Advances in Psychological Science ›› 2024, Vol. 32 ›› Issue (1): 1-13.doi: 10.3724/SP.J.1042.2024.00001
• Conceptual Framework • Next Articles
WANG Su-Jing1,2(), WANG Yan1,2, Li Jingting1,2, DONG Zizhao1,2, ZHANG Jianhang3, LIU Ye2,4
Received:
2023-06-25
Online:
2024-01-15
Published:
2024-06-12
Contact:
WANG Su-Jing
E-mail:wangsujing@psych.ac.cn
CLC Number:
WANG Su-Jing, WANG Yan, Li Jingting, DONG Zizhao, ZHANG Jianhang, LIU Ye. Cross-modal analysis of facial EMG in micro-expressions and data annotation algorithm[J]. Advances in Psychological Science, 2024, 32(1): 1-13.
[1] | 李晓明, 傅小兰, 邓国峰. (2008). 中文简化版PAD情绪量表在京大学生中的初步试用. 中国心理卫生杂志, 22(5), 327-329. |
[2] | Ben, X., Ren, Y., Zhang, J., Wang, S.-J., Kpalma, K., Meng, W., & Liu, Y.-J. (2021). Video-based facial micro- expression analysis: A survey of datasets, features and algorithms. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 44, pp. 5826-5846). Singapore. |
[3] | Chao, Y.-W., Vijayanarasimhan, S., Seybold, B., Ross, D. A., Deng, J., & Sukthankar, R. (2018, June). Rethinking the faster r-cnn architecture for temporal action localization. Paper presented at the meeting of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1130- 1139). Salt Lake City, UTAH. |
[4] | Darwin, C. (1872). The expression of the emotions in man and animals. London, UK: John Marry. |
[5] | Davison, A., Merghani, W., Lansley, C., Ng, C.-C., & Yap, M. H. (2018, May). Objective micro-facial movement detection using facs-based regions and baseline evaluation. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 642-649). China. |
[6] |
Davison, A. K., Lansley, C., Costen, N., Tan, K., & Yap, M. H. (2018). SAMM: A spontaneous micro-facial movement dataset. IEEE Transactions on Affective Computing, 9(1), 116-129.
doi: 10.1109/TAFFC.2016.2573832 URL |
[7] | Ding, J., Tian, Z., Lyu, X., Wang, Q., Zou, B., & Xie, H. (2019, September). Real-time micro-expression detection in unlabeled long videos using optical flow and lstm neural network. In International Conference on Computer Analysis of Images and Patterns (pp. 622-634). Springer, Cham. |
[8] | Doersch, C., Gupta, A., & Efros, A. A. (2015). Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE international conference on computer vision (pp. 1422-1430). Chile. |
[9] | Ekman, P. (2004). Emotions revealed. British Medical Journal, 328(Suppl. 5), 0405184. |
[10] |
Ekman, P., & Friesen, W. V. (1969). Nonverbal leakage and clues to deception. Psychiatry, 32(1), 88-106.
doi: 10.1080/00332747.1969.11023575 pmid: 5779090 |
[11] | Fernando, B., Bilen, H., Gavves, E., & Gould, S. (2017, July). Self-supervised video representation learning with odd-one-out networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3636-3645). Hawaii, Hawaii Convention Center. |
[12] | Gao, Y., Vedula, S. S., Reiley, C. E., Ahmidi, N., Varadarajan, B., Lin, H. C.,... Hager, G. (2014, September). Jhu-isi gesture and skill assessment working set (jigsaws): A surgical activity dataset for human motion modeling. Paper presented at the meeting of MICCAI workshop: M2cai (Vol. 3). New York, NY. |
[13] |
Gruebler, A., & Suzuki, K. (2014). Design of a wearable device for reading positive expressions from facial emg signals. IEEE Transactions on Affective Computing, 5(3), 227-237.
doi: 10.1109/T-AFFC.5165369 URL |
[14] |
Hamedi, M., Salleh, S.-H., Astaraki, M., & Noor, A. M. (2013). EMG-based facial gesture recognition through versatile elliptic basis function neural network. Biomedical Engineering Online, 12, 73.
doi: 10.1186/1475-925X-12-73 pmid: 23866903 |
[15] | Hess, U. (2009). Facial EMG. Methods in social neuroscience (pp.70-91). NY: The Guilford Press. |
[16] |
Höfling, T. T. A., Gerdes, A. B., Föhl, U., & Alpers, G. W. (2020). Read my face: Automatic facial coding versus psychophysiological indicators of emotional valence and arousal. Frontiers in Psychology, 11, 1388.
doi: 10.3389/fpsyg.2020.01388 pmid: 32636788 |
[17] |
Jing, L., & Tian, Y. (2020). Self-supervised visual feature learning with deep neural networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 4037-4058.
doi: 10.1109/TPAMI.2020.2992393 URL |
[18] | Larsson, G., Maire, M., & Shakhnarovich, G. (2017, July). Colorization as a proxy task for visual understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 6874-6883). Hawaii, Hawaii Convention Center. |
[19] |
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
doi: 10.1038/nature14539 |
[20] | Lee, P., Uh, Y., & Byun, H. (2020, April). Background suppression network for weakly-supervised temporal action localization. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 11320-11327). Vancouver, Canada. |
[21] | Lee, Y. J., Ghosh, J., & Grauman, K. (2012, June). Discovering important people and objects for egocentric video summarization. In 2012 IEEE conference on computer vision and pattern recognition (pp. 1346-1353). Providence, USA. |
[22] | Li, J., Dong, Z., Lu, S., Wang, S.-J., Yan, W.-J., Ma, Y., Liu, Y., Huang, C., & Fu, X. (2022). CAS (ME) 3: A third generation facial spontaneous micro-expression database with depth information and high ecological validity. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3), 2782-2800. |
[23] | Li, X., Cheng, S., Li, Y., Behzad, M., Shen, J., Zafeiriou, S., Pantic, M., & Zhao, G. (2022). 4DME: A spontaneous 4D micro-expression dataset with multimodalities. IEEE Transactions on Affective Computing Early Access, 1-18. https://doi.org/10.1109/TAFFC.2022.3182342 |
[24] | Li, X., Liu, S., de Mello, S., Wang, X., Kautz, J., & Yang, M.-H. (2019). Joint-task self-supervised learning for temporal correspondence. Advances in Neural Information Processing Systems, 32. |
[25] | Li, X., Pfister, T., Huang, X., Zhao, G., & Pietikäinen, M. (2013, April). A spontaneous micro-expression database: Inducement, collection and baseline. In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China. https://doi.org/10.1109/fg.2013.6553717 |
[26] | Liong, S.-T., See, J., Wong, K., & Phan, R. C.-W. (2016, November). Automatic micro-expression recognition from long video using a single spotted apex. In Computer Vision-ACCV 2016 Workshops: ACCV 2016 International Workshops (pp. 345-360). Taipei, Taiwan. |
[27] | Liu, D., Jiang, T., & Wang, Y. (2019, June). Completeness modeling and context separation for weakly supervised temporal action localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1298-1307). Long Beach, USA. |
[28] | Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., & Mei, T. (2019, June). Gaussian temporal awareness networks for action localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 344-353). Long Beach, USA. |
[29] | Moilanen, A., Zhao, G., & Pietikäinen, M. (2014, August). Spotting rapid facial movements from videos using appearance-based feature difference analysis. In Proceedings-International Conference on Pattern Recognition (pp. 1722-1727). Stockholm, Sweden. https://doi.org/10.1109/ICPR.2014.303 |
[30] | Pan, H., Xie, L., & Wang, Z. (2021, October). Spatio- temporal convolutional attention network for spotting macro-and micro-expression intervals. In Proceedings of the 1st Workshop on Facial Micro-Expression: Advanced Techniques for Facial Expressions Generation and Spotting (pp. 25-30). New York, NY. |
[31] | Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., & Efros, A. A. (2016, June). Context encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2536- 2544). Las Vegas, Nevada. |
[32] | Perusquía-Hernández, M., Dollack, F., Tan, C. K., Namba, S., Ayabe-Kanamura, S., & Suzuki, K. (2021, December). Smile action unit detection from distal wearable electromyography and computer vision. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021) (pp. 1-8). Jodhpur, India. |
[33] |
Qu, F., Wang, S.-J., Yan, W.-J., Li, H., Wu, S., & Fu, X. (2018). CAS (ME)2: A database for spontaneous macro-expression and micro-expression spotting and recognition. IEEE Transactions on Affective Computing, 9(4), 424-436.
doi: 10.1109/T-AFFC.5165369 URL |
[34] |
Rinn, W. E. (1984). The neuropsychology of facial expression: A review of the neurological and psychological mechanisms for producing facial expressions. Psychological Bulletin, 95(1), 52-77.
pmid: 6242437 |
[35] | Sato, W., Murata, K., Uraoka, Y., Shibata, K., Yoshikawa, S., & Furuta, M. (2021). Emotional valence sensing using a wearable facial EMG device. Scientific Reports, 11(1), 5757. |
[36] | Schultz, I., & Pruzinec, M. (2010). Facial expression recognition using surface electromyography (Unpublished doctoral dissertation). Karlruhe Institute of Technology. |
[37] |
Sun, B., Cao, S., Li, D., He, J., & Yu, L. (2020). Dynamic micro-expression recognition using knowledge distillation. IEEE Transactions on Affective Computing, 13(2), 1037-1043.
doi: 10.1109/TAFFC.2020.2986962 URL |
[38] | Torre, F. D. l., Simon, T., Ambadar, Z., & Cohn, J. F. (2011, October). Fast-FACS: A computer-assisted system to increase speed and reliability of manual FACS coding. In Affective Computing and Intelligent Interaction: 4th International Conference (pp. 57-66). Springer Berlin Heidelberg. |
[39] |
Vishwakarma, S., & Agrawal, A. (2013). A survey on activity recognition and behavior understanding in video surveillance. The Visual Computer, 29(10), 983-1009.
doi: 10.1007/s00371-012-0752-6 URL |
[40] |
Wang, S.-J., He, Y., Li, J., & Fu, X. (2021). MESNet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 30, 3956-3969. https://doi.org/10.1109/tip.2021.3064258
doi: 10.1109/TIP.2021.3064258 URL |
[41] |
Wang, S.-J., Li, B.-J., Liu, Y.-J., Yan, W.-J., Ou, X., Huang, X., Xu, F., & Fu, X. (2018). Micro-expression recognition with small sample size by transferring long-term convolutional neural network. Neurocomputing, 312, 251-262.
doi: 10.1016/j.neucom.2018.05.107 URL |
[42] |
Wang, S.-J., Wu, S., Qian, X., Li, J., & Fu, X. (2017). A main directional maximal difference analysis for spotting facial movements from long-term videos. Neurocomputing, 230, 382-389.
doi: 10.1016/j.neucom.2016.12.034 URL |
[43] | Xia, B., Wang, W., Wang, S., & Chen, E. (2020, October). Learning from macro-expression: A micro-expression recognition framework. In Proceedings of the 28th ACM International Conference on Multimedia (pp. 2936-2944). Lisbon, Portugal. |
[44] | Yan, W.-J., Li, X., Wang, S.-J., Zhao, G., Liu, Y.-J., Chen, Y.-H., & Fu, X. (2014). CASME II: An improved spontaneous micro-expression database and the baseline evaluation. Plos One, 9(1), Article e86041. |
[45] |
Yan, W.-J., Wu, Q., Liang, J., Chen, Y.-H., & Fu, X. (2013). How fast are the leaked facial expressions: The duration of micro-expressions. Journal of Nonverbal Behavior, 37(4), 217-230.
doi: 10.1007/s10919-013-0159-8 URL |
[46] | Yan, W.-J., Wu, Q., Liu, Y.-J., Wang, S.-J., & Fu, X. (2013, April). CASME database: A dataset of spontaneous micro-expressions collected from neutralized faces. In 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Shanghai, China. |
[47] | Yang, B., Wu, J., Zhou, Z., Komiya, M., Kishimoto, K., Xu, J., Nonaka, K., Horiuchi, T., Komorita, S., Hattori, G., Naito, S., & Takishima, Y. (2021, October). Facial action unit-based deep learning framework for spotting macro-and micro-expressions in long video sequences. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 4794-4798). Chengdu, China. |
[48] | Yu, W.-W., Jiang, J., & Li, Y.-J. (2021, October). LSSNet: A two-stream convolutional neural network for spotting macro-and micro-expression in long videos. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 4745-4749). Chengdu, China. |
[1] | SONG Lihong, WANG Wenyi, DING Shuliang. Q-matrix theory and its applications in cognitive diagnostic assessment [J]. Advances in Psychological Science, 2024, 32(6): 1010-1033. |
[2] | ZHAO Jiawei, XIA Tao, HU Chuanpeng. The status quo, challenges, and recommendations of pre-registration in psychological science [J]. Advances in Psychological Science, 2024, 32(5): 715-727. |
[3] | LUO Xiaohui, LIU Hongyun. Estimating test reliability of intensive longitudinal studies: Perspectives on multilevel structure and dynamic nature [J]. Advances in Psychological Science, 2024, 32(4): 700-714. |
[4] | CHEN Ping, DAI Yi, HUANG Yingshi. Test mode effect: Sources, detection, and applications [J]. Advances in Psychological Science, 2023, 31(10): 1966-1980. |
[5] | BAO Han-Wu-Shuang, WANG Zi-Xi, CHENG Xi, SU Zhan, YANG Ying, ZHANG Guang-Yao, WANG Bo, CAI Hua-Jian. Using word embeddings to investigate human psychology: Methods and applications [J]. Advances in Psychological Science, 2023, 31(6): 887-904. |
[6] | LIU Yue, FANG Fan, LIU Hongyun, LEI Yi. Model construction and sample size planning for mixed-effects location-scale models [J]. Advances in Psychological Science, 2023, 31(6): 958-969. |
[7] | FANG Junyan, WEN Zhonglin. The endogeneity issue in longitudinal research: Sources and solutions [J]. Advances in Psychological Science, 2023, 31(4): 507-518. |
[8] | HUANG Shunsen, CHEN Haojie, LAI Xiaoxiong, DAI Xinran, WANG Yun. Multiverse-style analysis: Introduction and application [J]. Advances in Psychological Science, 2023, 31(2): 196-208. |
[9] | CHEN Xinwen, LI Hongjie, DING Yulong. Exploring the neural representation patterns in event-related EEG/MEG signals: The methods based on classification decoding and representation similarity analysis [J]. Advances in Psychological Science, 2023, 31(2): 173-195. |
[10] | ZHU Xun, GU Xin. Evaluation of predictors’ relative importance: Methods and applications [J]. Advances in Psychological Science, 2023, 31(1): 145-158. |
[11] | FANG Jie, WEN Zhonglin. Moderation analysis for longitudinal data [J]. Advances in Psychological Science, 2022, 30(11): 2461-2472. |
[12] | ZHAI Hongkun, LI Qiang, WEI Xiaowei. Power analysis in structural equation modeling: Principles and methods [J]. Advances in Psychological Science, 2022, 30(9): 2117-2130. |
[13] | WANG Yang, WEN Zhonglin, WANG Huihui, GUAN Fang. The second type of mediated moderation [J]. Advances in Psychological Science, 2022, 30(9): 2131-2142. |
[14] | WEN Zhonglin, XIE Jinyan, FANG Jie, WANG Yifan. Methodological research on hypothesis test and related issues in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1667-1681. |
[15] | WEN Zhonglin, CHEN Hongxi, FANG Jie, YE Baojuan, CAI Baozhen. Research on test reliability in China’s mainland from 2001 to 2020 [J]. Advances in Psychological Science, 2022, 30(8): 1682-1691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||