Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (6): 958-969.doi: 10.3724/SP.J.1042.2023.00958
• Conceptual Framework • Previous Articles Next Articles
LIU Yue1, FANG Fan1, LIU Hongyun2,3(), LEI Yi1()
Received:
2022-12-08
Online:
2023-06-15
Published:
2023-03-07
CLC Number:
LIU Yue, FANG Fan, LIU Hongyun, LEI Yi. Model construction and sample size planning for mixed-effects location-scale models[J]. Advances in Psychological Science, 2023, 31(6): 958-969.
模型 | 均值模型 | 方差模型 | ||||||
---|---|---|---|---|---|---|---|---|
固定效应 | 随机效应 | 固定效应 | 随机效应 | |||||
截距 | 斜率 | 截距 | 斜率 | 截距 | 斜率 | 截距 | 斜率 | |
均值模型的选择与建构 | ||||||||
模型1 | √ | √ | √ | |||||
模型2 | √ | √ | √ | √ | ||||
模型3 | √ | √ | √ | √ | √ | |||
方差模型的选择与建构 | ||||||||
模型4 | √ | √ | √ | √ | √ | √ | ||
模型5 | √ | √ | √ | √ | √ | √ | √ | |
模型6 | √ | √ | √ | √ | √ | √ | √ | √ |
模型 | 均值模型 | 方差模型 | ||||||
---|---|---|---|---|---|---|---|---|
固定效应 | 随机效应 | 固定效应 | 随机效应 | |||||
截距 | 斜率 | 截距 | 斜率 | 截距 | 斜率 | 截距 | 斜率 | |
均值模型的选择与建构 | ||||||||
模型1 | √ | √ | √ | |||||
模型2 | √ | √ | √ | √ | ||||
模型3 | √ | √ | √ | √ | √ | |||
方差模型的选择与建构 | ||||||||
模型4 | √ | √ | √ | √ | √ | √ | ||
模型5 | √ | √ | √ | √ | √ | √ | √ | |
模型6 | √ | √ | √ | √ | √ | √ | √ | √ |
步骤 | 数据收集前:样本量规划(研究2, 研究3) | |||
---|---|---|---|---|
模型确定 | 模型不确定 | |||
效应量确定 | 效应量不确定 | 效应量确定 | 效应量不确定 | |
第1步 | 根据先验信息确定1个效应量的值; | 定义效应量参数先验分布, 并从中抽取S个效应量的值; | 根据先验信息确定1个效应量的值; | 定义效应量参数先验分布, 并从中抽取S个效应量的值; |
第2步 | 基于待拟合模型生成R个样本量为N的样本, 共可得到R个样本; | 基于待拟合模型生成R个样本量为N的样本, 共可得到R×S个样本; | 基于备选模型中最复杂模型生成R个样本量为N的样本, 共可得到R个样本; | 基于备选模型中最复杂模型生成R个样本量为N的样本, 共可得到R×S个样本; |
第3步 | 基于待拟合模型拟合数据, 计算检验力和效应量准确性; | 基于待拟合模型拟合数据, 计算检验力和效应量准确性; | 基于各备选模型拟合数据, 并根据贝叶斯拟合指标(研究1)选择最佳模型的结果用于计算检验力和效应量准确性; | 基于各备选模型拟合数据, 并根据贝叶斯拟合指标(研究1)选择最佳模型的结果用于计算检验力和效应量准确性; |
第4步 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的值。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的分布。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的值。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的分布。 |
步骤 | 数据收集后:模型建构(研究1) | |||
模型确定 | 模型不确定 | |||
第1步 | 直接拟合模型。 | 根据拟合指标确定最佳的均值模型; | ||
第2步 | 根据拟合指标确定最佳的方差模型; | |||
第3步 | 拟合模型选择得到的最佳MELSM。 |
步骤 | 数据收集前:样本量规划(研究2, 研究3) | |||
---|---|---|---|---|
模型确定 | 模型不确定 | |||
效应量确定 | 效应量不确定 | 效应量确定 | 效应量不确定 | |
第1步 | 根据先验信息确定1个效应量的值; | 定义效应量参数先验分布, 并从中抽取S个效应量的值; | 根据先验信息确定1个效应量的值; | 定义效应量参数先验分布, 并从中抽取S个效应量的值; |
第2步 | 基于待拟合模型生成R个样本量为N的样本, 共可得到R个样本; | 基于待拟合模型生成R个样本量为N的样本, 共可得到R×S个样本; | 基于备选模型中最复杂模型生成R个样本量为N的样本, 共可得到R个样本; | 基于备选模型中最复杂模型生成R个样本量为N的样本, 共可得到R×S个样本; |
第3步 | 基于待拟合模型拟合数据, 计算检验力和效应量准确性; | 基于待拟合模型拟合数据, 计算检验力和效应量准确性; | 基于各备选模型拟合数据, 并根据贝叶斯拟合指标(研究1)选择最佳模型的结果用于计算检验力和效应量准确性; | 基于各备选模型拟合数据, 并根据贝叶斯拟合指标(研究1)选择最佳模型的结果用于计算检验力和效应量准确性; |
第4步 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的值。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的分布。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的值。 | 整合结果, 得到样本量为N时的检验力和效应量准确性指标的分布。 |
步骤 | 数据收集后:模型建构(研究1) | |||
模型确定 | 模型不确定 | |||
第1步 | 直接拟合模型。 | 根据拟合指标确定最佳的均值模型; | ||
第2步 | 根据拟合指标确定最佳的方差模型; | |||
第3步 | 拟合模型选择得到的最佳MELSM。 |
[1] |
胡传鹏, 王非, 过继成思, 宋梦迪, 隋洁, 彭凯平. (2016). 心理学研究中的可重复性问题:从危机到契机. 心理科学进展, 24(9), 1504-1518.
doi: 10.3724/SP.J.1042.2016.01504 |
[2] | 温忠麟, 范息涛, 叶宝娟, 陈宇帅. (2016). 从效应量应有的性质看中介效应量的合理性. 心理学报, 48(4), 435-443. |
[3] |
Anderson, S. F., Kelley, K., & Maxwell, S. E. (2017). Sample-size planning for more accurate statistical power: A method adjusting sample effect sizes for publication bias and uncertainty. Psychological Science, 28(11), 1547-1562.
doi: 10.1177/0956797617723724 pmid: 28902575 |
[4] |
Arend, M. G., & Schäfer, T. (2019). Statistical power in two-level models: A tutorial based on Monte Carlo simulation. Psychological Methods, 24(1), 1-19.
doi: 10.1037/met0000195 pmid: 30265048 |
[5] |
Asparouhov, T., & Muthén, B. (2021). Advances in Bayesian model fit evaluation for structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 28(1), 1-14.
doi: 10.1080/10705511.2020.1764360 URL |
[6] |
Baird, R., & Maxwell, S. E. (2016). Performance of time-varying predictors in multilevel models under an assumption of fixed or random effects. Psychological Methods, 21(2), 175-188.
doi: 10.1037/met0000070 pmid: 26950731 |
[7] |
Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language, 68, 255-278.
doi: 10.1016/j.jml.2012.11.001 URL |
[8] |
Blozis, S. A., McTernan, M., Harring, J. R., & Zheng, Q. (2020). Two-part mixed-effects location scale models. Behavior Research Methods, 52(5), 1836-1847.
doi: 10.3758/s13428-020-01359-7 |
[9] |
Brauer, M., & Curtin, J. J. (2018). Linear mixed-effects models and the analysis of nonindependent data: A unified framework to analyze categorical and continuous independent variables that vary within-subjects and/or within-items. Psychological Methods, 23(3), 389-411.
doi: 10.1037/met0000159 pmid: 29172609 |
[10] | Brunton-Smith, I., Sturgis, P., & Leckie, G. (2017). Detecting and understanding interviewer effects on survey data by using a cross-classified mixed effects location-scale model. Journal of the Royal Statistical Society: Series A (Statistics in Society), 180(2), 551-568. |
[11] |
Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects models: A tutorial. Journal of Cognition, 1(1), 9. https://doi.org/10.5334/joc.10
doi: 10.5334/joc.10 URL pmid: 31517183 |
[12] | Bürkner, P. C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1-28. |
[13] |
Courvoisier, D., Walls, T. A., Cheval, B., & Hedeker, D. (2019). A mixed-effects location scale model for time-to- event data: A smoking behavior application. Addictive Behaviors, 94, 42-49.
doi: S0306-4603(18)30961-4 pmid: 30181016 |
[14] |
Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling: A Multidisciplinary Journal, 22(3), 327-351.
doi: 10.1080/10705511.2014.937849 URL |
[15] |
Faul, F., Erdfelder, E., Lang, A. -G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175-191.
doi: 10.3758/BF03193146 URL |
[16] | Gelman, A., Meng, X. L., & Stern, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica, 6(4), 733-760. |
[17] |
González, B. J., de Boeck, P., & Tuerlinckx, F. (2014). Linear mixed modelling for data from a double mixed factorial design with covariates: A case-study on semantic categorization response times. Journal of the Royal Statistical Society: Series C, 63(2), 289-302.
doi: 10.1111/rssc.12031 URL |
[18] |
Halsey, L. G., Curran-Everett, D., Vowler, S. L., & Drummond, G. B. (2015). The fickle p value generates irreproducible results. Nature Methods, 12(3), 179-185.
doi: 10.1038/nmeth.3288 pmid: 25719825 |
[19] |
Hedeker, D., Mermelstein, R. J., & Demirtas, H. (2008). An application of a mixed-effects location scale model for analysis of ecological momentary assessment (EMA) data. Biometrics, 64(2), 627-634.
doi: 10.1111/j.1541-0420.2007.00924.x pmid: 17970819 |
[20] |
Hedeker, D., Mermelstein, R. J., Demirtas, H., & Berbaum, M. L. (2016). A mixed-effects location-scale model for ordinal questionnaire data. Health Services and Outcomes Research Methodology, 16(3), 117-131.
pmid: 27570476 |
[21] |
Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019). A tutorial on testing hypotheses using the Bayes factor. Psychological Methods, 24(5), 539-556.
doi: 10.1037/met0000201 pmid: 30742472 |
[22] | Hox, J. J., Moerbeek, M., & van de Schoot, R. (2017). Multilevel analysis: Techniques and applications (3rd ed.). New York, Routledge. |
[23] | Judd, C. M., Westfall, J., & Kenny, D. A. (2012). Treating stimuli as a random factor in social psychology: A new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality & Social Psychology, 103(1), 54-69. |
[24] |
Judd, C. M., Westfall, J., & Kenny, D. A. (2017). Experiments with more than one random factor: designs, analytic models, and statistical power. Annual Review of Psychology, 68(1), 601-625.
doi: 10.1146/psych.2017.68.issue-1 URL |
[25] | Lee, W. Y. (2018). Generalized linear mixed effect models with crossed random effects for experimental designs having non-repeated items: Model specification and selection (Unpublished doctorial dissertation). Vanderbilt University. |
[26] |
Lin, X., Mermelstein, R. J., & Hedeker, D. (2018). A 3-level Bayesian mixed effects location scale model with an application to ecological momentary assessment data. Statistics in Medicine, 37(13), 2108-2119.
doi: 10.1002/sim.7627 pmid: 29484693 |
[27] |
Liu, X., & Wang, L. (2019). Sample size planning for detecting mediation effects: A power analysis procedure considering uncertainty in effect size estimates. Multivariate Behavioral Research, 54(6), 822-839.
doi: 10.1080/00273171.2019.1593814 pmid: 30983425 |
[28] | Martínez-Huertas, J. Á., Olmos, R., & Ferrer, E. (2021). Model selection and model averaging for mixed-effects models with crossed random effects for subjects and items. Multivariate Behavioral Research, 59(4), 390-412. |
[29] |
Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and power in linear mixed models. Journal of Memory and Language, 94, 305-315.
doi: 10.1016/j.jml.2017.01.001 URL |
[30] |
Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9(2), 147-163.
doi: 10.1037/1082-989X.9.2.147 pmid: 15137886 |
[31] |
Nosek, B. A., Hardwicke, T. E., Moshontz, H., Allard, A., Corker, K. S., Almenberg, A. D.,... Vazire, S. (2022). Replicability, robustness, and reproducibility in psychological science. Annual Review of Psychology, 73, 719-748.
doi: 10.1146/psych.2022.73.issue-1 URL |
[32] | Park, J., & Pek, J. (2022). Conducting Bayesian-classical hybrid power analysis with R package hybridpower. Multivariate Behavioral Research. https://doi.org/10.1080/00273171.2022.2038056 |
[33] |
Pek, J., & Park, J. (2019). Complexities in power analysis: Quantifying uncertainties with a Bayesian-classical hybrid approach. Psychological Methods, 24(5), 590-605.
doi: 10.1037/met0000208 pmid: 30816728 |
[34] |
Rast, P., & Ferrer, E. (2018). A mixed-effects location scale model for dyadic interactions. Multivariate Behavioral Research, 53(5), 756-775.
doi: 10.1080/00273171.2018.1477577 pmid: 30395725 |
[35] |
Schultzberg, M., & Muthén, B. (2018). Number of subjects and time points needed for multilevel time-series analysis: A simulation study of dynamic structural equation modeling. Structural Equation Modeling: A Multidisciplinary Journal, 25(4), 495-515.
doi: 10.1080/10705511.2017.1392862 URL |
[36] |
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 64(4), 583-639.
doi: 10.1111/1467-9868.00353 URL |
[37] |
Thoemmes, F., MacKinnon, D. P., & Reiser, M. R. (2010). Power analysis for complex mediational designs using Monte Carlo methods. Structural Equation Modeling, 17(3), 510-534.
doi: 10.1080/10705511.2010.489379 URL |
[38] |
van Erp, S., & Browne, W. J. (2021). Bayesian multilevel structural equation modeling: An investigation into robust prior distributions for the doubly latent categorical model. Structural Equation Modeling: A Multidisciplinary Journal, 28(6), 875-893.
doi: 10.1080/10705511.2021.1915146 URL |
[39] |
Walters, R. W., Hoffman, L., & Templin, J. (2018). The power to detect and predict individual differences in intra-individual variability using the mixed-effects location-scale model. Multivariate Behavioral Research, 53(3), 360-374.
doi: 10.1080/00273171.2018.1449628 pmid: 29565691 |
[40] |
Wasserstein, R. L., & Lazar, N. A. (2016). The ASA statement on p-values: Context, process, and purpose. The American Statistician, 70(2), 129-133.
doi: 10.1080/00031305.2016.1154108 URL |
[41] |
Williams, D. R., Martin, S. R., Liu, S., & Rast, P. (2020). Bayesian multivariate mixed-effects location scale modeling of longitudinal relations among affective traits, states, and physical activity. European Journal of Psychological Assessment, 36(6), 981-997.
doi: 10.1027/1015-5759/a000624 pmid: 34764628 |
[42] |
Williams, D. R., Martin, S. R., & Rast, P. (2022). Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models. Behavior Research Methods, 54(3), 1272-1290.
doi: 10.3758/s13428-021-01646-x |
[43] |
Williams, D. R., Mulder, J., Rouder, J. N., & Rast, P. (2021). Beneath the surface: Unearthing within-person variability and mean relations with Bayesian mixed models. Psychological Methods, 26(1), 74-89.
doi: 10.1037/met0000270 URL |
[44] |
Williams, D. R., Zimprich, D. R., & Rast, P. (2019). A Bayesian nonlinear mixed-effects location scale model for learning. Behavior Research Methods, 51(5), 1968-1986.
doi: 10.3758/s13428-019-01255-9 pmid: 31069713 |
[45] |
Zhang, Z. (2014). Monte Carlo based statistical power analysis for mediation models: Methods and software. Behavior Research Methods, 46(4), 1184-1198.
doi: 10.3758/s13428-013-0424-0 pmid: 24338601 |
[1] | ZHU Yingying; RU Taotao; ZHOU Guofu. The Nonvisual Effect of Lighting and Its Neural Mechanism [J]. Advances in Psychological Science, 2015, 23(8): 1348-1360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||