Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 45-55.doi: 10.3724/SP.J.1042.2021.00045
• Regular Articles • Previous Articles Next Articles
ZHANG Fan1, CHEN Airui2, DONG Bo2, WANG Aijun1(), ZHANG Ming1,2()
Received:
2020-04-06
Online:
2021-01-15
Published:
2020-11-23
Contact:
WANG Aijun,ZHANG Ming
E-mail:ajwang@suda.edu.cn;psyzm@suda.edu.cn
CLC Number:
ZHANG Fan, CHEN Airui, DONG Bo, WANG Aijun, ZHANG Ming. Rapid disengagement hypothesis and signal suppression hypothesis of visual attentional capture[J]. Advances in Psychological Science, 2021, 29(1): 45-55.
[1] | 储衡清, 周晓林. (2004). 注意捕获与自上而下的加工过程. 心理科学进展, 12(5), 680-687. |
[2] |
张明, 王爱君. (2012). 视觉搜索中基于工作记忆内容的注意捕获与抑制. 心理科学进展, 20(12), 1899-1907.
doi: 10.3724/SP.J.1042.2012.01899 URL |
[3] | Anderson, B. A., & Folk, C. L. (2010). Variations in the magnitude of attentional capture: Testing a two-process model. Attention Perception & Psychophysics, 72(2), 342-352. |
[4] | Anderson, B. A., & Folk, C. L. (2012). Dissociating location-specific inhibition and attention shifts: Evidence against the disengagement account of contingent capture. Attention Perception & Psychophysics, 74(6), 1183-1198. |
[5] |
Aron, A. R. (2011). From reactive to proactive and selective control: Developing a richer model for stopping inappropriate responses. Biological Psychiatry, 69(12), e55-e68.
doi: 10.1016/j.biopsych.2010.07.024 URL |
[6] |
Awh, E., Belopolsky, A. V., & Theeuwes, J. (2012). Top-down versus bottom-up attentional control: A failed theoretical dichotomy. Trends in Cognitive Sciences, 16(8), 437-443.
doi: 10.1016/j.tics.2012.06.010 URL |
[7] |
Barras, C., & Kerzel, D. (2016). Active suppression of salient-but-irrelevant stimuli does not underlie resistance to visual interference. Biological Psychology, 121, 74-83.
doi: 10.1016/j.biopsycho.2016.10.004 URL pmid: 27756581 |
[8] | Belopolsky, A. V., Schreij, D., & Theeuwes, J. (2010). What is top-down about contingent capture? Attention Perception & Psychophysics, 72(2), 326-341. |
[9] |
Biggs, A. T., Kreager, R. D., Gibson, B. S., Villano, M., & Crowell, C. R. (2012). Semantic and affective salience: The role of meaning and preference in attentional capture and disengagement. Journal of Experimental Psychology: Human Perception & Performance, 38(2), 531-541.
doi: 10.1037/a0027394 URL pmid: 22390289 |
[10] |
Blakely, D. P., Wright, T. J., Dehili, V. M., Boot, W. R., & Brockmole, J. R. (2012). Characterizing the time course and nature of attentional disengagement effects. Vision Research, 56, 38-48.
doi: 10.1016/j.visres.2012.01.010 URL |
[11] |
Boot, W. R., & Brockmole, J. R. (2010). Irrelevant features at fixation modulate saccadic latency and direction in visual search. Visual Cognition, 18(4), 481-491.
doi: 10.1080/13506280903356780 URL |
[12] |
Born, S., Kerzel, D., & Theeuwes, J. (2011). Evidence for a dissociation between the control of oculomotor capture and disengagement. Experimental Brain Research, 208(4), 621-631.
doi: 10.1007/s00221-010-2510-1 URL |
[13] |
Brockmole, J. R., & Boot, W. R. (2009). Should I stay or should I go? Attentional disengagement from visually unique and unexpected items at fixation. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 808-815.
doi: 10.1037/a0013707 URL |
[14] |
Burra, N., & Kerzel, D. (2014). The distractor positivity (pd) signals lowering of attentional priority: Evidence from event-related potentials and individual differences. Psychophysiology, 51(7), 685-696.
doi: 10.1111/psyp.12215 URL |
[15] |
Chelazzi, L., Marini, F., Pascucci, D., & Turatto, M. (2019). Getting rid of visual distractors: The why, when, how and where. Current Opinion in Psychology, 29, 135-147.
doi: 10.1016/j.copsyc.2019.02.004 URL pmid: 30856512 |
[16] |
Chen, P., & Mordkoff, J. T. (2007). Contingent capture at a very short SOA: Evidence against rapid disengagement. Visual Cognition, 15(6), 637-646.
doi: 10.1080/13506280701317968 URL |
[17] |
Cosman, J. D., Atreya, P. V., & Woodman, G. F. (2015). Transient reduction of visual distraction following electrical stimulation of the prefrontal cortex. Cognition, 145, 73-76.
doi: 10.1016/j.cognition.2015.08.010 URL pmid: 26319971 |
[18] |
Cosman, J. D., Lowe, K. A., Zinke, W., Woodman, G. F., & Schall, J. D. (2018). Prefrontal control of visual distraction. Current Biology, 28(3), 414-420.
doi: 10.1016/j.cub.2017.12.023 URL pmid: 29358071 |
[19] |
Eimer, M., & Kiss, M. (2008). Involuntary attentional capture is determined by task set: Evidence from event- related brain potentials. Journal of Cognitive Neuroscience, 20(8), 1423-1433.
doi: 10.1162/jocn.2008.20099 URL pmid: 18303979 |
[20] |
Failing, M., & Theeuwes, J. (2019). More capture, more suppression: Distractor suppression due to statistical regularities is determined by the magnitude of attentional capture. Psychonomic Bulletin & Review, 27, 86-95.
doi: 10.3758/s13423-019-01672-z URL pmid: 31848910 |
[21] | Failing, M., Wang, B., & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception & Psychophysics, 81(5), 1405-1414. |
[22] |
Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Perception & Psychophysics, 64(5), 741-753.
doi: 10.3758/bf03194741 URL pmid: 12201333 |
[23] |
Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: Evidence for two forms of attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 847-858.
doi: 10.1037//0096-1523.24.3.847 URL pmid: 9627420 |
[24] |
Folk, C. L., & Remington, R. (2006). Top-down modulation of preattentive processing: Testing the recovery account of contingent capture. Visual Cognition, 14(4-8), 445-465.
doi: 10.1080/13506280500193545 URL |
[25] |
Folk, C. L., & Remington, R. (2010). A critical evaluation of the disengagement hypothesis. Acta Psychologica, 135(2), 103-105.
doi: 10.1016/j.actpsy.2010.04.012 URL |
[26] |
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. Journal of Experimental Psychology: Human Perception & Performance, 18(4), 1030-1044.
URL pmid: 1431742 |
[27] |
Folk, C. L., Remington, R. W., & Wright, J. H. (1994). The structure of attentional control: Contingent attentional capture by apparent motion, abrupt onset, and color. Journal of Experimental Psychology: Human Perception & Performance, 20(2), 317-329.
doi: 10.1037//0096-1523.20.2.317 URL pmid: 8189195 |
[28] |
Fortier-Gauthier, U., Dell'Acqua, R., & Jolicœur, P. (2013). The “red-alert” effect in visual search: Evidence from human electrophysiology. Psychophysiology, 50(7), 671-679.
doi: 10.1111/psyp.12050 URL |
[29] |
Gao, Y., & Theeuwes, J. (2019). Learning to suppress a distractor is not affected by working memory load. Psychonomic Bulletin & Review, 27(8), 96-104.
doi: 10.3758/s13423-019-01679-6 URL |
[30] |
Gaspar, J. M., Christie, G. J., Prime, D. J., Jolicœur, P., & Mcdonald, J. J. (2016). Inability to suppress salient distractors predicts low visual working memory capacity. Proceedings of the National Academy of Sciences, 113(13), 3693-3698.
doi: 10.1073/pnas.1523471113 URL |
[31] |
Gaspar, J. M., & McDonald, J. J. (2014). Suppression of Salient Objects Prevents Distraction in Visual Search. Journal of Neuroscience, 34(16), 5658-5666.
doi: 10.1523/JNEUROSCI.4161-13.2014 URL |
[32] |
Gaspelin, N., Gaspar, J. M., & Luck, S. J. (2019). Oculomotor inhibition of salient distractors: Voluntary inhibition cannot override selection history. Visual Cognition, 27(3-4), 227-246.
URL pmid: 31745389 |
[33] |
Gaspelin, N., Leonard, C. J., & Luck, S. J. (2015). Direct evidence for active suppression of salient-but-irrelevant sensory inputs. Psychological Science, 26(11), 1740-1750.
doi: 10.1177/0956797615597913 URL pmid: 26420441 |
[34] | Gaspelin, N., Leonard, C. J., & Luck, S. J. (2017). Suppression of overt attentional capture by salient-but-irrelevant color singletons. Attention Perception & Psychophysics, 79(1), 45-62. |
[35] |
Gaspelin, N., & Luck, S. J. (2018a). Combined electrophysiological and behavioral evidence for the suppression of salient distractors. Journal of Cognitive Neuroscience, 30(9), 1265-1280.
doi: 10.1162/jocn_a_01279 URL pmid: 29762104 |
[36] |
Gaspelin, N., & Luck, S. J. (2018b). Distinguishing among potential mechanisms of singleton suppression. Journal of Experimental Psychology. Human Perception and Performance, 44(4), 626-644.
doi: 10.1037/xhp0000484 URL pmid: 29035072 |
[37] |
Gaspelin, N., & Luck, S. J. (2018c). The Role of Inhibition in Avoiding Distraction by Salient Stimuli. Trends in Cognitive Sciences, 22(1), 79-92.
doi: 10.1016/j.tics.2017.11.001 URL pmid: 29191511 |
[38] |
Geng, J. J., & Diquattro, N. E. (2010). Attentional capture by a perceptually salient non-target facilitates target processing through inhibition and rapid rejection. Journal of Vision, 10(6), 5, 1-12.
doi: 10.1167/10.4.13 URL pmid: 20465333 |
[39] |
Geng, J. J. (2014). Attentional mechanisms of distractor suppression. Current Directions in Psychological Science, 23(2), 147-153.
doi: 10.1177/0963721414525780 URL |
[40] |
Glickman, M., & Lamy, D. (2017). Attentional capture by irrelevant emotional distractor faces is contingent on implicit attentional settings. Cognition & Emotion, 32(2), 303-314.
doi: 10.1080/02699931.2017.1301883 URL pmid: 28281398 |
[41] |
Gong, M., Jia, K., & Li, S. (2017). Perceptual competition promotes suppression of reward salience in behavioral selection and neural representation. Journal of Neuroscience, 37(26), 6242-6252.
doi: 10.1523/JNEUROSCI.0217-17.2017 URL pmid: 28539425 |
[42] |
Gong, M., Yang, F., & Li, S. (2016). Reward association facilitates distractor suppression in human visual search. The European Journal of Neuroscience, 43(7), 942-953.
doi: 10.1111/ejn.13174 URL pmid: 26797805 |
[43] |
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21(4), 760-775.
doi: 10.1162/jocn.2009.21039 URL pmid: 18564048 |
[44] |
Hickey, C., van Zoest, W., & Theeuwes, J. (2010). The time course of exogenous and endogenous control of covert attention. Experimental Brain Research, 201(4), 789-796.
doi: 10.1007/s00221-009-2094-9 URL |
[45] |
Hu, L., Ding, Y., & Qu, Z. (2019). Perceptual learning induces active suppression of physically nonsalient shapes. Psychophysiology, 56(9), e13393.
doi: 10.1111/psyp.13393 URL pmid: 31087676 |
[46] |
Ipata, A. E., Gee, A. L., Gottlieb, J., Bisley, J. W., & Goldberg, M. E. (2006). Lip responses to a popout stimulus are reduced if it is overtly ignored. Nature Neuroscience, 9(8), 1071-1076.
doi: 10.1038/nn1734 URL pmid: 16819520 |
[47] |
Jannati, A., Gaspar, J. M., & McDonald, J. J. (2013). Tracking target and distractor processing in fixed-feature visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 39(6), 1713-1730.
doi: 10.1037/a0032251 URL pmid: 23527999 |
[48] |
Lega, C., Ferrante, O., Marini, F., Santandrea, E., Cattaneo, L., & Chelazzi, L. (2019). Probing the neural mechanisms for distractor filtering and their history-contingent modulation by means of TMS. Journal of Neuroscience, 39(38), 7591-7603.
doi: 10.1523/JNEUROSCI.2740-18.2019 URL pmid: 31387915 |
[49] |
Livingstone, A. C., Christie, G. J., Wright, R. D., & McDonald, J. J. (2017). Signal enhancement, not active suppression, follows the contingent capture of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 43(2), 219-224.
doi: 10.1037/xhp0000339 URL pmid: 28134549 |
[50] |
Marini, F., Demeter, E., Roberts, K. C., Chelazzi, L., & Woldorff, M. G. (2016). Orchestrating proactive and reactive mechanisms for filtering distracting information: Brain-behavior relationships revealed by a mixed-design fMRI study. Journal of Neuroscience, 36(3), 988-1000.
doi: 10.1523/JNEUROSCI.2966-15.2016 URL pmid: 26791226 |
[51] | Moher, J., & Egeth, H. E. (2012). The ignoring paradox: Cueing distractor features leads first to selection, then to inhibition of to-be-ignored items. Attention Perception & Psychophysics, 74(8), 1590-1605. |
[52] |
Moher, J., Lakshmanan, B. M., Egeth, H. E., & Ewen, J. B. (2014). Inhibition drives early feature-based attention. Psychological Science, 25(2), 315-324.
doi: 10.1177/0956797613511257 URL pmid: 24390823 |
[53] | Roque, N. A., Wright, T. J., & Boot, W. R. (2016). Do different attention capture paradigms measure different types of capture? Attention Perception & Psychophysics, 78(7), 2014-2030. |
[54] |
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. Journal of Neuroscience, 32(31), 10725-10736.
doi: 10.1523/JNEUROSCI.1864-12.2012 URL |
[55] | Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention Perception & Psychophysics, 72(6), 1455-1470. |
[56] |
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19(7), 956-972.
doi: 10.1080/13506285.2011.603709 URL |
[57] |
Schoeberl, T., Goller, F., & Ansorge, U. (2018). Top-down matching singleton cues have no edge over top-down matching nonsingletons in spatial cueing. Psychonomic Bulletin & Review, 26, 241-249.
URL pmid: 29959614 |
[58] |
Sun, M., Wang, E., Huang, J., Zhao, C., Guo, J., Li, D., ... Song, Y. (2018). Attentional selection and suppression in children and adults. Developmental Science, 21(6), e12684.
doi: 10.1111/desc.12684 URL pmid: 29761932 |
[59] |
Theeuwes, J. (1992). Perceptual selectivity for color and form. Perception & Psychophysics, 51(6), 599-606.
doi: 10.3758/bf03211656 URL pmid: 1620571 |
[60] |
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychonomic Bulletin & Review, 11(1), 65-70.
doi: 10.3758/bf03206462 URL pmid: 15116988 |
[61] |
Theeuwes, J. (2010). Top-down and bottom-up control of visual selection. Acta Psychologica, 135(2), 77-99.
doi: 10.1016/j.actpsy.2010.02.006 URL pmid: 20507828 |
[62] |
Theeuwes, J., de Vries, G. J., & Godijn, R. (2003). Attentional and oculomotor capture with static singletons. Perception & Psychophysics, 65(5), 735-746.
doi: 10.3758/bf03194810 URL pmid: 12956581 |
[63] |
Tran, D. M. D. (2020). Commentary: Probing the neural mechanisms for distractor filtering and their history- contingent modulation by means of TMS. Frontiers in Neuroscience, 14, 365.
doi: 10.3389/fnins.2020.00365 URL pmid: 32351362 |
[64] |
van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception & Performance, 30(4), 746-759.
doi: 10.1037/0096-1523.30.4.749 URL pmid: 15305440 |
[65] |
Vatterott, D. B., & Vecera, S. P. (2012). Experience-dependent attentional tuning of distractor rejection. Psychonomic Bulletin & Review, 19(5), 871-878.
doi: 10.3758/s13423-012-0280-4 URL pmid: 22696250 |
[66] | Wang, B., Samara, I., & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention, Perception, & Psychophysics, 81(6), 1813-1821. |
[67] | Wang, B., & Theeuwes, J. (2018). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention, Perception, & Psychophysics, 80(4), 860-870. |
[68] |
Wang, L., Yu, H., & Zhou, X. (2013). Interaction between value and perceptual salience in value-driven attentional capture. Journal of Vision, 13(3), 5, 1-13.
URL pmid: 23283692 |
[69] |
Wright, T. J., Boot, W. R., & Brockmole, J. R. (2015). Functional fixedness: The functional significance of delayed disengagement based on attention set. Journal of Experimental Psychology: Human Perception and Performance, 41(1), 17-21.
doi: 10.1037/xhp0000016 URL pmid: 25384235 |
[70] |
Wright, T. J., Boot, W. R., & Jones, J. L. (2015). Exploring the breadth of the top-down representations that control attentional disengagement. The Quarterly Journal of Experimental Psychology, 68(5), 993-1006.
doi: 10.1080/17470218.2014.973888 URL pmid: 25295752 |
[71] |
Yantis, S. (1993). Stimulus-driven attentional capture and attentional control settings. Journal of Experimental Psychology: Human Perception and Performance, 19(3), 676-681.
doi: 10.1037//0096-1523.19.3.676 URL pmid: 8331320 |
[72] |
Yantis, S., & Hillstrom, A. P. (1994). Stimulus-driven attentional capture: Evidence from equiluminant visual objects. Journal of Experimental Psychology: Human Perception and Performance, 20(1), 95-107.
doi: 10.1037//0096-1523.20.1.95 URL pmid: 8133227 |
[1] | YE Shuqi, YIN Junting, LI Zhaoxian, LUO Junlong. The influence mechanism of emotion on intuitive and analytical processing [J]. Advances in Psychological Science, 2023, 31(5): 736-746. |
[2] | LI Yadan, DU Ying, XIE Cong, LIU Chunyu, YANG Yilong, LI Yangping, QIU Jiang. A meta-analysis of the relationship between semantic distance and creative thinking [J]. Advances in Psychological Science, 2023, 31(4): 519-534. |
[3] | YU Jie, CHEN Youguo. Spatiotemporal interference effect: An explanation based on Bayesian models [J]. Advances in Psychological Science, 2023, 31(4): 597-607. |
[4] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[5] | YANG Qing, LI Yaqin. Is uncertainty bad? Mixed findings and explanatory model of error processing under uncertainty [J]. Advances in Psychological Science, 2023, 31(3): 338-349. |
[6] | WANG Xudong, HE Yaji, FAN Huiyong, LUO Yangmei, CHEN Xuhai. The advantages and disadvantages of interpersonal anger: Evidence from meta-analysis [J]. Advances in Psychological Science, 2023, 31(3): 386-401. |
[7] | LI Qingyang, YIN Junting, LUO Junlong. Legs move, thoughts flow: Physical exercise influences creative thinking [J]. Advances in Psychological Science, 2023, 31(3): 455-466. |
[8] | CHEN Zi-Wei, FU Di, LIU Xun. Better to misidentify than to miss: A review of occurrence mechanisms and applications of face pareidolia [J]. Advances in Psychological Science, 2023, 31(2): 240-255. |
[9] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[10] | XIE Caifeng, WU Jiahua, XU Liying, YU Feng, ZHAND Yuyan, XIE Yingying. The process motivation model of algorithmic decision-making approach and avoidance [J]. Advances in Psychological Science, 2023, 31(1): 60-77. |
[11] | YE Weihao, YU Meiqi, ZHANG Lihui, GAO Qi, FU Mingzhu, LU Jiamei. Negative emotion granularity: Its mechanisms and related interventions [J]. Advances in Psychological Science, 0, (): 0-0. |
[12] | ZHU Chuanlin, LIU Dianzhi, LUO Wenbo. The cognitive and brain mechanisms of how emotional experience affecting individuals’ utilization of estimation strategies [J]. Advances in Psychological Science, 2022, 30(12): 2639-2649. |
[13] | SHI Hanwen, LI Yutong, SUI Xue. Effects of emotional word types: behavioral and neural evidence for discrimination between emotion-label and emotion-laden words [J]. Advances in Psychological Science, 2022, 30(12): 2696-2707. |
[14] | CHEN Yutian, CHEN Rui, LI Peng. The development of concept and theoretical models of “chunking” in working memory [J]. Advances in Psychological Science, 2022, 30(12): 2708-2717. |
[15] | SHI Huiying, TANG Jie, LIU Pingping. Instability of the watching eyes effect and perceived norms: A new perspective [J]. Advances in Psychological Science, 2022, 30(12): 2718-2734. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||