/j.cub.2023.11.048 |
[9] |
Casartelli, L., Riva, M., Villa, L., & Borgatti, R. (2018). Insights from perceptual, sensory, and motor functioning in autism and cerebellar primary disturbances: Are there reliable markers for these disorders. Neuroscience and Biobehavioral Reviews, 95, 263-279. https://doi.org/10.1016/j.neubiorev.2018.09.017
doi: S0149-7634(17)30651-6 URL pmid: 30268434 |
[10] |
Catsman-Berrevoets, C. E., & Aarsen, F. K. (2010). The spectrum of neurobehavioural deficits in the posterior fossa syndrome in children after cerebellar tumour surgery. Cortex, 46(7), 933-946. http://doi.org/10.1016/j.cortex.2009.10.007
doi: 10.1016/j.cortex.2009.10.007 URL pmid: 20116053 |
[11] | Chen, S., Xu, Q., Zhao, L., Zhang, M., & Xu, H. (2024). The prenatal use of agmatine prevents social behavior deficits in vpa-exposed mice by activating the ERK/CREB/BDNF signaling pathway. Birth Defects Research, 116(4), e2336. http://doi.org/10.1002/bdr2.2336 |
[12] | Chen, X., Chen, T., Dong, C., Chen, H., Dong, X., Yang, L., ... Zhou, W. (2022). Deletion of chd8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia, and psychiatric behavior in mice. Journal of Genetics and Genomics, 49(9), 859-869. http://doi.org/10.1016/j.jgg.2022.02.011 |
[13] | Cheroni, C., Caporale, N., & Testa, G. (2020). Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Molecular Autism, 11(1), 69. http://doi.org/10.1186/s13229-020-00370-1 |
[14] | Clipperton-Allen, A. E., & Page, D. T. (2020). Connecting genotype with behavioral phenotype in mouse models of autism associated with PTEN mutations. Cold Spring Harbor Perspectives in Medicine, 10(9). http://doi.org/10.1101/cshperspect.a037010 |
[15] |
Courchesne, E., Redcay, E., & Kennedy, D. P. (2004). The autistic brain: Birth through adulthood. Current Opinion in Neurology, 17(4), 489-496. http://doi.org/10.1097/01.wco.0000137542.14610.b4
URL pmid: 15247547 |
[16] |
Courchesne, E., Yeung-Courchesne, R., Press, G. A., Hesselink, J. R., & Jernigan, T. L. (1988). Hypoplasia of cerebellar vermal lobules VI and VII in autism. New England Journal of Medicine, 318(21), 1349-1354. http://doi.org/10.1056/NEJM198805263182102
URL pmid: 3367935 |
[17] |
Cupolillo, D., Hoxha, E., Faralli, A., De Luca, A., Rossi, F., Tempia, F., & Carulli, D. (2016). Autistic-like traits and cerebellar dysfunction in Purkinje cell PTEN knock-out mice. Neuropsychopharmacology, 41(6), 1457-1466. http://doi.org/10.1038/npp.2015.339
doi: 10.1038/npp.2015.339 URL pmid: 26538449 |
[18] |
Dowell, L. R., Mahone, E. M., & Mostofsky, S. H. (2009). Associations of postural knowledge and basic motor skill with dyspraxia in autism: Implication for abnormalities in distributed connectivity and motor learning. Neuropsychology, 23(5), 563-570. http://doi.org/10.1037/a0015640
doi: 10.1037/a0015640 URL pmid: 19702410 |
[19] |
Farini, D., Marazziti, D., Geloso, M. C., & Sette, C. (2021). Transcriptome programs involved in the development and structure of the cerebellum. Cellular and Molecular Life Sciences, 78(19-20), 6431-6451. http://doi.org/10.1007/s00018-021-03911-w
doi: 10.1007/s00018-021-03911-w URL pmid: 34406416 |
[20] | Fernández, M., Sánchez-León, C. A., Llorente, J., Sierra- Arregui, T., Knafo, S., Márquez-Ruiz, J., & Peñagarikano, O. (2021). Altered cerebellar response to somatosensory stimuli in the cntnap2 mouse model of autism. Eneuro, 8(5), ENEURO. 0333-21.2021. http://doi.org/10.1523/ENEURO.0333-21.2021 |
[21] |
Flament, D., & Hore, J. (1986). Movement and electromyographic disorders associated with cerebellar dysmetria. Journal of Neurophysiology, 55(6), 1221-1233. http://doi.org/10.1152/jn.1986.55.6.1221
URL pmid: 3734856 |
[22] |
Geschwind, D. H., & Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Current Opinion in Neurobiology, 17(1), 103-111. http://doi.org/10.1016/j.conb.2007.01.009
URL pmid: 17275283 |
[23] | Gholipour, P., Ebrahimi, Z., Mohammadkhani, R., Ghahremani, R., Salehi, I., Sarihi, A., ... Karimi, S. A. (2024). Effects of (s)-3, 4-dcpg, an mglu8 receptor agonist, on hippocampal long-term potentiation at perforant pathway-dentate gyrus synapses in prenatal valproic acid-induced rat model of autism. Scientific Reports, 14(1), 13168. http://doi.org/ 10.1038/s41598-024-63728-y |
[24] | Gifford, J. J., Deshpande, P., Mehta, P., Wagner, G. C., & Kusnecov, A. W. (2022). The effect of valproic acid exposure throughout development on microglia number in the prefrontal cortex, hippocampus and cerebellum. Neuroscience, 481, 166-177. http://doi.org/10.1016/j.neuroscience.2021.11.012 |
[25] | Hampson, D. R., & Blatt, G. J. (2015). Autism spectrum disorders and neuropathology of the cerebellum. Frontiers in Neuroscience, 9, 420. http://doi.org/10.3389/fnins.2015.00420 |
[26] | Hirota, T., & King, B. H. (2023). Autism spectrum disorder: A review. Jama-Journal of the American Medical Association, 329(2), 157-168. http://doi.org/10.1001/jama.2022.23661 |
[27] | Hodgdon, E. A., Anderson, R., Azzawi, H. A., Wilson, T. W., Calhoun, V. D., Wang, Y. P., ... Ciesielski, K. T. R. (2024). MRI morphometry of the anterior and posterior cerebellar vermis and its relationship to sensorimotor and cognitive functions in children. Developmental Cognitive Neuroscience, 67, 101385. https://doi.org/10.1016/j.dcn.2024.101385 |
[28] | Kawamura, A., Katayama, Y., Kakegawa, W., Ino, D., Nishiyama, M., Yuzaki, M., & Nakayama, K. I. (2021). The autism-associated protein chd8 is required for cerebellar development and motor function. Cell Reports, 35(1), 108932. http://doi.org/10.1016/j.celrep.2021.108932 |
[29] | Kaymakcalan, H., Kaya, I., Cevher Binici, N., Nikerel, E., Özbaran B., Görkem Aksoy, M., ... Ercan-Sencicek, A. G. (2021). Prevalence and clinical/molecular characteristics of PTEN mutations in Turkish children with autism spectrum disorders and macrocephaly. Molecular Genetics & Genomic Medicine, 9(8), e1739. http://doi.org/10.1002/mgg3.1739 |
[30] | Khan, A. J., Nair, A., Keown, C. L., Datko, M. C., Lincoln, A. L., & Müller, R. A. (2015). Cerebro-cerebellar resting- state functional connectivity in children and adolescents with autism spectrum disorder. Biological Psychiatry, 78(9), 625-634. https://doi.org/10.1016/j.biopsych.2015.03.024 |
[31] |
Kissoondoyal, A., Rai-Bhogal, R., & Crawford, D. A. (2021). Abnormal dendritic morphology in the cerebellum of cyclooxygenase-2- knockin mice. European Journal of Neuroscience, 54(7), 6355-6373. http://doi.org/10.1111/ejn.15454
doi: 10.1111/ejn.15454 URL pmid: 34510613 |
[32] |
Kwon, C. H., Zhu, X., Zhang, J., Knoop, L. L., Tharp, R., Smeyne, R. J., ... Baker, S. J. (2001). Pten regulates neuronal soma size: A mouse model of lhermitte-duclos disease. Nature Genetics, 29(4), 404-411. https://doi.org/10.1038/ng78
doi: 10.1038/ng781 URL pmid: 11726927 |
[33] | Lai, E., Nakayama, H., Miyazaki, T., Nakazawa, T., Tabuchi, K., Hashimoto, K., ... Kano, M. (2021). An autism- associated neuroligin-3 mutation affects developmental synapse elimination in the cerebellum. Frontiers in Neural Circuits, 15, 676891. http://doi.org/10.3389/fncir.2021.676891 |
[34] |
Noonan, S. K., Haist, F., & Müller, R. A. (2009). Aberrant functional connectivity in autism: Evidence from low- frequency bold signal fluctuations. Brain research, 1262, 48-63. https://doi.org/10.1016/j.brainres.2008.12.076
doi: 10.1016/j.brainres.2008.12.076 URL pmid: 19401185 |
[35] | Peter, S., Ten Brinke, M., Stedehouder, J., Reinelt, C. M., Wu, B., Zhou, H., ... De Zeeuw, C. I. (2016). Dysfunctional cerebellar Purkinje cells contribute to autism-like behaviour in shank2-deficient mice. Nature Communications, 7, 12627. http://doi.org/10.1038/ncomms12627 |
[36] |
Pijpers, A., Apps, R., Pardoe, J., Voogd, J., & Ruigrok, T. J. (2006). Precise spatial relationships between mossy fibers and climbing fibers in rat cerebellar cortical zones. Journal of Neuroscience, 26(46), 12067-12080. http://doi.org/10.1523/JNEUROSCI.2905-06.2006
doi: 10.1523/JNEUROSCI.2905-06.2006 URL pmid: 17108180 |
[37] |
Pinchefsky, E. F., Accogli, A., Shevell, M. I., Saint-Martin, C., & Srour, M. (2019). Developmental outcomes in children with congenital cerebellar malformations. Developmental Medicine and Child Neurology, 61(3), 350-358. http://doi.org/10.1111/dmcn.14059
doi: 10.1111/dmcn.14059 URL pmid: 30320441 |
[38] |
Piven, J., Saliba, K., & Arndt, S. (1997). An mri study of autism: The cerebellum revisited. Neurology, 49(2), 546-551. http://doi.org/10.1212/wnl.49.2.546
URL pmid: 9270594 |
[39] | Prati, J. M., Pontes-Silva, A., & Gianlorenço, A. C. L. (2024). The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review. Behavioural Brain Research, 465, 114933. http://doi.org/10.1016/j.bbr.2024.114933 |
[40] | Rout, U. K., & Dhossche, D. M. (2008). A pathogenetic model of autism involving Purkinje cell loss through anti- gad antibodies. Medical Hypotheses, 71(2), 218-221. http://doi.org/10.1016/j.mehy.2007.11.012 |
[41] | Rudolph, S., Badura, A., Lutzu, S., Pathak, S. S., Thieme, A., Verpeut, J. L., ... Fioravante, D. (2023). Cognitive- affective functions of the cerebellum. Journal of Neuroscience, 43(45), 7554-7564. http://doi.org/10.1523/JNEUROSCI.1451-23.2023 |
[42] |
Sala, C., Vicidomini, C., Bigi, I., Mossa, A., & Verpelli, C. (2015). Shank synaptic scaffold proteins: Keys to understanding the pathogenesis of autism and other synaptic disorders. Journal of Neurochemistry, 135(5), 849-858. http://doi.org/10.1111/jnc.13232
doi: 10.1111/jnc.13232 URL pmid: 26338675 |
[43] |
Sato, D., Lionel, A. C., Leblond, C. S., Prasad, A., Pinto, D., Walker, S., O'Connor, I., ... Scherer, S. W. (2012). Shank1 deletions in males with autism spectrum disorder. American Journal of Human Genetics, 90(5), 879-887. http://doi.org/10.1016/j.ajhg.2012.03.017
doi: 10.1016/j.ajhg.2012.03.017 URL pmid: 22503632 |
[44] | Schmahmann, J. D., & Sherman, J. C. (1998). The cerebellar cognitive affective syndrome. Brain, 121(Pt 4), 561-579. http://doi.org/10.1093/brain/121.4.561 |
[45] |
Shi, L., Smith, S. E., Malkova, N., Tse, D., Su, Y., & Patterson, P. H. (2009). Activation of the maternal immune system alters cerebellar development in the offspring. Brain Behavior and Immunity, 23(1), 116-123. http://doi.org/10.1016/j.bbi.2008.07.012
doi: 10.1016/j.bbi.2008.07.012 URL pmid: 18755264 |
[46] | Sokolov, A. A., Erb, M., Grodd, W., & Pavlova, M. A. (2014). Structural loop between the cerebellum and the superior temporal sulcus: Evidence from diffusion tensor imaging. Cerebral Cortex, 24(3), 626-632. http://doi.org/10.1093/cercor/bhs346 |
[47] |
Stoodley, C. J., D'Mello, A. M., Ellegood, J., Jakkamsetti, V., Liu, P., Nebel, M. B., ... Tsai, P. T. (2017). Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nature Neuroscience, 20(12), 1744-1751. http://doi.org/10.1038/s41593-017-0004-1
doi: 10.1038/s41593-017-0004-1 URL pmid: 29184200 |
[48] |
Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience, 32, 413-434. http://doi.org/10.1146/annurev.neuro.31.060407.125606
doi: 10.1146/annurev.neuro.31.060407.125606 URL pmid: 19555291 |
[49] | Sudarov, A., & Joyner, A. L. (2007). Cerebellum morphogenesis: The foliation pattern is orchestrated by multi-cellular anchoring centers. Neural Development, 2, 26. http://doi.org/10.1186/1749-8104-2-26 |
[50] | Tartaglione, A. M., Villani, A., Ajmone-Cat, M. A., Minghetti, L., Ricceri, L., Pazienza, V., ... Calamandrei, G. (2022). Maternal immune activation induces autism-like changes in behavior, neuroinflammatory profile and gut microbiota in mouse offspring of both sexes. Translational Psychiatry, 12(1), 384. http://doi.org/10.1038/s41398-022-02149-9 |
[51] | Thomas, S., Barnett, L. M., Papadopoulos, N., Lander, N., McGillivray, J., & Rinehart, N. (2022). How do physical activity and sedentary behaviour affect motor competence in children with autism spectrum disorder compared to typically developing children: A pilot study. Journal of Autism and Developmental Disorders, 52(8), 3443-3455. http://doi.org/10.1007/s10803-021-05205-3 |
[52] |
Tilot, A. K., Frazier, T. N., & Eng, C. (2015). Balancing proliferation and connectivity in PTEN-associated autism spectrum disorder. Neurotherapeutics, 12(3), 609-619. http://doi.org/10.1007/s13311-015-0356-8
doi: 10.1007/s13311-015-0356-8 URL pmid: 25916396 |
[53] | Tsai, P. T., Hull, C., Chu, Y., Greene-Colozzi, E., Sadowski, A. R., Leech, J. M., ... Sahin, M. (2012). Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature, 488(7413), 647-651. http://doi.org/10.1038/nature11310 |
[54] |
Uemura, T., Mori, H., & Mishina, M. (2004). Direct interaction of glurdelta2 with shank scaffold proteins in cerebellar Purkinje cells. Molecular and Cellular Neuroscience, 26(2), 330-341. http://doi.org/10.1016/j.mcn.2004.02.007
URL pmid: 15207857 |
[55] | van der Heijden, M. E., Gill, J. S., & Sillitoe, R. V. (2021). Abnormal cerebellar development in autism spectrum disorders. Developmental Neuroscience, 43(3-4), 181-190. https://doi.org/10.1159/000515189 |
[56] | Wang, R., Tan, J., Guo, J., Zheng, Y., Han, Q., So, K. F., ... Zhang, L. (2018). Aberrant development and synaptic transmission of cerebellar cortex in a vpa induced mouse autism model. Frontiers in Cellular Neuroscience, 12, 500. http://doi.org/10.3389/fncel.2018.00500 |
[57] |
Wefers, A. K., Lindner, S., Schulte, J. H., & Schüller, U. (2017). Overexpression of lin28b in neural stem cells is insufficient for brain tumor formation, but induces pathological lobulation of the developing cerebellum. Cerebellum, 16(1), 122-131. http://doi.org/10.1007/s12311- 016-0774-0
doi: 10.1007/s12311-016-0774-0 URL pmid: 27039094 |
[58] | Yamashiro, K., Hori, K., Lai, E., Aoki, R., Shimaoka, K., Arimura, N., ... Hoshino, M. (2020). Auts2 governs cerebellar development, Purkinje cell maturation, motor function and social communication. iScience, 23(12), 101820. http://doi.org/10.1016/j.isci.2020.101820 |
[59] |
Yang, H., Huh, S. O., & Hong, J. S. (2015). Enhancement of short-term memory by methyl-6-(phenylethynyl)-pyridine in the btbr t+tf/j mouse model of autism spectrum disorder. Endocrinology and Metabolism, 30(1), 98-104. http://doi.org/10.3803/EnM.2015.30.1.98
doi: 10.3803/EnM.2015.30.1.98 URL pmid: 25559718 |
[60] | Yang, X., Yin, H., Wang, X., Sun, Y., Bian, X., Zhang, G., ... Liu, Q. (2022). Social deficits and cerebellar degeneration in Purkinje cell scn8a knockout mice. Frontiers in Molecular Neuroscience, 15, 822129. http://doi.org/10.3389/fnmol.2022.822129 |
[61] | Zhang, X., Suo, X., Yang, X., Lai, H., Pan, N., He, M., ... Gong, Q. (2022). Structural and functional deficits and couplings in the cortico-striato-thalamo-cerebellar circuitry in social anxiety disorder. Translational Psychiatry, 12(1), 26. http://doi.org/10.1038/s41398-022-01791-7 |
[1] | YANG Ping, FANG Runqiu, WENG Xuchu. Atypical facial expression characteristics in children with autism spectrum disorder and their application in early screening [J]. Advances in Psychological Science, 2025, 33(4): 588-597. |
[2] | TIAN Renxia, YANG Ping, GUO Yuanyuan, WU Xia. Treatment of autism spectrum disorder: The potential role of repetitive transcranial magnetic stimulation [J]. Advances in Psychological Science, 2025, 33(4): 598-610. |
[3] | FAN Guirong, WENG Xuchu, GENG Hongyan. Relationship between inflammatory bowel disease and autism spectrum disorder in children [J]. Advances in Psychological Science, 2025, 33(4): 611-619. |
[4] | ZHOU Aibao, YUAN Yue. Self-processing mechanisms and interventions for children with autism spectrum disorders [J]. Advances in Psychological Science, 2025, 33(2): 212-222. |
[5] | FU Chunye, LI Aixin, LYU Xiaokang, WANG Chongying. Visual perception in individuals with autism spectrum disorder: Bayesian and predictive coding-based perspective [J]. Advances in Psychological Science, 2024, 32(7): 1164-1178. |
[6] | JING Wei, CHEN Qi, XUE Yun Qing, YANG Miao, ZHANG Jie. Predictive coding deficits in autism: Abnormalities in feedback or feedforward connectivities? [J]. Advances in Psychological Science, 2024, 32(5): 813-833. |
[7] | GAO Limei, WANG Kai, LI Dandan. The application of social robots in intervention for children with autism spectrum disorders [J]. Advances in Psychological Science, 2024, 32(5): 834-844. |
[8] | CHEN Yan, LI Jing. The impact of interpersonal synchronization on autistic children’s cooperative behavior and its intervention promotion [J]. Advances in Psychological Science, 2024, 32(4): 639-653. |
[9] | Fang Yang, Jinyu Tian, Peijun Yuan, Chunyan Liu, Xinyuan Zhang, Li Yang, Yi Jiang. Unconscious, but not Conscious, Gaze-triggered Social Attention Reflects the Autistic Traits in Adults and Children [J]. Advances in Psychological Science, 2023, 31(suppl.): 98-98. |
[10] | LI Sijin, WANG Tingdong, PENG Zhilin, ZHANG Dandan. Perception, discrimination, and learning of speech in newborns [J]. Advances in Psychological Science, 2023, 31(12): 2295-2305. |
[11] | XIAO Shihua, LI Jing. Implementation of Naturalistic Developmental Behavioral Interventions: An early intervention program for children with autism spectrum disorder [J]. Advances in Psychological Science, 2023, 31(12): 2350-2367. |
[12] | KOU Juan, YANG Mengyuan, WEI Zijie, LEI Yi. The social motivation theory of autism spectrum disorder: Exploring mechanisms and interventions [J]. Advances in Psychological Science, 2023, 31(1): 20-32. |
[13] | XU Hui, WANG Tao. Social motivation deficits in individuals with autism spectrum disorders [J]. Advances in Psychological Science, 2022, 30(5): 1050-1061. |
[14] | CHEN Guanghua, TAO Guanpeng, ZHAI Luyu, BAI Xuejun. Early screening tools for Autism Spectrum Disorder in infancy and toddlers [J]. Advances in Psychological Science, 2022, 30(4): 738-760. |
[15] | ZHANG Linlin, WEI Kunlin, LI Jing. Interpersonal motor synchronization in children [J]. Advances in Psychological Science, 2022, 30(3): 623-634. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||