Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (9): 1665-1675.doi: 10.3724/SP.J.1042.2023.01665
• Original article • Previous Articles Next Articles
Received:
2021-11-17
Online:
2023-09-15
Published:
2023-05-31
Contact:
WANG Lihui
E-mail:lihui.wang@sjtu.edu.cn
CLC Number:
WANG Lihui. The global Inhibitory effect within the motor system in response control: Evidence, mechanism and controversy[J]. Advances in Psychological Science, 2023, 31(9): 1665-1675.
[1] |
胡传鹏, 孔祥祯, Wagenmakers, E. -J., Ly, A., 彭凯平. (2018). 贝叶斯因子及其在JASP中的实现. 心理科学进展, 26(6), 951-965.
doi: 10.3724/SP.J.1042.2018.00951 |
[2] |
苏波波, 郑美红. (2019). 物质相关线索对成瘾者反应抑制的影响. 心理科学进展, 27(11), 1863-1874.
doi: 10.3724/SP.J.1042.2019.01863 |
[3] | 王琰, 蔡厚德. (2010). 反应抑制的心理加工模型与神经机制. 心理科学进展, 18(2), 220-229. |
[4] |
赵鑫, 刘晓婷, 昝香怡, 周爱保. (2015). 吸烟对反应抑制的影响:证据、原因和争论. 心理科学进展, 23(6), 1031-1040.
doi: 10.3724/SP.J.1042.2015.01031 |
[5] | Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68. |
[6] |
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K.. (2016). Frontosubthalamic circuits for control of action and cognition. Journal of Neuroscience, 36(45), 11489-11495.
pmid: 27911752 |
[7] |
Aron, A. R. & Verbruggen, F. (2008). Stop the presses: Dissociating a selective from a global mechanism for stopping. Psychological Science, 19(11), 1146-1153.
doi: 10.1111/j.1467-9280.2008.02216.x pmid: 19076487 |
[8] |
Baca, S. M., Marin-Burgin, A., Wagenaar, D. A., & Kristan, W. B. Jr. (2008). Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron, 57(2), 276-289.
doi: 10.1016/j.neuron.2007.11.028 pmid: 18215624 |
[9] |
Badry, R., Mima, T., Aso, T., Nakatsuka, M., Abe, M., Fathi, D., … Fukuyama, H. (2009). Suppression of human cortico-motoneuronal excitability during the stop-signal task. Clinical Neurophysiology, 120(9), 1717-1723.
doi: 10.1016/j.clinph.2009.06.027 pmid: 19683959 |
[10] |
Bari, A., & Robbins, T. W. (2013). Inhibition and impulsivity: Behavioral and neural basis of response control. Progress in Neurobiology, 108, 44-79.
doi: 10.1016/j.pneurobio.2013.06.005 pmid: 23856628 |
[11] |
Benikos, N., Johnstone, S. J., & Roodenrys, S. J. (2013). Short-term training in the Go/Nogo task: Behavioural and neural changes depend on task demands. International Journal of Psychophysiology, 87(3), 301-312.
doi: 10.1016/j.ijpsycho.2012.12.001 pmid: 23247193 |
[12] | Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E. -J., Berk, R., … Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behavior, 2(1), 6-10. |
[13] |
Bestmann, S., & Duque, J. (2016). Transcranial magnetic stimulation: Decomposing the processes underlying action preparation. The Neuroscientist, 22(4), 392-405.
doi: 10.1177/1073858415592594 URL |
[14] |
Bestmann, S., & Krakauer, J. W. (2015). The uses and interpretations of the motor-evoked potential for understanding behaviour. Experimental Brain Research, 233(3), 679-689.
doi: 10.1007/s00221-014-4183-7 pmid: 25563496 |
[15] |
Botvinick, M., & Braver, T. (2015). Motivation and cognitive control: From behavior to neural mechanism. Annual Reviews of Psychology, 66, 83-113.
doi: 10.1146/psych.2015.66.issue-1 URL |
[16] |
Boucher, L., Palmeri, T. J., Logan, G. D., & Schall, J. D. (2007). Inhibitory control in mind and brain: An interactive race model of countermanding saccades. Psychological Review, 114(2), 376-397.
doi: 10.1037/0033-295X.114.2.376 pmid: 17500631 |
[17] |
Bowley, C., Faricy, C., Hegarty, B., Johnstone, S. J., Smith, J. L., Kelly, P. J., & Rushby, J. A. (2013). The effects of inhibitory control training on alcohol consumption, implicit alcohol-related cognitions and brain electrical activity. International Journal of Psychophysiology, 89(3), 342-348.
doi: 10.1016/j.ijpsycho.2013.04.011 pmid: 23623953 |
[18] |
Braver, T. S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106-113.
doi: 10.1016/j.tics.2011.12.010 pmid: 22245618 |
[19] |
Bundt, C., Abrahamse, E. L., Braem, S., Brass, M., & Notebaert, W. (2016). Reward anticipation modulates primary motor cortex excitability during task preparation. Neuroimage, 142, 483-488.
doi: S1053-8119(16)30320-2 pmid: 27397625 |
[20] | Cahart, M., Amad, A., Draper, S. B., Lowry, R. G., Marino, L., Carey, C., … Williams, S. C. R. (2022). The effect of learning to drum on behavior and brain function in autistic adolescents. Proceedings of National Academy of Sciences of the U. S. A., 119(23), Article e2106244119. https://doi.org/10.1073/pnas.2106244119 |
[21] | Cai, W., Oldenkamp, C. L., & Aron, A. R. (2012). Stopping speech suppresses the task-irrelevant hand. Brain & Language, 120(3), 412-415. |
[22] |
Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51-62.
doi: 10.1038/nrn3136 |
[23] |
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33(5), 631-646.
doi: 10.1016/j.neubiorev.2008.08.016 URL |
[24] |
Chance, F. S., Abbott, L. F., & Reyes, A. D. (2002). Gain modulation from background synaptic input. Neuron, 35(4), 773-782.
doi: 10.1016/s0896-6273(02)00820-6 pmid: 12194875 |
[25] |
Coxon, J. P., Stinear, C. M., & Byblow, W. D. (2006). Intracortical inhibition during volitional inhibition of prepared action. Journal of Neurophysiology, 95(6), 3371-3383.
doi: 10.1152/jn.01334.2005 pmid: 16495356 |
[26] | Denison, R. N., Carrasco, M., & Heeger, D. J. (2021). A dynamic normalization model of temporal attention. Nature Human Behavior, 5(12), 1674-1685. |
[27] |
Duque, J., Greenhouse, I., Labruna, L., & Ivry, R. B. (2017). Physiological markers of motor inhibition during human behavior. Trends in Neurosciences, 40(4), 219-236.
doi: S0166-2236(17)30027-9 pmid: 28341235 |
[28] |
Duque, J., Labruna, L., Verset, S., Olivier, E., & Ivry, R. B. (2012). Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. Journal of Neuroscience, 32(3), 806-816.
doi: 10.1523/JNEUROSCI.4299-12.2012 pmid: 22262879 |
[29] |
Duque, J., Lew, D., Mazzocchio, R., Olivier, E., & Ivry, R. (2010). Evidence for two concurrent inhibitory mechanisms during response preparation. Journal of Neuroscience, 30(10), 3793-3802.
doi: 10.1523/JNEUROSCI.5722-09.2010 pmid: 20220014 |
[30] | Enge, S., Behnke, A., Fleischhauer, M., Kuttler, L., Kliegel, M., & Strobel, A. (2014). No evidence for true training and transfer effects after inhibitory control training in young healthy adults. Journal of Experimental Psychology: Learning, Memory, & Cognition, 40(4), 987-1001. |
[31] |
Fisher, R. J., Nakamura, Y., Bestmann, S., Rothwell, J. C., & Bostock, H. (2002). Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Experimental Brain Research, 143(2), 240-248.
doi: 10.1007/s00221-001-0988-2 pmid: 11880900 |
[32] |
Freeman, S. M., & Aron, A. R. (2016). Withholding a reward-driven action: Studies of the rise and fall of motor activation and the effect of cognitive depletion. Journal of Cognitive Neuroscience, 28(2), 237-251.
doi: 10.1162/jocn_a_00893 pmid: 26469745 |
[33] |
Freeman, S. M., Razhas, I., & Aron, A. R. (2014). Top-down response suppression mitigates action tendencies triggered by a motivating stimulus. Current Biology, 24(2), 212-216.
doi: 10.1016/j.cub.2013.12.019 pmid: 24412209 |
[34] |
Greenhouse, I., Sias, A., Labruna, L., & Ivry, R. B. (2015). Nonspecific inhibition of the motor system during response preparation. Journal of Neuroscience, 35(30), 10675-10684.
doi: 10.1523/JNEUROSCI.1436-15.2015 pmid: 26224853 |
[35] |
Huang, X., Chen, Y. Y., Shen, Y., Cao, X., Li, A., Liu, Q., … Yuan, T. F. (2017). Methamphetamine abuse impairs motor cortical plasticity and function. Molecular Psychiatry, 22(9), 1274-1281.
doi: 10.1038/mp.2017.143 pmid: 28831198 |
[36] |
Klein, P. A., Petitjean, C., Olivier, E., & Duque, J. (2014). Top-down suppression of incompatible motor activations during response selection under conflict. Neuroimage, 86, 138-149
doi: 10.1016/j.neuroimage.2013.08.005 URL |
[37] |
Labruna, L., Lebon, F., Duque, J., Klein, P. A., Cazare, C., & Ivry, R. B. (2014). Generic inhibition of the selected movement and constrained inhibition of nonselected movements during response preparation. Journal of Cognitive Neuroscience, 26(2), 269-278.
doi: 10.1162/jocn_a_00492 pmid: 24047388 |
[38] | Logan, G. D. (1994). On the ability to inhibit thought and action:A users’ guide to the stop signal paradigm. In D. Dagenbach & T. H. Carr (Eds.), Inhibitory processes in attention, memory, & language (pp. 189-239). San Diego: Academic Press. |
[39] |
Louie, K., Khaw, M. W., & Glimcher, P. W. (2013). Normalization is a general neural mechanism for context- dependent decision making. Proceedings of National Academy of Sciences of the U. S. A., 110(15), 6139-6144.
doi: 10.1073/pnas.1217854110 URL |
[40] |
Majid, D. S. A., Cai, W., George, J. S., Verbruggen, F., & Aron, A. R. (2012). Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cerebral Cortex, 22(2), 363-371.
doi: 10.1093/cercor/bhr112 URL |
[41] | Miyazaki, A., Okuyama, T., Mori, H., Sato, K., Ichiki, M., & Nouchi, R. (2020). Drum communication program intervention in older adults with cognitive impairment and dementia at nursing home: Preliminary evidence from pilot randomized controlled trial. Frontiers in Aging Neuroscience, 12, Article 142. https://doi.org/10.3389/fnagi.2020.00142 |
[42] |
Ohshiro, T., Angelaki, D. E., & DeAngelis, G. C. (2017). A neural signature of divisive normalization at the level of multisensory integration in primate cortex. Neuron, 95(2), 399-411.
doi: S0896-6273(17)30595-0 pmid: 28728025 |
[43] |
Quoilin, C., Wilhelm, E., Maurage, P., de Timary, P., & Duque, J. (2018). Deficient inhibition in alcohol- dependence: Let’s consider the role of the motor system! Neuropsychopharmacology, 43(9), 1851-1858.
doi: 10.1038/s41386-018-0074-0 |
[44] |
Reynolds, J. H., & Heeger, D. J. (2009). The normalization model of attention. Neuron, 61(2), 168-185.
doi: 10.1016/j.neuron.2009.01.002 pmid: 19186161 |
[45] | Ridderinkhof, K. R. (2002). Activation and suppression in conflict tasks:Empirical clarification through distributional analyses. In W. Prinz & B. Hommel (Eds.), Mechanisms in perception and action (pp. 494-519). Oxford: Oxford University Press. |
[46] |
Salinas, E., & Sejnowski, T. J. (2001). Gain modulation in the central nervous system: Where behavior, neurophysiology, and computation meet. The Neuroscientist, 7(5), 430-440.
doi: 10.1177/107385840100700512 URL |
[47] |
Salzer, Y., de Hollander, G., & Forstmann, B. U. (2017). Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach. Neuroscience & Biobehavioral Reviews, 77, 48-57.
doi: 10.1016/j.neubiorev.2017.02.023 URL |
[48] | Shen, Y., Cao, X., Shan, C., Dai, W., & Yuan, T. F. (2017). Heroin addiction impairs human cortical plasticity. Biological Psychiatry, 81(7), e49-e50. |
[49] |
van Campen, A.D., Keuken, M. C., van den Wildenberg, W. P. M.,& Ridderinkhof, K. R. (2014). TMS over M1 reveals expression and selective suppression of conflicting action impulses. Journal of Cognitive Neuroscience, 26(1), 1-15.
doi: 10.1162/jocn_a_00482 pmid: 24047384 |
[50] |
van den Wildenberg, W. P. M., Burle, B., Vidal, F., van der Molen, M. W., Ridderinkhof, K. R.., & Hasbroucq, T. (2010). Mechanisms and dynamics of cortical motor inhibition in the stop-signal paradigm: A TMS study. Journal of Cognitive Neuroscience, 22(2), 225-239.
doi: 10.1162/jocn.2009.21248 pmid: 19400674 |
[51] |
Wagenmakers, E., Love, J., Marsmann, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76.
doi: 10.3758/s13423-017-1323-7 URL |
[52] |
Wang, L., Chang, W., Krebs, R. M., Boehler, C. N., Theeuwes, J., & Zhou, X. (2019). Neural dynamics of reward-induced response activation and inhibition. Cerebral Cortex, 29(9), 3961-3976.
doi: 10.1093/cercor/bhy275 |
[53] |
Wang, L., Luo, X., Yuan, T. F., & Zhou, X. (2021). Reward facilitates response conflict resolution via global motor inhibition: Electromyography evidence. Psychophysiology, 58(10), e13896. https://doi.org/10.1111/psyp.13896
doi: 10.1111/psyp.v58.10 URL |
[54] | Wang, Y., Braver, T. S., Yin, S., Hu, X., Wang, X., & Chen, A. (2019). Reward improves response inhibition by enhancing attentional capture. Social Cognitive & Affective Neuroscience, 14(1), 35-45. |
[55] |
Wessel, J. R., & Aron, A. R. (2017). On the globality of motor suppression: Unexpected events and their influence on behavior and cognition. Neuron, 93(2), 259-280.
doi: S0896-6273(16)30955-2 pmid: 28103476 |
[56] |
Wessel, J. R., Reynoso, H. S., & Aron, A. R. (2013). Saccade suppression exerts global effects on the motor system. Journal of Neurophysiology, 110(4), 883-890.
doi: 10.1152/jn.00229.2013 pmid: 23699058 |
[57] |
Xu, J., Westrick, Z., & Ivry, R. B. (2015). Selective inhibition of a multicomponent response can be achieved without cost. Journal of Neurophysiology, 113(2), 455-465.
doi: 10.1152/jn.00101.2014 pmid: 25339712 |
[58] |
Zhu, P., Frank, T., & Friedrich, R. W. (2013). Equalization of odor representations by a network of electrically coupled inhibitory interneurons. Nature Neuroscience, 16(11), 1678-1686.
doi: 10.1038/nn.3528 pmid: 24077563 |
[1] | CAI Xiao, ZHANG Qingfang. The integration mechanisms of feedforward and feedback control in speech motor system [J]. Advances in Psychological Science, 2020, 28(4): 588-603. |
[2] | LI Heng. Implicit space-time mappings on the front and back axis and their influencing factors [J]. Advances in Psychological Science, 2018, 26(6): 975-983. |
[3] | CHEN Jie, LIU Lei, WANG Rong, SHEN Haizhou. The effect of musical training on executive functions [J]. Advances in Psychological Science, 2017, 25(11): 1854-1864. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||