Advances in Psychological Science ›› 2023, Vol. 31 ›› Issue (9): 1642-1664.doi: 10.3724/SP.J.1042.2023.01642
• Original article • Previous Articles Next Articles
ZHANG Fengxiang1, CHEN Meixuan1, PU Yi2(), KONG Xiang-Zhen1,3()
Received:
2023-01-02
Online:
2023-09-15
Published:
2023-05-31
Contact:
PU Yi, KONG Xiang-Zhen
E-mail:yi.pu@ae.mpg.de;xiangzhen.kong@zju.edu.cn
CLC Number:
ZHANG Fengxiang, CHEN Meixuan, PU Yi, KONG Xiang-Zhen. Individual differences in spatial navigation: A multi-scale perspective[J]. Advances in Psychological Science, 2023, 31(9): 1642-1664.
范式名称 | 测试类型 | 基本介绍 | 主要参考文献 | 应用举例 |
---|---|---|---|---|
圣芭芭拉方向感量表 | 空间导航能力 | 自我报告式问卷, 共15道题目, 综合衡量出个体在环境尺度下更新和维持方向的能力、学习空间布局的能力以及寻路能力等 | Hegarty et al., ( | 男性的得分显著高于女性(Kong, Huang, et al., |
导航策略量表 | 空间导航策略 | 自我报告式问卷, 共14道题目, 创建场景要求参与者考虑他们使用各项策略的程度, 进而将导航策略分为定位策略(orientation strategy)和路线策略(route strategy)。 | Lawton ( | 女性更常使用路线策略(Lawton & Kallai, |
空间焦虑量表 | 空间焦虑特质 | 自我报告式问卷, 包含8个可能让参与者产生焦虑的寻路情景 | Lawton ( Lawton & Kallai ( | 女性的空间焦虑程度更高, 且空间焦虑程度与空间导航能力呈反比(Lawton, |
成人空间焦虑量表 | 空间焦虑特质 | 自我报告式问卷, 包含想象(Imagery)、操作(Manipulation)和导航(Navigation)三个分量表, 要求参与者根据所给的24种空间加工相关情景对焦虑程度进行打分 | Lyons et al., ( | 女性三种空间加工的焦虑程度均高于男性(Sokolowski et al., |
真实环境导航范式 | 空间导航能力 | 在真实环境下(如室内、街道、公园等)学习路线后完成环境知识相关测验(如:路线重复任务、距离估计任务、指向任务、地图绘制任务等) | Barrash ( | 相比较年轻人, 老年人的各项表现要更差(Muffato et al., |
虚拟水迷宫测试 | 空间导航能力 (空间学习能力、 空间记忆能力) | 要求参与者尽快找到圆形运动场下隐藏的固定平台。在学习试次, 记录自行探索下的轨迹距离、花费时间等; 在探测试次, 平台被移除, 记录正确率、反应时、在目标所在象限中所走的距离/时间占比、路线与平台交叉点的数量等 | Moffat & Resnick ( | 相比较成年人, 老年人的任务表现更差, 且小脑和楔状叶的激活更低(Reynolds et al., 在此基础上发展出了记忆岛范式、圆形竞技场范式等 |
记忆岛范式 | 空间导航能力 | 依次训练参与者导航到可见目标和同一位置隐藏目标, 探测试次移走目标。通过反应时、正确率、目标所在象限花费时间百分比等效率指标衡量空间导航能力 | Rizk-Jackson et al., ( | 在儿童、成年人和老年人中均发现存在男性优势(Yasen et al., |
寻路任务 | 空间导航能力 | 训练阶段要求参与者按照任何顺序找到所给目标; 测试阶段要求其再次找到这些目标。以实际行走距离与最短路径长度之差和最短路径长度的比值作为导航效率的指标 | He et al., ( | SBSOD得分更高的个体在没有环境障碍物的情况下表现出更高导航效率(He et al., |
Y型迷宫、八臂迷宫、星型迷宫范式 | 导航策略 | 在学习试次, 参与者成功学习从起点到终点的路线; 在探测试次, 不知情条件下改变参与者起点位置或改变环境中的地标线索, 通过其选择区分导航策略 | Iaria et al., ( Iglói et al., ( Rodgers et al., ( | 不同策略所涉及的神经回路不同, 基于位置的策略由左侧小脑小叶VIIA Crus I、内侧顶叶皮层及右侧海马之间的一致性活动支持, 而基于反应的策略由右侧小叶VIIA Crus I、内侧前额叶皮层和左侧海马之间的一致性活动支持(Iglói et al., |
双解决方案范式 | 导航策略 | 在虚拟迷宫中以指定路线学习地标位置后, 要求参与者从随机起点导航到学习过的某一目标位置。可区分导航策略为学习过的路线或走捷径 | Marchette et al., ( | 男性更多采用走捷径的策略(Boone et al., |
指向任务 | 路径整合能力 | 从起点出发, 到达某一位置后指出起点的方向, 以指向角度偏差作为衡量指标 | Lawton & Morrin ( | 借助fMRI, 发现海马−尾状核功能连接能显著正向预测路径整合任务表现(Kong, Pu, et al., |
三角形完成任务 | 路径整合能力 | 蒙住双眼的参与者在主试引导下完成三角形的前两条边, 然后独自走回心理上的出发点 | Worchel ( | 相比年轻人, 老年人前庭神经功能的丧失导致在该任务上表现更差(Xie et al., |
延迟匹配样本范式 | 路径整合能力 | 先后观看两段视频, 参与者需要判断两段视频中的移动距离是否相同或角度是否相同 | Chrastil et al., ( | 海马、压后皮质和内侧前额叶皮层的灰质体积与路径整合能力的个体差异相关(Chrastil et al., |
Virtual Silcton范式 | 认知地图能力 | 要求参与者学习主路线后再经过连接路线, 从而区分出路线内建筑和路线间建筑。之后完成系列任务, 如指向任务、模型建立任务、路线成员任务等, 比较路线间指向误差和路线内指向误差 | Weisberg & Newcombe ( | 能否形成认知地图上存在较大的个体差异(Weisberg & Newcombe, |
相对方向判断任务 | 空间定向/视角转换能力 | 参与者观察城市地图后, 依次呈现两个十字路口, 要求其回答站在第一个路口指向第二个路口的方向。 | Kraemer et al., ( | 不同认知风格影响空间定向能力, 相较于语言策略的认知风格, 视觉策略更有利于相对方向判断(Kraemer et al., |
空间重定向范式 | 空间定向能力 | 参与者迷失方向后, 根据边界线索找出先前隐藏物体。选择环境不同角落的频率百分比可用来衡量个体的空间定向能力及其使用策略 | Hermer & Spelke ( | 3~6岁儿童的海马功能差异与空间重定向的使用策略有关(Vieites et al., |
物体位置记忆范式 | 空间记忆能力 | 在存在可见边界、远端方向线索及路标线索的圆形竞技场, 学习阶段要求参与者收集目标物体并记下位置, 测试阶段要求其根据线索重新找到物体所在的位置 | Doeller et al., ( | 携带APOE4风险基因的健康个体内嗅皮层中网格细胞受损, 空间记忆更差(Kunz et al., |
自由探索范式 | 自由探索模式 | 在自由探索中不断找到目标物体, 量化个体自由探索中的轨迹, 最终形成不同轨迹指标 | Gagnon et al., ( | 不同探索模式影响个体的认知地图能力(Brunec et al., |
范式名称 | 测试类型 | 基本介绍 | 主要参考文献 | 应用举例 |
---|---|---|---|---|
圣芭芭拉方向感量表 | 空间导航能力 | 自我报告式问卷, 共15道题目, 综合衡量出个体在环境尺度下更新和维持方向的能力、学习空间布局的能力以及寻路能力等 | Hegarty et al., ( | 男性的得分显著高于女性(Kong, Huang, et al., |
导航策略量表 | 空间导航策略 | 自我报告式问卷, 共14道题目, 创建场景要求参与者考虑他们使用各项策略的程度, 进而将导航策略分为定位策略(orientation strategy)和路线策略(route strategy)。 | Lawton ( | 女性更常使用路线策略(Lawton & Kallai, |
空间焦虑量表 | 空间焦虑特质 | 自我报告式问卷, 包含8个可能让参与者产生焦虑的寻路情景 | Lawton ( Lawton & Kallai ( | 女性的空间焦虑程度更高, 且空间焦虑程度与空间导航能力呈反比(Lawton, |
成人空间焦虑量表 | 空间焦虑特质 | 自我报告式问卷, 包含想象(Imagery)、操作(Manipulation)和导航(Navigation)三个分量表, 要求参与者根据所给的24种空间加工相关情景对焦虑程度进行打分 | Lyons et al., ( | 女性三种空间加工的焦虑程度均高于男性(Sokolowski et al., |
真实环境导航范式 | 空间导航能力 | 在真实环境下(如室内、街道、公园等)学习路线后完成环境知识相关测验(如:路线重复任务、距离估计任务、指向任务、地图绘制任务等) | Barrash ( | 相比较年轻人, 老年人的各项表现要更差(Muffato et al., |
虚拟水迷宫测试 | 空间导航能力 (空间学习能力、 空间记忆能力) | 要求参与者尽快找到圆形运动场下隐藏的固定平台。在学习试次, 记录自行探索下的轨迹距离、花费时间等; 在探测试次, 平台被移除, 记录正确率、反应时、在目标所在象限中所走的距离/时间占比、路线与平台交叉点的数量等 | Moffat & Resnick ( | 相比较成年人, 老年人的任务表现更差, 且小脑和楔状叶的激活更低(Reynolds et al., 在此基础上发展出了记忆岛范式、圆形竞技场范式等 |
记忆岛范式 | 空间导航能力 | 依次训练参与者导航到可见目标和同一位置隐藏目标, 探测试次移走目标。通过反应时、正确率、目标所在象限花费时间百分比等效率指标衡量空间导航能力 | Rizk-Jackson et al., ( | 在儿童、成年人和老年人中均发现存在男性优势(Yasen et al., |
寻路任务 | 空间导航能力 | 训练阶段要求参与者按照任何顺序找到所给目标; 测试阶段要求其再次找到这些目标。以实际行走距离与最短路径长度之差和最短路径长度的比值作为导航效率的指标 | He et al., ( | SBSOD得分更高的个体在没有环境障碍物的情况下表现出更高导航效率(He et al., |
Y型迷宫、八臂迷宫、星型迷宫范式 | 导航策略 | 在学习试次, 参与者成功学习从起点到终点的路线; 在探测试次, 不知情条件下改变参与者起点位置或改变环境中的地标线索, 通过其选择区分导航策略 | Iaria et al., ( Iglói et al., ( Rodgers et al., ( | 不同策略所涉及的神经回路不同, 基于位置的策略由左侧小脑小叶VIIA Crus I、内侧顶叶皮层及右侧海马之间的一致性活动支持, 而基于反应的策略由右侧小叶VIIA Crus I、内侧前额叶皮层和左侧海马之间的一致性活动支持(Iglói et al., |
双解决方案范式 | 导航策略 | 在虚拟迷宫中以指定路线学习地标位置后, 要求参与者从随机起点导航到学习过的某一目标位置。可区分导航策略为学习过的路线或走捷径 | Marchette et al., ( | 男性更多采用走捷径的策略(Boone et al., |
指向任务 | 路径整合能力 | 从起点出发, 到达某一位置后指出起点的方向, 以指向角度偏差作为衡量指标 | Lawton & Morrin ( | 借助fMRI, 发现海马−尾状核功能连接能显著正向预测路径整合任务表现(Kong, Pu, et al., |
三角形完成任务 | 路径整合能力 | 蒙住双眼的参与者在主试引导下完成三角形的前两条边, 然后独自走回心理上的出发点 | Worchel ( | 相比年轻人, 老年人前庭神经功能的丧失导致在该任务上表现更差(Xie et al., |
延迟匹配样本范式 | 路径整合能力 | 先后观看两段视频, 参与者需要判断两段视频中的移动距离是否相同或角度是否相同 | Chrastil et al., ( | 海马、压后皮质和内侧前额叶皮层的灰质体积与路径整合能力的个体差异相关(Chrastil et al., |
Virtual Silcton范式 | 认知地图能力 | 要求参与者学习主路线后再经过连接路线, 从而区分出路线内建筑和路线间建筑。之后完成系列任务, 如指向任务、模型建立任务、路线成员任务等, 比较路线间指向误差和路线内指向误差 | Weisberg & Newcombe ( | 能否形成认知地图上存在较大的个体差异(Weisberg & Newcombe, |
相对方向判断任务 | 空间定向/视角转换能力 | 参与者观察城市地图后, 依次呈现两个十字路口, 要求其回答站在第一个路口指向第二个路口的方向。 | Kraemer et al., ( | 不同认知风格影响空间定向能力, 相较于语言策略的认知风格, 视觉策略更有利于相对方向判断(Kraemer et al., |
空间重定向范式 | 空间定向能力 | 参与者迷失方向后, 根据边界线索找出先前隐藏物体。选择环境不同角落的频率百分比可用来衡量个体的空间定向能力及其使用策略 | Hermer & Spelke ( | 3~6岁儿童的海马功能差异与空间重定向的使用策略有关(Vieites et al., |
物体位置记忆范式 | 空间记忆能力 | 在存在可见边界、远端方向线索及路标线索的圆形竞技场, 学习阶段要求参与者收集目标物体并记下位置, 测试阶段要求其根据线索重新找到物体所在的位置 | Doeller et al., ( | 携带APOE4风险基因的健康个体内嗅皮层中网格细胞受损, 空间记忆更差(Kunz et al., |
自由探索范式 | 自由探索模式 | 在自由探索中不断找到目标物体, 量化个体自由探索中的轨迹, 最终形成不同轨迹指标 | Gagnon et al., ( | 不同探索模式影响个体的认知地图能力(Brunec et al., |
基因 | 基因全称 | 研究对象 | 参考文献 | 主要关联 |
---|---|---|---|---|
BCL-2 | protooncogene B-cell lymphoma-2 | 动物模型 | Rondi-Reig et al., ( | 正常小鼠过表达BCL-2后, 齿状回体积更大、神经元更多; CA1区的LTP削弱 |
Hu et al., ( | 正常小鼠的BCL-2抑制表达与海马细胞凋亡有关 | |||
Wang & Han ( | 海洛因暴露小鼠的BCL-2基因表达减少, 海马CA1和齿状回出现显著的神经元凋亡 | |||
Wang et al., ( | 二硫化碳暴露小鼠的BCL-2基因表达减少, 海马CA1和CA3区出现显著的神经元凋亡 | |||
Long et al., ( Yuliani et al., ( | 通过刺激改善记忆受损小鼠的表现后, 海马CA1区和锥体细胞层BCL-2基因的蛋白表达和mRNA表达明显增多, 细胞凋亡减少 | |||
Wang et al., ( | 增加患血管性痴呆小鼠的BCL-2基因表达, 海马CA1区凋亡细胞数量减少 | |||
Wang et al., ( | 增加Aβ1-40诱发的阿尔茨海默病大鼠的BCL-2基因表达, 能明显改善其的空间学习和记忆功能 | |||
S100B | S100 calcium- binding protein B | 动物模型 | Gerlai & Roder ( | 携带大量S100B基因的小鼠在水迷宫表现测试更差, 具体机制为过量的S100B影响钙依赖的突触过程, 进而导致LTP的减弱及与海马相关的功能受损 |
Mori et al., ( | 过高浓度的S100B 能加重AD小鼠以星形胶质细胞增多和小胶质细胞增多为特征的脑部炎症 | |||
Nishiyama et al., ( | 敲除S100B的小鼠海马CA1区可以观察到LTP显著增强 | |||
Kleindienst et al., ( | 脑损伤小鼠注入低浓度S100B后, 海马内神经发生增强, 空间导航能力增强 | |||
人类 | Simpson et al., ( | AD患者的尸体中, 海马和颞叶区域S100B mRNA和蛋白浓度增高 | ||
Peskind et al., ( | AD患者脑脊液中, S100B浓度更高 | |||
Lambert et al., ( | S100B基因中rs2300403位点与更低的认知表现有关 | |||
Wang et al., ( | rs9722位点通过改变miRNA的结合能力上调S100B表达 | |||
Kong, Song, et al., ( | rs3788266通过S100B蛋白水平作用于右前部RSC从而影响场景识别能力 | |||
APOE | Apolipoprotein E | 动物模型 | Riddell et al., ( | AOPE4等位基因数量与小鼠大脑、脑脊液和血浆中的APOE蛋白水平负相关, 与患AD风险正相关 |
人类 | Castellano et al., ( Cruchaga et al., ( | AOPE4与更低的APOE载脂蛋白浓度有关, 从而影响淀粉样蛋白的清除, 导致Aβ的产生和沉积, 增加AD患病风险 | ||
Laczó et al., ( | APOE4纯合子的轻度认知障碍个体右侧海马体积萎缩 | |||
Flowers & Rebeck ( | 携带APOE4风险基因的健康个体小部分海马区域受到影响 | |||
Kunz et al., ( | 携带APOE4风险基因的健康个体内嗅皮层中网格细胞受损, 但部分海马活动增强 | |||
(Bierbrauer et al., | 携带有APOE4风险基因的健康个体对空间中的路标或边界线索表现出更强的依赖性, 体现了RSC以及边界细胞对路径整合能力的补偿作用 | |||
Hardcastle et al., ( | 携带APOE4风险基因的健康个体表现出边界细胞对误差角度的纠正补偿作用 |
基因 | 基因全称 | 研究对象 | 参考文献 | 主要关联 |
---|---|---|---|---|
BCL-2 | protooncogene B-cell lymphoma-2 | 动物模型 | Rondi-Reig et al., ( | 正常小鼠过表达BCL-2后, 齿状回体积更大、神经元更多; CA1区的LTP削弱 |
Hu et al., ( | 正常小鼠的BCL-2抑制表达与海马细胞凋亡有关 | |||
Wang & Han ( | 海洛因暴露小鼠的BCL-2基因表达减少, 海马CA1和齿状回出现显著的神经元凋亡 | |||
Wang et al., ( | 二硫化碳暴露小鼠的BCL-2基因表达减少, 海马CA1和CA3区出现显著的神经元凋亡 | |||
Long et al., ( Yuliani et al., ( | 通过刺激改善记忆受损小鼠的表现后, 海马CA1区和锥体细胞层BCL-2基因的蛋白表达和mRNA表达明显增多, 细胞凋亡减少 | |||
Wang et al., ( | 增加患血管性痴呆小鼠的BCL-2基因表达, 海马CA1区凋亡细胞数量减少 | |||
Wang et al., ( | 增加Aβ1-40诱发的阿尔茨海默病大鼠的BCL-2基因表达, 能明显改善其的空间学习和记忆功能 | |||
S100B | S100 calcium- binding protein B | 动物模型 | Gerlai & Roder ( | 携带大量S100B基因的小鼠在水迷宫表现测试更差, 具体机制为过量的S100B影响钙依赖的突触过程, 进而导致LTP的减弱及与海马相关的功能受损 |
Mori et al., ( | 过高浓度的S100B 能加重AD小鼠以星形胶质细胞增多和小胶质细胞增多为特征的脑部炎症 | |||
Nishiyama et al., ( | 敲除S100B的小鼠海马CA1区可以观察到LTP显著增强 | |||
Kleindienst et al., ( | 脑损伤小鼠注入低浓度S100B后, 海马内神经发生增强, 空间导航能力增强 | |||
人类 | Simpson et al., ( | AD患者的尸体中, 海马和颞叶区域S100B mRNA和蛋白浓度增高 | ||
Peskind et al., ( | AD患者脑脊液中, S100B浓度更高 | |||
Lambert et al., ( | S100B基因中rs2300403位点与更低的认知表现有关 | |||
Wang et al., ( | rs9722位点通过改变miRNA的结合能力上调S100B表达 | |||
Kong, Song, et al., ( | rs3788266通过S100B蛋白水平作用于右前部RSC从而影响场景识别能力 | |||
APOE | Apolipoprotein E | 动物模型 | Riddell et al., ( | AOPE4等位基因数量与小鼠大脑、脑脊液和血浆中的APOE蛋白水平负相关, 与患AD风险正相关 |
人类 | Castellano et al., ( Cruchaga et al., ( | AOPE4与更低的APOE载脂蛋白浓度有关, 从而影响淀粉样蛋白的清除, 导致Aβ的产生和沉积, 增加AD患病风险 | ||
Laczó et al., ( | APOE4纯合子的轻度认知障碍个体右侧海马体积萎缩 | |||
Flowers & Rebeck ( | 携带APOE4风险基因的健康个体小部分海马区域受到影响 | |||
Kunz et al., ( | 携带APOE4风险基因的健康个体内嗅皮层中网格细胞受损, 但部分海马活动增强 | |||
(Bierbrauer et al., | 携带有APOE4风险基因的健康个体对空间中的路标或边界线索表现出更强的依赖性, 体现了RSC以及边界细胞对路径整合能力的补偿作用 | |||
Hardcastle et al., ( | 携带APOE4风险基因的健康个体表现出边界细胞对误差角度的纠正补偿作用 |
其他影响因素 | 主要参考文献 | 重要关联 |
---|---|---|
性别 | Coutrot et al., ( | 在总体能力、导航策略使用、线索利用方面等均存在差异 |
年龄 | Stangl et al., ( | 老年人表现出全方位的空间导航能力减弱 |
文化背景 | Berry ( | 狩猎文化下的民族拥有更开阔的环境与探索需求, 表现出更强的导航能力 |
语言习惯 | Goeke et al., ( | 地心参照体系的语言表述更有利于空间能力 |
居住环境 | Coutrot et al., ( | 街道网络复杂度更高的成长环境与更高的空间导航能力有关 |
童年探索经验 | Lawton & Kallai ( | 早期拥有更多探索经验的个体在成年后导航表现更好 |
父母教育 | Szechter & Liben ( | 父母的空间图形教育与空间语言教育分别促进空间图形表征能力与空间语言形成 |
地图训练 | Uttal ( | 有助于认知地图的形成 |
导航软件依赖 | Dahmani & Bohbot ( | 过渡依赖GPS损害个体对空间知识的学习和获取能力、空间记忆能力, 带来习惯性路线学习 |
健康状态 | Dobric et al., ( | 良好的健康状况可能通过影响海马进而影响空间导航能力 |
疾病 | Bremner et al., ( | 病理性焦虑、抑郁、自闭症、创伤后应激障碍等可能通过影响海马进而影响空间导航能力 |
其他影响因素 | 主要参考文献 | 重要关联 |
---|---|---|
性别 | Coutrot et al., ( | 在总体能力、导航策略使用、线索利用方面等均存在差异 |
年龄 | Stangl et al., ( | 老年人表现出全方位的空间导航能力减弱 |
文化背景 | Berry ( | 狩猎文化下的民族拥有更开阔的环境与探索需求, 表现出更强的导航能力 |
语言习惯 | Goeke et al., ( | 地心参照体系的语言表述更有利于空间能力 |
居住环境 | Coutrot et al., ( | 街道网络复杂度更高的成长环境与更高的空间导航能力有关 |
童年探索经验 | Lawton & Kallai ( | 早期拥有更多探索经验的个体在成年后导航表现更好 |
父母教育 | Szechter & Liben ( | 父母的空间图形教育与空间语言教育分别促进空间图形表征能力与空间语言形成 |
地图训练 | Uttal ( | 有助于认知地图的形成 |
导航软件依赖 | Dahmani & Bohbot ( | 过渡依赖GPS损害个体对空间知识的学习和获取能力、空间记忆能力, 带来习惯性路线学习 |
健康状态 | Dobric et al., ( | 良好的健康状况可能通过影响海马进而影响空间导航能力 |
疾病 | Bremner et al., ( | 病理性焦虑、抑郁、自闭症、创伤后应激障碍等可能通过影响海马进而影响空间导航能力 |
[1] |
郝鑫, 袁忠萍, 林淑婷, 沈婷. (2022). 边界促进空间导航的认知神经机制. 心理科学进展, 30(7), 1496-1510.
doi: 10.3724/SP.J.1042.2022.01496 |
[2] |
孔祥祯, 张凤翔, 蒲艺. (2023). 空间导航的脑网络基础和调控机制. 心理科学进展, 31(3), 330-337.
doi: 10.3724/SP.J.1042.2023.00330 |
[3] | 王欣, 武文博, 李竹, 王涛, 张鑫, 青钊, 张冰. (2018). 网格细胞的电生理及脑功能成像研究进展. 磁共振成像, 9(5), 381-385. |
[4] | 许琴, 罗宇, 刘嘉. (2010). 方向感的加工机制及影响因素. 心理科学进展, 18(8), 1208-1221. |
[5] |
张家鑫, 海拉干, 李会杰. (2019). 空间导航的测量及其在认知老化中的应用. 心理科学进展, 27(12), 2019-2033.
doi: 10.3724/SP.J.1042.2019.02019 |
[6] |
Acevedo, S. F., Piper, B. J., Craytor, M. J., Benice, T. S., & Raber, J. (2010). Apolipoprotein E4 and sex affect neurobehavioral performance in primary school children. Pediatric Research, 67(3), 293-299.
doi: 10.1203/PDR.0b013e3181cb8e68 pmid: 19952867 |
[7] |
Antonova, E., Parslow, D., Brammer, M., Dawson, G., Jackson, S., & Morris, R. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125-143.
doi: 10.1080/09658210802077348 pmid: 18608980 |
[8] |
Asanomi, Y., Shigemizu, D., Miyashita, A., Mitsumori, R., Mori, T., Hara, N., … Ozaki, K. (2019). A rare functional variant of SHARPIN attenuates the inflammatory response and associates with increased risk of late-onset Alzheimer’s disease. Molecular Medicine, 25(1), 1-9.
doi: 10.1186/s10020-018-0068-8 |
[9] |
Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93(1-2), 185-190.
pmid: 9659999 |
[10] | Auger, S. D., Mullally, S. L., & Maguire, E. A. (2012). Retrosplenial cortex codes for permanent landmarks. Plos One, 7(8), e43620. |
[11] |
Bates, S. L., & Wolbers, T. (2014). How cognitive aging affects multisensory integration of navigational cues. Neurobiology of Aging, 35(12), 2761-2769.
doi: S0197-4580(14)00293-0 pmid: 24952995 |
[12] |
Baumann, O., & Mattingley, J. B. (2021). Extrahippocampal contributions to spatial navigation in humans: A review of the neuroimaging evidence. Hippocampus, 31(7), 640-657.
doi: 10.1002/hipo.23313 pmid: 33595156 |
[13] |
Barrash, J. (1994). Age‐related decline in route learning ability. Developmental Neuropsychology, 10(3), 189-201.
doi: 10.1080/87565649409540578 URL |
[14] |
Belloy, M. E., Napolioni, V., & Greicius, M. D. (2019). A quarter century of APOE and Alzheimer’s disease: Progress to date and the path forward. Neuron, 101(5), 820-838.
doi: 10.1016/j.neuron.2019.01.056 URL |
[15] |
Berry, J. W. (1971). Ecological and cultural factors in spatial perceptual development. Canadian Journal of Behavioural Science/Revue Canadienne Des Sciences du Comportement, 3(4), 324-336.
doi: 10.1037/h0082275 URL |
[16] |
Berteau-Pavy, F., Park, B., & Raber, J. (2007). Effects of sex and APOE ε4 on object recognition and spatial navigation in the elderly. Neuroscience, 147(1), 6-17.
pmid: 17509769 |
[17] | Bierbrauer, A., Kunz, L., Gomes, C. A., Luhmann, M., Deuker, L., Getzmann, S.,... Fernandez-Alvarez, M. (2020). Unmasking selective path integration deficits in Alzheimer’s disease risk carriers. Science Advances, 6(35), eaba1394. |
[18] |
Blanchette, C. -A., Kurdi, V., Fouquet, C., Schachar, R., Boivin, M., Hastings, P.,... Bohbot, V. D. (2020). Opposing effects of cortisol on learning and memory in children using spatial versus response-dependent navigation strategies. Neurobiology of Learning and Memory, 169, 107172.
doi: 10.1016/j.nlm.2020.107172 URL |
[19] |
Bongiorno, C., Zhou, Y., Kryven, M., Theurel, D., Rizzo, A., Santi, P., Tenenbaum, J., & Ratti, C. (2021). Vector-based pedestrian navigation in cities. Nature Computational Science, 1(10), 678-685.
doi: 10.1038/s43588-021-00130-y |
[20] |
Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical twin studies and beyond. Nature Reviews Genetics, 3(11), 872-882.
doi: 10.1038/nrg932 pmid: 12415317 |
[21] |
Boone, A. P., Gong, X., & Hegarty, M. (2018). Sex differences in navigation strategy and efficiency. Memory & Cognition, 46(6), 909-922.
doi: 10.3758/s13421-018-0811-y |
[22] |
Bratko, D. (1996). Twin study of verbal and spatial abilities. Personality and Individual Differences, 21(4), 621-624.
doi: 10.1016/0191-8869(96)00091-8 URL |
[23] | Bremner, J. D., Elzinga, B., Schmahl, C., & Vermetten, E. (2007). Structural and functional plasticity of the human brain in posttraumatic stress disorder. Progress in Brain Research, 167, 171-186. |
[24] |
Brunec, I. K., Nantais, M. M., Sutton, J. E., Epstein, R. A., & Newcombe, N. S. (2023). Exploration patterns shape cognitive map learning. Cognition, 233, 105360.
doi: 10.1016/j.cognition.2022.105360 URL |
[25] |
Bullens, J., Nardini, M., Doeller, C. F., Braddick, O., Postma, A., & Burgess, N. (2010). The role of landmarks and boundaries in the development of spatial memory. Developmental Science, 13(1), 170-180.
doi: 10.1111/j.1467-7687.2009.00870.x pmid: 20121873 |
[26] | Canli, T. (2015). The Oxford handbook of molecular psychology. New York, Oxford University Press. |
[27] | Castellano, J. M., Kim, J., Stewart, F. R., Jiang, H., DeMattos, R. B., Patterson, B. W.,... Cruchaga, C. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Science Translational Medicine, 3(89), 89ra57-89ra57. |
[28] | Chabanne, V., Peruch, P., & Thinus-Blanc, C. (2004). Sex differences and women's hormonal cycle effects on spatial performance in a virtual environment navigation task. Cahiers De Psychologie Cognitive-Current Psychology of Cognition, 22(3), 351-375. |
[29] | Chrastil, E. R., Sherrill, K. R., Aselcioglu, I., Hasselmo, M. E., & Stern, C. E. (2017). Individual differences in human path integration abilities correlate with gray matter volume in retrosplenial cortex, hippocampus, and medial prefrontal cortex. Eneuro, 4(2). https://doi.org/10.1523/ENEURO.0346-16.2017 |
[30] |
Chrastil, E. R., Sherrill, K. R., Hasselmo, M. E., & Stern, C. E. (2016). Which way and how far? Tracking of translation and rotation information for human path integration. Human Brain Mapping, 37(10), 3636-3655.
doi: 10.1002/hbm.23265 pmid: 27238897 |
[31] |
Cogné, M., Taillade, M., N’Kaoua, B., Tarruella, A., Klinger, E., Larrue, F., … Sorita, E. (2017). The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Annals of physical and rehabilitation medicine, 60(3), 164-176.
doi: S1877-0657(16)00002-6 pmid: 27017533 |
[32] |
Condon, D. M., Wilt, J., Cohen, C. A., Revelle, W., Hegarty, M., & Uttal, D. H. (2015). Sense of direction: General factor saturation and associations with the Big-Five traits. Personality and Individual Differences, 86, 38-43.
doi: 10.1016/j.paid.2015.05.023 URL |
[33] | Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A., Spiers, H., & Hornberger, M. (2018). Impact of sex and APOE status on spatial navigation in pre-symptomatic Alzheimer’s disease. Biorxiv, 287722. |
[34] |
Coughlan, G., Coutrot, A., Khondoker, M., Minihane, A. -M., Spiers, H., & Hornberger, M. (2019). Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proceedings of the National Academy of Sciences, 116(19), 9285-9292.
doi: 10.1073/pnas.1901600116 URL |
[35] |
Coughlan, G., Laczó, J., Hort, J., Minihane, A. M., & Hornberger, M. (2018). Spatial navigation deficits - overlooked cognitive marker for preclinical Alzheimer disease? Nature Reviews Neurology, 14(8), 496-506. https://doi.org/10.1038/s41582-018-0031-x
doi: 10.1038/s41582-018-0031-x URL pmid: 29980763 |
[36] |
Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D., … Spiers, H. J. (2022). Entropy of city street networks linked to future spatial navigation ability. Nature, 604(7904), 104-110. https://doi.org/10.1038/s41586-022-04486-7
doi: 10.1038/s41586-022-04486-7 URL |
[37] | Coutrot, A., Manley, E., Yesiltepe, D., Dalton, R., Wiener, J., Hölscher, C., Hornberger, M., & Spiers, H. (2020). Cities have a negative impact on navigation ability: Evidence from 38 countries. Biorxiv. |
[38] | Coutrot, A., Schmidt, S., Coutrot, L., Pittman, J., Hong, L., Wiener, J. M., … Spiers, H. J. (2019). Virtual navigation tested on a mobile app is predictive of real-world wayfinding navigation performance. PloS One, 14(3), e0213272. |
[39] |
Coutrot, A., Silva, R., Manley, E., de Cothi, W., Sami, S., Bohbot, V. D., … Hornberger, M. (2018). Global determinants of navigation ability. Current Biology, 28(17), 2861-2866. e2864.
doi: S0960-9822(18)30771-1 pmid: 30100340 |
[40] |
Cruchaga, C., Kauwe, J. S., Nowotny, P., Bales, K., Pickering, E. H., Mayo, K., … Fagan, A. M. (2012). Cerebrospinal fluid APOE levels: An endophenotype for genetic studies for Alzheimer's disease. Human Molecular Genetics, 21(20), 4558-4571.
pmid: 22821396 |
[41] |
Dahmani, L., & Bohbot, V. D. (2020). Habitual use of GPS negatively impacts spatial memory during self-guided navigation. Scientific Reports, 10(1), 1-14.
doi: 10.1038/s41598-019-56847-4 |
[42] |
DeFries, J. C., Johnson, R. C., Kuse, A., McClearn, G., Polovina, J., Vandenberg, S., & Wilson, J. (1979). Familial resemblance for specific cognitive abilities. Behavior Genetics, 9(1), 23-43.
pmid: 426737 |
[43] |
den Braber, A., Bohlken, M. M., Brouwer, R. M., van't Ent, D., Kanai, R., Kahn, R. S., … Boomsma, D. I. (2013). Heritability of subcortical brain measures: A perspective for future genome-wide association studies. Neuroimage, 83, 98-102.
doi: 10.1016/j.neuroimage.2013.06.027 pmid: 23770413 |
[44] |
Dobric, A., de Luca, S. N., Seow, H. J., Wang, H., Brassington, K., Chan, S. M.,... Selemidis, S. (2022). Cigarette smoke exposure induces neurocognitive impairments and neuropathological changes in the hippocampus. Frontiers in Molecular Neuroscience, 15, 893083.
doi: 10.3389/fnmol.2022.893083 URL |
[45] |
Doeller, C. F., King, J. A., & Burgess, N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proceedings of the National Academy of Sciences, 105(15), 5915-5920.
doi: 10.1073/pnas.0801489105 URL |
[46] |
Driscoll, I., Hamilton, D. A., Yeo, R. A., Brooks, W. M., & Sutherland, R. J. (2005). Virtual navigation in humans: The impact of age, sex, and hormones on place learning. Hormones and Behavior, 47(3), 326-335.
pmid: 15708762 |
[47] |
Ekstrom, A. D., Huffman, D. J., & Starrett, M. (2017). Interacting networks of brain regions underlie human spatial navigation: A review and novel synthesis of the literature. Journal of Neurophysiology, 118(6), 3328-3344.
doi: 10.1152/jn.00531.2017 pmid: 28931613 |
[48] |
Ekstrom, A. D., Kahana, M. J., Caplan, J. B., Fields, T. A., Isham, E. A., Newman, E. L., & Fried, I. (2003). Cellular networks underlying human spatial navigation. Nature, 425(6954), 184-188.
doi: 10.1038/nature01964 |
[49] |
Epstein, R. A., Patai, E. Z., Julian, J. B., & Spiers, H. J. (2017). The cognitive map in humans: Spatial navigation and beyond. Nature Neuroscience, 20(11), 1504-1513.
doi: 10.1038/nn.4656 pmid: 29073650 |
[50] |
Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., … Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proceedings of the National Academy of Sciences, 106(17), 7209-7214.
doi: 10.1073/pnas.0811879106 URL |
[51] |
Firth, J., Stubbs, B., Vancampfort, D., Schuch, F., Lagopoulos, J., Rosenbaum, S., & Ward, P. B. (2018). Effect of aerobic exercise on hippocampal volume in humans: A systematic review and meta-analysis. Neuroimage, 166, 230-238.
doi: S1053-8119(17)30913-8 pmid: 29113943 |
[52] |
Flowers, S. A., & Rebeck, G. W. (2020). APOE in the normal brain. Neurobiology of Disease, 136, 104724.
doi: 10.1016/j.nbd.2019.104724 URL |
[53] |
Fu, H., Rodriguez, G. A., Herman, M., Emrani, S., Nahmani, E., Barrett, G.,... Duff, K. E. (2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction, and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron, 93(3), 533-541.e535.
doi: 10.1016/j.neuron.2016.12.023 |
[54] |
Iaria, G., Petrides, M., Dagher, A., Pike, B., & Bohbot, V. D. (2003). Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. Journal of Neuroscience, 23(13), 5945-5952.
pmid: 12843299 |
[55] |
Gagnon, K. T., Thomas, B. J., Munion, A., Creem-Regehr, S. H., Cashdan, E. A., & Stefanucci, J. K. (2018). Not all those who wander are lost: Spatial exploration patterns and their relationship to gender and spatial memory. Cognition, 180, 108-117.
doi: S0010-0277(18)30173-2 pmid: 30015210 |
[56] | Gardony, A. L., Brunyé, T. T., Mahoney, C. R., & Taylor, H. A. (2013). How navigational aids impair spatial memory: Evidence for divided attention. Spatial Cognition & Computation, 13(4), 319-350. |
[57] |
Genin, E., Hannequin, D., Wallon, D., Sleegers, K., Hiltunen, M., Combarros, O.,... Berr, C. (2011). APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Molecular Psychiatry, 16(9), 903-907.
doi: 10.1038/mp.2011.52 pmid: 21556001 |
[58] |
Gerlai, R., & Roder, J. (1996). Spatial and nonspatial learning in mice: Effects of S100β overexpression and age. Neurobiology of Learning and Memory, 66(2), 143-154.
pmid: 8946407 |
[59] |
Ghosh, A., Puthusseryppady, V., Chan, D., Mascolo, C., & Hornberger, M. (2022). Machine learning detects altered spatial navigation features in outdoor behaviour of Alzheimer’s disease patients. Scientific Reports, 12(1), 1-13.
doi: 10.1038/s41598-021-99269-x |
[60] | Goeke, C., Kornpetpanee, S., Köster, M., Fernández- Revelles, A. B., Gramann, K., & König, P. (2015). Cultural background shapes spatial reference frame proclivity. Scientific Reports, 5(1), 1-13. |
[61] | Gomez, R., Schneider Jr, R., Quinteros, D., Santos, C. F., Bandiera, S., Thiesen, F. V., … Wieczorek, M. G. (2015). Effect of alcohol and tobacco smoke on long-term memory and cell proliferation in the hippocampus of rats. Nicotine & Tobacco Research, 17(12), 1442-1448. |
[62] |
Gramann, K., Hoepner, P., & Karrer-Gauss, K. (2017). Modified navigation instructions for spatial navigation assistance systems lead to incidental spatial learning. Frontiers in Psychology, 8, 193.
doi: 10.3389/fpsyg.2017.00193 pmid: 28243219 |
[63] |
Greenwood, P., Lambert, C., Sunderland, T., & Parasuraman, R. (2005). Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: Results from the National Institute of Mental Health's BIOCARD study. Neuropsychology, 19(2), 199-211.
pmid: 15769204 |
[64] |
Griesbauer, E. M., Manley, E., Wiener, J. M., & Spiers, H. J. (2022). London taxi drivers: A review of neurocognitive studies and an exploration of how they build their cognitive map of London. Hippocampus, 32(1), 3-20.
doi: 10.1002/hipo.23395 pmid: 34914151 |
[65] |
Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3(4), 404-408.
doi: 10.1038/73980 pmid: 10725932 |
[66] |
Grzeschik, R., Conroy-Dalton, R., Innes, A., Shanker, S., & Wiener, J. M. (2019). The contribution of visual attention and declining verbal memory abilities to age-related route learning deficits. Cognition, 187, 50-61.
doi: S0010-0277(19)30039-3 pmid: 30826535 |
[67] |
Hafting, T., Fyhn, M., Molden, S., Moser, M. -B., & Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052), 801-806.
doi: 10.1038/nature03721 |
[68] |
Han, M., Schottler, F., Lei, D., Dong, E. Y., Bryan, A., & Bao, J. (2006). Bcl-2 over-expression fails to prevent age-related loss of calretinin positive neurons in the mouse dentate gyrus. Molecular Neurodegeneration, 1(1), 1-9.
doi: 10.1186/1750-1326-1-1 URL |
[69] |
Hao, X., Huang, Y., Song, Y., Kong, X., & Liu, J. (2017). Experience with the cardinal coordinate system contributes to the precision of cognitive maps. Frontiers in Psychology, 8, 1166.
doi: 10.3389/fpsyg.2017.01166 pmid: 28744248 |
[70] |
Hardcastle, K., Ganguli, S., & Giocomo, L. M. (2015). Environmental boundaries as an error correction mechanism for grid cells. Neuron, 86(3), 827-839.
doi: 10.1016/j.neuron.2015.03.039 pmid: 25892299 |
[71] |
Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37(5), 877-888.
doi: 10.1016/s0896-6273(03)00095-3 pmid: 12628177 |
[72] |
Haun, D. B., Rapold, C. J., Janzen, G., & Levinson, S. C. (2011). Plasticity of human spatial cognition: Spatial language and cognition covary across cultures. Cognition, 119(1), 70-80.
doi: 10.1016/j.cognition.2010.12.009 pmid: 21238953 |
[73] |
He, Q., Han, A. T., Churaman, T. A., & Brown, T. I. (2021). The role of working memory capacity in spatial learning depends on spatial information integration difficulty in the environment. Journal of Experimental Psychology: General, 150(4), 666-685.
doi: 10.1037/xge0000972 URL |
[74] |
He, Q., McNamara, T. P., & Brown, T. I. (2019). Manipulating the visibility of barriers to improve spatial navigation efficiency and cognitive mapping. Scientific Reports, 9(1), 1-12.
doi: 10.1038/s41598-018-37186-2 |
[75] |
Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). Development of a self-report measure of environmental spatial ability. Intelligence, 30(5), 425-447.
doi: 10.1016/S0160-2896(02)00116-2 URL |
[76] | Hegarty, M., & Waller, D. A. (2005). Individual differences in spatial abilities. Cambridge, Cambridge University Press. |
[77] |
Hejtmánek, L., Oravcová, I., Motýl, J., Horáček, J., & Fajnerová, I. (2018). Spatial knowledge impairment after GPS guided navigation: Eye-tracking study in a virtual town. International Journal of Human-Computer Studies, 116, 15-24.
doi: 10.1016/j.ijhcs.2018.04.006 URL |
[78] |
Hermer, L. (1997). Internally coherent spatial memories in a mammal. Neuroreport, 8(7), 1743-1747.
pmid: 9189925 |
[79] |
Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370(6484), 57-59.
doi: 10.1038/370057a0 |
[80] |
Herrero, A. I., Sandi, C., & Venero, C. (2006). Individual differences in anxiety trait are related to spatial learning abilities and hippocampal expression of mineralocorticoid receptors. Neurobiology of Learning and Memory, 86(2), 150-159.
pmid: 16580234 |
[81] |
Hibar, D. P., Adams, H. H., Jahanshad, N., Chauhan, G., Stein, J. L., Hofer, E., … Ikram, M. K. (2017). Novel genetic loci associated with hippocampal volume. Nature Communications, 8(1), 1-12.
doi: 10.1038/s41467-016-0009-6 |
[82] |
Hsiao, C. -J., Lin, C. -L., Lin, T. -Y., Wang, S. -E., & Wu, C. -H. (2016). Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. Neuroreport, 27(6), 462-468.
doi: 10.1097/WNR.0000000000000562 URL |
[83] |
Hu, R., Zheng, L., Zhang, T., Gao, G., Cui, Y., Cheng, Z., … Hong, F. (2011). Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. Journal of Hazardous Materials, 191(1-3), 32-40.
doi: 10.1016/j.jhazmat.2011.04.027 pmid: 21570177 |
[84] |
Iglói, K., Doeller, C. F., Berthoz, A., Rondi-Reig, L., & Burgess, N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proceedings of the National Academy of Sciences, 107(32), 14466-14471.
doi: 10.1073/pnas.1004243107 URL |
[85] |
Iglói, K., Doeller, C. F., Paradis, A. -L., Benchenane, K., Berthoz, A., Burgess, N., & Rondi-Reig, L. (2015). Interaction between hippocampus and cerebellum crus I in sequence-based but not place-based navigation. Cerebral Cortex, 25(11), 4146-4154.
doi: 10.1093/cercor/bhu132 URL |
[86] |
Jack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O'Brien, P. C., Tangalos, E. G., … Kokmen, E. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology, 49(3), 786-794.
doi: 10.1212/wnl.49.3.786 pmid: 9305341 |
[87] |
Jacka, F. N., Cherbuin, N., Anstey, K. J., Sachdev, P., & Butterworth, P. (2015). Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Medicine, 13(1), 1-8.
doi: 10.1186/s12916-014-0241-z URL |
[88] |
Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117(3), 403-411.
pmid: 12802870 |
[89] |
Kepa, A., Martinez Medina, L., Erk, S., Srivastava, D. P., Fernandes, A., Toro, R., … Degenhardt, F. (2017). Associations of the intellectual disability gene MYT1L with helix-loop-helix gene expression, hippocampus volume and hippocampus activation during memory retrieval. Neuropsychopharmacology, 42(13), 2516-2526.
doi: 10.1038/npp.2017.91 pmid: 28470180 |
[90] |
Kleindienst, A., McGinn, M. J., Harvey, H. B., Colello, R. J., Hamm, R. J., & Bullock, M. R. (2005). Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. Journal of Neurotrauma, 22(6), 645-655.
pmid: 15941374 |
[91] |
Kong, X. -Z., Huang, Y., Hao, X., Hu, S., & Liu, J. (2017). Sex-linked association between cortical scene selectivity and navigational ability. Neuroimage, 158, 397-405.
doi: 10.1016/j.neuroimage.2017.07.031 URL |
[92] | Kong, X. -Z., Pu, Y., Wang, X., Xu, S., Hao, X., Zhen, Z., & Liu, J. (2017). Intrinsic hippocampal-caudate interaction correlates with human navigation. Biorxiv, 116129. |
[93] | Kong, X. -Z., Song, Y., Zhen, Z., & Liu, J. (2017). Genetic variation in S100B modulates neural processing of visual scenes in Han Chinese. Cerebral Cortex, 27(2), 1326-1336. |
[94] |
Kong, X. -Z., Tzourio-Mazoyer, N., Joliot, M., Fedorenko, E., Liu, J., Fisher, S. E., & Francks, C. (2020). Gene expression correlates of the cortical network underlying sentence processing. Neurobiology of Language, 1(1), 77-103.
doi: 10.1162/nol_a_00004 URL |
[95] | Kong, X. Z., Wang, X., Pu, Y., Huang, L. J., Hao, X., Zhen, Z. L., & Liu, J. (2017). Human navigation network: The intrinsic functional organization and behavioral relevance. Brain Structure & Function, 222(2), 749-764. https://doi.org/10.1007/s00429-016-1243-8 |
[96] |
Kozhevnikov, M., Motes, M. A., Rasch, B., & Blajenkova, O. (2006). Perspective-taking vs. mental rotation transformations and how they predict spatial navigation performance. Applied Cognitive Psychology, 20(3), 397-417.
doi: 10.1002/(ISSN)1099-0720 URL |
[97] |
Kraemer, D. J., Schinazi, V. R., Cawkwell, P. B., Tekriwal, A., Epstein, R. A., & Thompson-Schill, S. L. (2017). Verbalizing, visualizing, and navigating: The effect of strategies on encoding a large-scale virtual environment. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(4), 611-621.
doi: 10.1037/xlm0000314 URL |
[98] |
Kuhn, H. G., Biebl, M., Wilhelm, D., Li, M., Friedlander, R. M., & Winkler, J. (2005). Increased generation of granule cells in adult Bcl-2-overexpressing mice: A role for cell death during continued hippocampal neurogenesis. European Journal of Neuroscience, 22(8), 1907-1915.
doi: 10.1111/j.1460-9568.2005.04377.x pmid: 16262630 |
[99] |
Kunz, L., Schröder, T. N., Lee, H., Montag, C., Lachmann, B., Sariyska, R., … Messing-Floeter, P. C. (2015). Reduced grid-cell-like representations in adults at genetic risk for Alzheimer’s disease. Science, 350(6259), 430-433.
doi: 10.1126/science.aac8128 URL |
[100] |
Laczó, J., Andel, R., Vlček, K., Macoška, V., Vyhnálek, M., Tolar, M., Bojar, M., & Hort, J. (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegenerative diseases, 8(4), 169-177.
doi: 10.1159/000321581 pmid: 21124005 |
[101] |
Laczó, J., Andel, R., Vyhnalek, M., Vlcek, K., Nedelska, Z., Matoska, V., … Hort, J. (2014). APOE and spatial navigation in amnestic MCI: Results from a computer- based test. Neuropsychology, 28(5), 676-684.
doi: 10.1037/neu0000072 pmid: 24749727 |
[102] |
Lambert, J., Ferreira, S., Gussekloo, J., Christiansen, L., Brysbaert, G., Slagboom, E., … DeKosky, S. (2007). Evidence for the association of the S100β gene with low cognitive performance and dementia in the elderly. Molecular Psychiatry, 12(9), 870-880.
pmid: 17579612 |
[103] |
Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30(11), 765-779.
doi: 10.1007/BF01544230 URL |
[104] |
Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47(9), 389-401.
doi: 10.1023/A:1021668724970 URL |
[105] |
Lawton, C. A., & Morrin, K. A. (1999). Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles, 40(1), 73-92.
doi: 10.1023/A:1018830401088 URL |
[106] |
Lithfous, S., Dufour, A., & Després, O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer's disease: Insights from imaging and behavioral studies. Ageing Research Reviews, 12(1), 201-213.
doi: 10.1016/j.arr.2012.04.007 pmid: 22771718 |
[107] |
Liu, F., Xu, J., Guo, L., Qin, W., Liang, M., Schumann, G., & Yu, C. (2023). Environmental neuroscience linking exposome to brain structure and function underlying cognition and behavior. Molecular Psychiatry, 28(1), 17-27.
doi: 10.1038/s41380-022-01669-6 |
[108] |
Long, J. -Y., Chen, J. -M., Liao, Y. -J., Zhou, Y. -J., Liang, B. -Y., & Zhou, Y. (2020). Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behavioral and Brain Functions, 16(1), 1-13.
doi: 10.1186/s12993-019-0164-0 |
[109] |
Lovett, A., & Forbus, K. (2011). Cultural commonalities and differences in spatial problem-solving: A computational analysis. Cognition, 121(2), 281-287.
doi: 10.1016/j.cognition.2011.06.012 pmid: 21803347 |
[110] |
Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., & Beilock, S. L. (2018). Spatial Anxiety: A novel questionnaire with subscales for measuring three aspects of spatial anxiety. Journal of Numerical Cognition, 4(3), 526-553.
doi: 10.5964/jnc.v4i3.154 URL |
[111] |
Maguire, E. A., Woollett, K., & Spiers, H. J. (2006). London taxi drivers and bus drivers: A structural MRI and neuropsychological analysis. Hippocampus, 16(12), 1091-1101.
pmid: 17024677 |
[112] |
Maitre, L., Bustamante, M., Hernández-Ferrer, C., Thiel, D., Lau, C. -H. E., Siskos, A. P., … Robinson, O. (2022). Multi-omics signatures of the human early life exposome. Nature Communications, 13(1), 1-18.
doi: 10.1038/s41467-021-27699-2 |
[113] |
Malanchini, M., Rimfeld, K., Shakeshaft, N. G., McMillan, A., Schofield, K. L., Rodic, M., … Tucker-Drob, E. M. (2020). Evidence for a unitary structure of spatial cognition beyond general intelligence. NPJ Science of Learning, 5(1), 1-13.
doi: 10.1038/s41539-020-0060-2 |
[114] |
Marchette, S. A., Bakker, A., & Shelton, A. L. (2011). Cognitive mappers to creatures of habit: Differential engagement of place and response learning mechanisms predicts human navigational behavior. Journal of Neuroscience, 31(43), 15264-15268.
doi: 10.1523/JNEUROSCI.3634-11.2011 pmid: 22031872 |
[115] |
Marshak, D. R., Pesce, S. A., Stanley, L. C., & Griffin, W. S. T. (1992). Increased S100β neurotrophic activity in Alzheimer's disease temporal lobe. Neurobiology of Aging, 13(1), 1-7.
pmid: 1371849 |
[116] |
Marshall, L., & Born, J. (2007). The contribution of sleep to hippocampus-dependent memory consolidation. Trends in Cognitive Sciences, 11(10), 442-450.
doi: 10.1016/j.tics.2007.09.001 pmid: 17905642 |
[117] |
McKinlay, R. (2016). Technology: Use or lose our navigation skills. Nature, 531(7596), 573-575.
doi: 10.1038/531573a |
[118] |
Moffat, S. D. (2009). Aging and spatial navigation: What do we know and where do we go? Neuropsychology Review, 19(4), 478-489.
doi: 10.1007/s11065-009-9120-3 pmid: 19936933 |
[119] |
Moffat, S. D., & Resnick, S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behavioral Neuroscience, 116(5), 851-859.
pmid: 12369805 |
[120] |
Mondadori, C. R., de Quervain, D. J. -F., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F.,... Papassotiropoulos, A. (2007). Better memory and neural efficiency in young apolipoprotein E ε4 carriers. Cerebral Cortex, 17(8), 1934-1947.
doi: 10.1093/cercor/bhl103 URL |
[121] |
Mori, T., Koyama, N., Arendash, G. W., Horikoshi-Sakuraba, Y., Tan, J., & Town, T. (2010). Overexpression of human S100B exacerbates cerebral amyloidosis and gliosis in the Tg2576 mouse model of Alzheimer's disease. Glia, 58(3), 300-314.
doi: 10.1002/glia.20924 pmid: 19705461 |
[122] |
Muffato, V., Meneghetti, C., & de Beni, R. (2016). Not all is lost in older adults' route learning? The role of visuo-spatial abilities and type of task. Journal of Environmental Psychology, 47, 230-241.
doi: 10.1016/j.jenvp.2016.07.003 URL |
[123] |
Münzer, S., Lörch, L., & Frankenstein, J. (2020). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology: Applied, 26(1), 73-88.
doi: 10.1037/xap0000237 URL |
[124] |
Nakamura, M., Raghupathi, R., Merry, D. E., Scherbel, U., Saatman, K. E., & Mcintosh, T. K. (1999). Overexpression of Bcl-2 is neuroprotective after experimental brain injury in transgenic mice. Journal of Comparative Neurology, 412(4), 681-692.
pmid: 10464363 |
[125] |
Nazareth, A., Weisberg, S. M., Margulis, K., & Newcombe, N. S. (2018). Charting the development of cognitive mapping. Journal of Experimental Child Psychology, 170, 86-106.
doi: S0022-0965(17)30505-2 pmid: 29453130 |
[126] |
Neu, S. C., Pa, J., Kukull, W., Beekly, D., Kuzma, A., Gangadharan, P., … Toga, A. W. (2017). Apolipoprotein E genotype and sex risk factors for Alzheimer disease: A meta-analysis. JAMA Neurology, 74(10), 1178-1189.
doi: 10.1001/jamaneurol.2017.2188 pmid: 28846757 |
[127] | Newcombe, N. S. (2018). Individual variation in human navigation. Current Biology, 28(17), R1004-R1008. |
[128] | Newcombe, N. S. (2019). Navigation and the developing brain. Journal of Experimental Biology, 222(Suppl_1), jeb186460. |
[129] |
Nishiyama, H., Knöpfel, T., Endo, S., & Itohara, S. (2002). Glial protein S100B modulates long-term neuronal synaptic plasticity. Proceedings of the National Academy of Sciences, 99(6), 4037-4042.
doi: 10.1073/pnas.052020999 URL |
[130] |
O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171-175.
doi: 10.1016/0006-8993(71)90358-1 pmid: 5124915 |
[131] |
Pazzaglia, F., & de Beni, R. (2006). Are people with high and low mental rotation abilities differently susceptible to the alignment effect? Perception, 35(3), 369-383.
pmid: 16619952 |
[132] |
Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37-54.
doi: 10.1016/j.tics.2020.10.004 pmid: 33248898 |
[133] |
Peskind, E. R., Griffin, W. S. T., Akama, K. T., Raskind, M. A., & van Eldik, L. J. (2001). Cerebrospinal fluid S100B is elevated in the earlier stages of Alzheimer's disease. Neurochemistry International, 39(5-6), 409-413.
doi: 10.1016/s0197-0186(01)00048-1 pmid: 11578776 |
[134] |
Polk, T. A., Park, J., Smith, M. R., & Park, D. C. (2007). Nature versus nurture in ventral visual cortex: A functional magnetic resonance imaging study of twins. Journal of Neuroscience, 27(51), 13921-13925.
doi: 10.1523/JNEUROSCI.4001-07.2007 pmid: 18094229 |
[135] |
Pruden, S. M., Levine, S. C., & Huttenlocher, J. (2011). Children’s spatial thinking: Does talk about the spatial world matter? Developmental Science, 14(6), 1417-1430.
doi: 10.1111/desc.2011.14.issue-6 URL |
[136] |
Ramanoël, S., York, E., Le Petit, M., Lagrené, K., Habas, C., & Arleo, A. (2019). Age-related differences in functional and structural connectivity in the spatial navigation brain network. Frontiers in Neural Circuits, 13, 69.
doi: 10.3389/fncir.2019.00069 pmid: 31736716 |
[137] |
Ramkhalawansingh, R., Keshavarz, B., Haycock, B., Shahab, S., & Campos, J. L. (2017). Examining the effect of age on visual-vestibular self-motion perception using a driving paradigm. Perception, 46(5), 566-585.
doi: 10.1177/0301006616675883 pmid: 27789758 |
[138] | Rechavi, Y., Rubin, A., Yizhar, O., & Ziv, Y. (2022). Exercise increases information content and affects long- term stability of hippocampal place codes. Cell Reports, 41(8), 111695. |
[139] |
Rentería, M. E., Hansell, N. K., Strike, L. T., McMahon, K. L., de Zubicaray, G. I., Hickie, I. B., … Wright, M. J. (2014). Genetic architecture of subcortical brain regions: Common and region‐specific genetic contributions. Genes, Brain and Behavior, 13(8), 821-830.
doi: 10.1111/gbb.2014.13.issue-8 URL |
[140] |
Reynolds, N. C., Zhong, J. Y., Clendinen, C. A., Moffat, S. D., & Magnusson, K. R. (2019). Age-related differences in brain activations during spatial memory formation in a well-learned virtual Morris water maze (vMWM) task. Neuroimage, 202, 116069.
doi: 10.1016/j.neuroimage.2019.116069 URL |
[141] |
Riddell, D. R., Zhou, H., Atchison, K., Warwick, H. K., Atkinson, P. J., Jefferson, J., … Hu, Y. (2008). Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. Journal of Neuroscience, 28(45), 11445-11453.
doi: 10.1523/JNEUROSCI.1972-08.2008 pmid: 18987181 |
[142] |
Rimfeld, K., Shakeshaft, N. G., Malanchini, M., Rodic, M., Selzam, S., Schofield, K., … Plomin, R. (2017). Phenotypic and genetic evidence for a unifactorial structure of spatial abilities. Proceedings of the National Academy of Sciences, 114(10), 2777-2782.
doi: 10.1073/pnas.1607883114 URL |
[143] |
Rizk-Jackson, A. M., Acevedo, S. F., Inman, D., Howieson, D., Benice, T. S., & Raber, J. (2006). Effects of sex on object recognition and spatial navigation in humans. Behavioural Brain Research, 173(2), 181-190.
pmid: 16887201 |
[144] | Rodgers, M. K., Sindone III, J. A., & Moffat, S. D. (2012). Effects of age on navigation strategy. Neurobiology of Aging, 33(1), 202.e215-202.e222. |
[145] |
Rondi-Reig, L., Lemaigre-Dubreuil, Y., Montecot, C., Müller, D., Martinou, J., Caston, J., & Mariani, J. (2001). Transgenic mice with neuronal overexpression of bcl-2 gene present navigation disabilites in a water task. Neuroscience, 104(1), 207-215.
pmid: 11311543 |
[146] |
Ruginski, I. T., Creem-Regehr, S. H., Stefanucci, J. K., & Cashdan, E. (2019). GPS use negatively affects environmental learning through spatial transformation abilities. Journal of Environmental Psychology, 64, 12-20.
doi: 10.1016/j.jenvp.2019.05.001 |
[147] |
Rusted, J., Evans, S., King, S., Dowell, N., Tabet, N., & Tofts, P. (2013). APOE e4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. Neuroimage, 65, 364-373.
doi: 10.1016/j.neuroimage.2012.10.010 pmid: 23063453 |
[148] | Sandamas, G., & Foreman, N. (2015). Active versus passive acquisition of spatial knowledge while controlling a vehicle in a virtual urban space in drivers and non-drivers. Sage Open, 5(3), 2158244015595443. |
[149] |
Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6(4), 351-360.
pmid: 9593991 |
[150] |
Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U., & Li, S. -C. (2015). Human aging alters the neural computation and representation of space. Neuroimage, 117, 141-150.
doi: 10.1016/j.neuroimage.2015.05.031 pmid: 26003855 |
[151] |
Sheline, Y., Mittler, B., & Mintun, M. (2002). The hippocampus and depression. European Psychiatry, 17(S3), 300-305.
doi: 10.1016/S0924-9338(02)00671-5 URL |
[152] |
Simpson, J., Ince, P., Lace, G., Forster, G., Shaw, P., Matthews, F., … Wharton, S. (2010). Astrocyte phenotype in relation to Alzheimer-type pathology in the ageing brain. Neurobiology of Aging, 31(4), 578-590.
doi: 10.1016/j.neurobiolaging.2008.05.015 pmid: 18586353 |
[153] |
Smith, A. D. (2015). Spatial navigation in autism spectrum disorders: A critical review. Frontiers in Psychology, 6, 31. https://doi.org/10.3389/fpsyg.2015.00031
doi: 10.3389/fpsyg.2015.00031 URL pmid: 25667579 |
[154] |
Soheili-Nezhad, S., Jahanshad, N., Guelfi, S., Khosrowabadi, R., Saykin, A. J., Thompson, P. M., … Zarei, M. (2020). Imaging genomics discovery of a new risk variant for Alzheimer's disease in the postsynaptic SHARPIN gene. Human Brain Mapping, 41(13), 3737-3748.
doi: 10.1002/hbm.25083 pmid: 32558014 |
[155] |
Sokolowski, H. M., Hawes, Z., & Lyons, I. M. (2019). What explains sex differences in math anxiety? A closer look at the role of spatial processing. Cognition, 182, 193-212.
doi: S0010-0277(18)30263-4 pmid: 30343180 |
[156] | Stangl, M., Kanitscheider, I., Riemer, M., Fiete, I., & Wolbers, T. (2020). Sources of path integration error in young and aging humans. Nature Communications, 11(1), 2626. |
[157] |
Steiner, J., Bogerts, B., Schroeter, M. L., & Bernstein, H. -G. (2011). S100B protein in neurodegenerative disorders. Clinical Chemistry and Laboratory Medicine, 49(3), 409-424.
doi: 10.1515/CCLM.2011.083 pmid: 21303299 |
[158] | Stites, M. C., Matzen, L. E., & Gastelum, Z. N. (2020). Where are we going and where have we been? Examining the effects of maps on spatial learning in an indoor guided navigation task. Cognitive Research: Principles and Implications, 5(1), 13. |
[159] |
Szechter, L. E., & Liben, L. S. (2004). Parental guidance in preschoolers' understanding of spatial-graphic representations. Child Development, 75(3), 869-885.
pmid: 15144491 |
[160] |
Tarampi, M. R., Heydari, N., & Hegarty, M. (2016). A tale of two types of perspective taking: Sex differences in spatial ability. Psychological Science, 27(11), 1507-1516.
pmid: 27658902 |
[161] | Tarnanas, I., Laskaris, N., Tsolaki, M., Muri, R., Nef, T., & Mosimann, U. P. (2015). On the comparison of a novel serious game and electroencephalography biomarkers for early dementia screening. In GeNeDis 2014: Geriatrics (pp. 63-77). Springer International Publishing, |
[162] |
Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4), 189-208.
doi: 10.1037/h0061626 pmid: 18870876 |
[163] |
Tosto, M. G., Hanscombe, K. B., Haworth, C. M., Davis, O. S., Petrill, S. A., Dale, P. S.,... Kovas, Y. (2014). Why do spatial abilities predict mathematical performance? Developmental Science, 17(3), 462-470.
doi: 10.1111/desc.12138 pmid: 24410830 |
[164] | Ulrich, S., Grill, E., & Flanagin, V. L. (2019). Who gets lost and why: A representative cross-sectional survey on sociodemographic and vestibular determinants of wayfinding strategies. PloS One, 14(1), e0204781. |
[165] |
Uttal, D. H. (2000). Seeing the big picture: Map use and the development of spatial cognition. Developmental Science, 3(3), 247-264.
doi: 10.1111/desc.2000.3.issue-3 URL |
[166] |
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. S. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352-402.
doi: 10.1037/a0028446 pmid: 22663761 |
[167] |
Vander Heyden, K. M., Huizinga, M., & Jolles, J. (2017). Effects of a classroom intervention with spatial play materials on children’s object and viewer transformation abilities. Developmental Psychology, 53(2), 290-305.
doi: 10.1037/dev0000224 pmid: 27831702 |
[168] |
Vermeulen, R., Schymanski, E. L., Barabási, A. -L., & Miller, G. W. (2020). The exposome and health: Where chemistry meets biology. Science, 367(6476), 392-396.
doi: 10.1126/science.aay3164 pmid: 31974245 |
[169] | Vieites, V., Pruden, S. M., Shusterman, A., & Reeb- Sutherland, B. C. (2020). Using hippocampal‐dependent eyeblink conditioning to predict individual differences in spatial reorientation strategies in 3‐to 6‐year‐olds. Developmental Science, 23(1), e12867. |
[170] |
Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Südhof, T. C., & Wernig, M. (2010). Direct conversion of fibroblasts to functional neurons by defined factors. Nature, 463(7284), 1035-1041.
doi: 10.1038/nature08797 |
[171] |
Voyer, D., Postma, A., Brake, B., & Imperato-McGinley, J. (2007). Gender differences in object location memory: A meta-analysis. Psychonomic Bulletin & Review, 14(1), 23-38.
doi: 10.3758/BF03194024 URL |
[172] |
Vukovic, N., & Shtyrov, Y. (2017). Cortical networks for reference-frame processing are shared by language and spatial navigation systems. Neuroimage, 161, 120-133.
doi: S1053-8119(17)30688-2 pmid: 28818696 |
[173] | Vygotsky, L. S. (2012). Thought and language. Cambridge, MIT press. |
[174] | Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101(4), 817. |
[175] |
Wang, C., Najm, R., Xu, Q., Jeong, D. -E., Walker, D., Balestra, M. E., … Miller, Z. A. (2018). Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nature Medicine, 24(5), 647-657.
doi: 10.1038/s41591-018-0004-z pmid: 29632371 |
[176] | Wang, J., Zhou, Y., Yang, Y., Gao, X., Liu, Z., Hong, G., … Li, K. (2021). S100B gene polymorphisms are associated with the S100B level and Alzheimer’s disease risk by altering the miRNA binding capacity. Aging (Albany NY), 13(10), 13954-13967. |
[177] |
Wang, S., Irving, G., Jiang, L., Wang, H., Li, M., Wang, X., … Zeng, T. (2017). Oxidative stress mediated hippocampal neuron apoptosis participated in carbon disulfide-induced rats cognitive dysfunction. Neurochemical Research, 42(2), 583-594.
doi: 10.1007/s11064-016-2113-8 pmid: 27900598 |
[178] |
Wang, T., Liu, C. -Z., Yu, J. -C., Jiang, W., & Han, J. -X. (2009). Acupuncture protected cerebral multi-infarction rats from memory impairment by regulating the expression of apoptosis related genes Bcl-2 and Bax in hippocampus. Physiology & Behavior, 96(1), 155-161.
doi: 10.1016/j.physbeh.2008.09.024 URL |
[179] |
Wang, Y., & Han, T. -Z. (2009). Prenatal exposure to heroin in mice elicits memory deficits that can be attributed to neuronal apoptosis. Neuroscience, 160(2), 330-338.
doi: 10.1016/j.neuroscience.2009.02.058 pmid: 19272431 |
[180] | Wang, Y., Yin, H., Lou, J., Han, B., Qin, X., Meng, F., Geng, S., & Liu, Y. (2011). Effects of curcumin on hippocampal Bax and Bcl-2 expression and cognitive function of a rat model of Alzheimer's disease*☆. Neural Regeneration Research, 6(24), 1845-1849. |
[181] |
Weisberg, S. M., & Ekstrom, A. D. (2021). Hippocampal volume and navigational ability: The map (ping) is not to scale. Neuroscience & Biobehavioral Reviews, 126, 102-112.
doi: 10.1016/j.neubiorev.2021.03.012 URL |
[182] |
Weisberg, S. M., & Newcombe, N. S. (2015). How do (some) people make a cognitive map? Routes, places, and working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(5), 768-785.
doi: 10.1037/xlm0000200 URL |
[183] |
Weisberg, S. M., & Newcombe, N. S. (2018). Cognitive maps: Some people make them, some people struggle. Current Directions in Psychological Science, 27(4), 220-226.
doi: 10.1177/0963721417744521 pmid: 30122809 |
[184] |
Weissberger, G. H., Nation, D. A., Nguyen, C. P., Bondi, M. W., & Han, S. D. (2018). Meta-analysis of cognitive ability differences by apolipoprotein e genotype in young humans. Neuroscience & Biobehavioral Reviews, 94, 49-58.
doi: 10.1016/j.neubiorev.2018.08.009 URL |
[185] |
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138-146.
doi: 10.1016/j.tics.2010.01.001 pmid: 20138795 |
[186] |
Woollett, K., & Maguire, E. A. (2009). Navigational expertise may compromise anterograde associative memory. Neuropsychologia, 47(4), 1088-1095.
doi: 10.1016/j.neuropsychologia.2008.12.036 pmid: 19171158 |
[187] |
Woollett, K., & Maguire, E. A. (2011). Acquiring “the Knowledge” of London's layout drives structural brain changes. Current Biology, 21(24), 2109-2114.
doi: 10.1016/j.cub.2011.11.018 URL |
[188] | Worchel, P. (1951). Space perception and orientation in the blind. Psychological Monographs: General and Applied, 65(15), 1-28. |
[189] |
Wray, N. R., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., Murray, G. K., & Visscher, P. M. (2021). From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry, 78(1), 101-109.
doi: 10.1001/jamapsychiatry.2020.3049 URL |
[190] |
Wu, J., Qu, J. -Q., Zhou, Y. -J., Zhou, Y. -J., Li, Y. -Y., Huang, N. -Q., Deng, C. -M., & Luo, Y. (2020). Icariin improves cognitive deficits by reducing the deposition of β-amyloid peptide and inhibition of neurons apoptosis in SAMP8 mice. Neuroreport, 31(9), 663-671.
doi: 10.1097/WNR.0000000000001466 pmid: 32427716 |
[191] | Wunderlich, A., & Gramann, K. (2019). Overcoming spatial deskilling using landmark-based navigation assistance systems. Cold Spring Harbor Laboratory. https://doi.org/10.1101/789529 |
[192] | Wunderlich, A., Grieger, S., & Gramann, K. (2020). Landmark- based turn-by-turn instructions enhance incidental spatial knowledge acquisition. Biorxiv. https://doi.org/10.1101/2020.11.30.403428 |
[193] |
Xie, Y., Bigelow, R. T., Frankenthaler, S. F., Studenski, S. A., Moffat, S. D., & Agrawal, Y. (2017). Vestibular loss in older adults is associated with impaired spatial navigation: Data from the triangle completion task. Frontiers in Neurology, 8, 173.
doi: 10.3389/fneur.2017.00173 pmid: 28496432 |
[194] |
Xu, J., Xia, X., Li, Q., Dou, Y., Suo, X., Sun, Z., … Yu, C. (2022). A causal association of ANKRD37 with human hippocampal volume. Molecular Psychiatry, 27(11), 4432-4445.
doi: 10.1038/s41380-022-01800-7 pmid: 36195640 |
[195] |
Xu, S., Song, Y., & Liu, J. (2023). The development of spatial cognition and its malleability assessed in mass population via a mobile game. Psychological Science, 34(3), 345-357.
doi: 10.1177/09567976221137313 URL |
[196] |
Yasen, A. L., Raber, J., Miller, J. K., & Piper, B. J. (2015). Sex, but not apolipoprotein E polymorphism, differences in spatial performance in young adults. Archives of Sexual Behavior, 44(8), 2219-2226.
doi: 10.1007/s10508-015-0497-1 pmid: 25750133 |
[197] | Yuliani, S., Akbar, M. F., Rochmafihro, N., Uthary, Y., & Deslaila, L. (2021). Effects of centella asiatica L. on spatial memory and Bcl-2 gene expression in the hippocampus of rats injected with trimethyltin. Indonesian Journal of Pharmacy, 32(2), 141-149. |
[198] |
Zhang, R., Xu, X., Yu, H., Xu, X., Wang, M., & Le, W. (2022). Factors influencing Alzheimer’s disease risk: Whether and how they are related to the APOE genotype. Neuroscience Bulletin, 38(7), 809-819.
doi: 10.1007/s12264-021-00814-5 pmid: 35149974 |
[1] | KONG Xiang-Zhen, ZHANG Fengxiang, PU Yi. The functional brain network that supports human spatial navigation [J]. Advances in Psychological Science, 2023, 31(3): 330-337. |
[2] | WU Wenya, WANG Liang. The cognitive map and its intrinsic mechanisms [J]. Advances in Psychological Science, 2023, 31(10): 1856-1872. |
[3] | HAO Xin, YUAN Zhongping, LIN Shuting, SHEN Ting. Cognitive neural mechanism of boundary processing in spatial navigation [J]. Advances in Psychological Science, 2022, 30(7): 1496-1510. |
[4] | WEI Zhenyu, DENG Xiangshu, ZHAO Zhiying. The effect of conformity tendency on prosocial behaviors [J]. Advances in Psychological Science, 2021, 29(3): 531-539. |
[5] | ZHANG Jiaxin, HAI Lagan, LI Huijie. Measurement of spatial navigation and application research in cognitive aging [J]. Advances in Psychological Science, 2019, 27(12): 2019-2033. |
[6] | ZHANG Xiuping; YANG Xiaohong; YANG Yufang. The Neural Mechanism and Influential Factors of Semantic Unification in Discourse Comprehension [J]. Advances in Psychological Science, 2015, 23(7): 1130-1141. |
[7] | JIANG Jun;WANG Zimeng;WAN Xuan;JIANG Cunmei. Temporal Processing in Music: Effects of Musical Elements and Individual Differences [J]. Advances in Psychological Science, 2014, 22(4): 650-658. |
[8] | CHEN Jiangtao; TANG Dandan; LIU Congcong; CHEN Antao. Individual Differences in Attentional Blink [J]. Advances in Psychological Science, 2014, 22(10): 1564-1572. |
[9] | ZHOU Lei;LI Shu;XU Yan;LIANG Zhuyuan. Theoretical Construction of Decision-Making Styles: An Information-Processing Approach [J]. Advances in Psychological Science, 2014, 22(1): 112-121. |
[10] | YUAN Sanna;WANG Qiong;SHAO Feng;WANG Weiwen. The Roles of CRF Receptors in the Modulation of Serotoninergic System and the Effects of Early Environmental Factors [J]. Advances in Psychological Science, 2013, 21(6): 982-989. |
[11] | NIE Jing;LING Wenquan;LI Ming. Cognitive Mapping Technique and Application in Management Psychology [J]. Advances in Psychological Science, 2013, 21(1): 155-165. |
[12] | XU Xi-Zheng;ZHANG Jing-Huan;LIU Gui-Rong;LI Ying. The Influence of Rewards on Creativity and Its Mechanisms [J]. Advances in Psychological Science, 2012, 20(9): 1419-1425. |
[13] | WANG Song;LI Jing-Guang;LIU Jia. The Genetic Basis of Individual Differences in Reading Ability: A Mata-analysis of Twins Studies [J]. , 2011, 19(9): 1267-1280. |
[14] | XU Qin;LUO Yu;LIU Jia. The Mechanism of Sense of Direction and Its Modulating Factors [J]. , 2010, 18(8): 1208-1221. |
[15] | HE Jin-Lian;GUO Shao-Dan;ZHANG Li-Yan. Generativity:Individual Differences and Influencing Factors [J]. , 2009, 17(5): 996-1001. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||