Advances in Psychological Science ›› 2021, Vol. 29 ›› Issue (1): 56-69.doi: 10.3724/SP.J.1042.2021.00056
• Regular Articles • Previous Articles Next Articles
WANG Getong1,2, XI Jie1,2(), CHEN Nihong3,4(), HUANG Changbing1,2
Received:
2020-03-18
Online:
2021-01-15
Published:
2020-11-23
Contact:
XI Jie,CHEN Nihong
E-mail:xij@psych.ac.cn;nihongch@mail.tsinghua.edu.cn
CLC Number:
WANG Getong, XI Jie, CHEN Nihong, HUANG Changbing. Binocular disparity: Neural mechanisms and perceptual learning[J]. Advances in Psychological Science, 2021, 29(1): 56-69.
[1] | 侯川. (1995). 立体视觉的发生机理与检测. 中国斜视与小儿眼科杂志, 3, 141-144. |
[2] | 颜少明. (2006). 立体视觉检查图 (第3版). 北京: 人民卫生出版社. |
[3] | Alexander, J. A. (1979). A new clinical test of stereopsis: Theoretical evaluation. The Australian Journal of Optometry, 62(5), 191-193. |
[4] | Allouni, A. K., Thomas, O., Solomon, S. G., Krug, K., & Parker, A. J. (2005). Local and global binocular matching in V2 of the awake macaque. Society for Neuroscience Abstracts, 510, 8. |
[5] |
Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual Review of Neuroscience, 25(1), 189-220.
doi: 10.1146/annurev.neuro.25.112701.142922 URL |
[6] |
Anzai, A., Chowdhury, S. A., & DeAngelis, G. C. (2011). Coding of stereoscopic depth information in visual areas V3 and V3A. The Journal of Neuroscience, 31(28), 10270-10282.
URL pmid: 21753004 |
[7] |
Anzai, A., & DeAngelis, G. C. (2010). Neural computations underlying depth perception. Current Opinion in Neurobiology, 20(3), 367-375.
URL pmid: 20451369 |
[8] | Astle, A. T., McGraw, P. V., & Webb, B. S. (2011). Recovery of stereo acuity in adults with amblyopia. BMJ Case Reports, 7-10. |
[9] |
Backus, B. T., Fleet, D. J., Parker, A. J., & Heeger, D. J. (2001). Human cortical activity correlates with stereoscopic depth perception. Journal of Neurophysiology, 86(4), 2054-2068.
URL pmid: 11600661 |
[10] |
Ban, H., Preston, T. J., Meeson, A., & Welchman, A. E. (2012). The integration of motion and disparity cues to depth in dorsal visual cortex. Nature Neuroscience, 15(4), 636-643.
doi: 10.1038/nn.3046 URL |
[11] |
Barlow, H. B., Blakemore, C., & Pettigrew, J. D. (1967). The neural mechanism of binocular depth discrimination. The Journal of Physiology, 193(2), 327-342.
URL pmid: 6065881 |
[12] |
Bohr, I., & Read, J. C. A. (2013). Stereoacuity with Frisby and revised FD2 stereo tests. PLoS One, 8(12), e82999.
URL pmid: 24349416 |
[13] | Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience, 28(1), 157-189. |
[14] |
Bosten, J. M., Goodbourn, P. T., Lawrance-Owen, A. J., Bargary, G., Hogg, R. E., & Mollon, J. D. (2015). A population study of binocular function. Vision Research, 110, 34-50.
URL pmid: 25771401 |
[15] |
Bradshaw, M. F., & Glennerster, A. (2006). Stereoscopic acuity and observation distance. Spatial Vision, 19(1), 21-36.
URL pmid: 16411481 |
[16] |
Bredfeldt, C. E., & Cumming, B. G. (2006). A simple account of cyclopean edge responses in macaque V2. The Journal of Neuroscience, 26(29), 7581-7596.
URL pmid: 16855086 |
[17] |
Brookes, A., & Stevens, K. A. (1989). The analogy between stereo depth and brightness. Perception, 18(5), 601-614.
URL pmid: 2602086 |
[18] |
Chang, D. H. F., Mevorach, C., Kourtzi, Z., & Welchman, A. E. (2014). Training transfers the limits on perception from parietal to ventral cortex. Current Biology, 24(20), 2445-2450.
URL pmid: 25283780 |
[19] |
Chen, G., Lu, H. D., & Roe, A. W. (2008). A map for horizontal disparity in monkey V2. Neuron, 58(3), 442-450.
URL pmid: 18466753 |
[20] |
Chino, Y. M., Smith, E. L., Hatta, S., & Cheng, H. (1997). Postnatal development of binocular disparity sensitivity in neurons of the primate visual cortex. The Journal of Neuroscience, 17(1), 296-307.
URL pmid: 8987756 |
[21] |
Chopin, A., Bavelier, D., & Levi, D. M. (2019). The prevalence and diagnosis of 'stereoblindness' in adults less than 60 years of age: A best evidence synthesis. Ophthalmic and Physiological Optics, 39(2), 66-85.
URL pmid: 30776852 |
[22] |
Ciner, E. B., Scheiman, M. M., Schanel-Klitsch, E., & Weil, L. (1989). Stereopsis testing in 18- to 35-month-old children using operant preferential looking. Optometry & Vision Science, 66(11), 782-787.
URL pmid: 2616139 |
[23] |
Cooper, J., Feldman, J., & Medlin, D. (1979). Comparing stereoscopic performance of children using the Titmus, TNO, and randot stereo tests. Journal of the American Optometric Association, 50(7), 821-825.
URL pmid: 500993 |
[24] |
Cottereau, B. R., McKee, S. P., Ales, J. M., & Norcia, A. M. (2011). Disparity-tuned population responses from human visual cortex. The Journal of Neuroscience, 31(3), 954-965.
doi: 10.1523/JNEUROSCI.3795-10.2011 URL pmid: 21248120 |
[25] | Cowey, A., & Porter, J. (1979). Brain damage and global stereopsis. Proceedings of the Royal Society B: Biological Sciences, 204(1157), 399-407. |
[26] |
Cowey, A., & Wilkinson, F. (1991). The role of the corpus callosum and extra striate visual areas in stereoacuity in macaque monkeys. Neuropsychologia, 29(6), 465-479.
URL pmid: 1944856 |
[27] |
Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280-283.
URL pmid: 9305841 |
[28] |
Cumming, B. G., & Parker, A. J. (1999). Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. The Journal of Neuroscience, 19(13), 5602-5618.
URL pmid: 10377367 |
[29] |
DeAngelis, G. C., & Newsome, W. T. (1999). Organization of disparity-selective neurons in macaque area MT. The Journal of Neuroscience, 19(4), 1398-1415.
URL pmid: 9952417 |
[30] |
DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2013). How does the brain solve visual object recognition?. Neuron, 73(3), 415-434.
URL pmid: 22325196 |
[31] |
Ding, J., & Levi, D. M. (2011). Recovery of stereopsis through perceptual learning in human adults with abnormal binocular vision. Proceedings of the National Academy of Sciences of the United States of America, 108(37), E733-E741.
doi: 10.1073/pnas.1105183108 URL |
[32] |
Dodd, J. V., Krug, K., Cumming, B. G., & Parker, A. J. (2001). Perceptually bistable three-dimensional figures evoke high choice probabilities in cortical area MT. The Journal of Neuroscience, 21(13), 4809-4821.
URL pmid: 11425908 |
[33] |
DöVencioğlu, D., Ban, H., Schofield, A. J., & Welchman, A. E. (2013). Perceptual integration for qualitatively different 3-D cues in the human brain. Journal of Cognitive Neuroscience, 25(9), 1527-1541.
URL pmid: 23647559 |
[34] |
Durand, J.-B., Nelissen, K., Joly, O., Wardak, C., Todd, J. T., Norman, J. F., ... Orban, G. A. (2007). Anterior regions of monkey parietal cortex process visual 3D shape. Neuron, 55(3), 493-505.
doi: 10.1016/j.neuron.2007.06.040 URL |
[35] |
Durand, J.-B., Peeters, R., Norman, J. F., Todd, J. T., & Orban, G. A. (2009). Parietal regions processing visual 3D shape extracted from disparity. NeuroImage, 46(4), 1114-1126.
URL pmid: 19303937 |
[36] |
Erkelens, C. J., & Collewijn, H. (1985). Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Research, 25(4), 583-588.
URL pmid: 4060612 |
[37] | Feinberg, R., & Reuel, S. (1961). Device for testing visual acuity. US3011394A. |
[38] |
Fendick, M., & Westheimer, G. (1983). Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vision Research, 23(2), 145-150.
URL pmid: 6868389 |
[39] |
Finlay, D. C., Manning, M. L., Dunlop, D. P., & Dewis, S. A. M. (1989). Difficulties in the definition of 'stereoscotoma' using temporal detection of thresholds of dynamic random dot stereograms. Documenta Ophthalmologica, 72, 161-173.
URL pmid: 2582997 |
[40] |
Fox, R., Patterson, R., & Francis, E. L. (1986). Stereoacuity in young children. Investigative Ophthalmology & Visual Science, 27(4), 598-600.
URL pmid: 3957579 |
[41] | Frisby, J. P., & Clatworthy, J. L. (1975). Learning to see complex random-dot stereograms. Perception, 4(2), 173-178. |
[42] | Gallese, V., Murata, A., Kaseda, M., Niki, N., & Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Cognitive Neuroscience and Neuropsychology, 5(12), 1525-1529. |
[43] |
Gantz, L., Patel, S. S., Chung, S. T. L., & Harwerth, R. S. (2007). Mechanisms of perceptual learning of depth discrimination in random dot stereograms. Vision Research, 47(16), 2170-2178.
URL pmid: 17588634 |
[44] |
Georgieva, S., Peeters, R., Kolster, H., Todd, J. T., & Orban, G. A. (2009). The processing of three-dimensional shape from disparity in the human brain. The Journal of Neuroscience, 29(3), 727-742.
URL pmid: 19158299 |
[45] |
Giaschi, D., Narasimhan, S., Solski, A., Harrison, E., & Wilcox, L. M. (2013). On the typical development of stereopsis: fine and coarse processing. Vision Research, 89, 65-71.
URL pmid: 23891704 |
[46] |
Goncalves, N. R., Ban, H., Sánchez-Panchuelo, R. M., Francis, S. T., Schluppeck, D., & Welchman, A. E. (2015). 7 Tesla fMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex. The Journal of Neuroscience, 35(7), 3056-3072.
URL pmid: 25698743 |
[47] | Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in Neuroscience, 15(1), 20-25. |
[48] |
Grefkes, C., & Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. Journal of Anatomy, 207(1), 3-17.
URL pmid: 16011542 |
[49] |
Haefner, R. M., & Cumming, B. G. (2008). Adaptation to natural binocular disparities in primate V1 explained by a generalized energy model. Neuron, 57(1), 147-158.
URL pmid: 18184571 |
[50] |
Hegdé, J., & van Essen, D. C. (2005). Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. Journal of Neurophysiology, 94(4), 2856-2866.
URL pmid: 15987759 |
[51] | Helmholtz, H. V. (1909). Handbuch der Physiologischen Optik. New York: Dover. |
[52] |
Hess, R. F., Mansouri, B., & Thompson, B. (2010). A new binocular approach to the treatment of amblyopia in adults well beyond the critical period of visual development. Restorative Neurology and Neuroscience, 28(6), 793-802.
URL pmid: 21209494 |
[53] | Hess, R. F., Thompson, B., Black, J. M., Machara, G., Zhang, P., Bobier, W. R., & Cooperstock, J. (2012). An iPod treatment of amblyopia: An updated binocular approach. Optometry (St. Louis, Mo.), 83(2), 87-94. |
[54] |
Hess, R. F., To, L., Zhou, J., Wang, G., & Cooperstock, J. R. (2015). Stereo vision: The haves and have-nots. i-Perception, 6(3), 2041669515593028.
URL pmid: 27433314 |
[55] |
Hinkle, D. A., & Connor, C. E. (2002). Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience, 5(7), 665-670.
URL pmid: 12068303 |
[56] |
Howarth, P. A. (2008). The adverse health and safety effects of viewing visual images. Displays, 29(2), 45-46.
doi: 10.1016/j.displa.2007.09.012 URL |
[57] | Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology, 160(1), 106-154. |
[58] |
Jameson, D., & Hurvich, L. M. (1959). Note on factors influencing the relation between stereoscopic acuity and observation distance. Journal of the Optical Society of America, 49(6), 639.
URL pmid: 13655159 |
[59] |
Janssen, P., Vogels, R., Liu, Y., & Orban, G. A. (2003). At least at the level of inferior temporal cortex, the stereo correspondence problem is solved. Neuron, 37(4), 693-701.
URL pmid: 12597865 |
[60] |
Janssen, P., Vogels, R., & Orban, G. A. (1999). Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. Proceedings of the National Academy of Sciences of the United States of America, 96(14), 8217-8222.
URL pmid: 10393975 |
[61] |
Janssen, P., Vogels, R., & Orban, G. A. (2000a). Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. Science, 288(5473), 2054-2056.
URL pmid: 10856221 |
[62] |
Janssen, P., Vogels, R., & Orban, G. A. (2000b). Three-dimensional shape coding in inferior temporal cortex. Neuron, 27(2), 385-397.
URL pmid: 10985357 |
[63] | Julesz, B. (1960). Binocular depth perception of computer-generated patterns. Bell System Technical Journal, 39(5), 1125-1162. |
[64] | Julesz, B. (1971). Foundations of cyclopean perception. Boston: MIT Press. |
[65] | Julesz, B. (1978). Global stereopsis: Cooperative phenomena in stereoscopic depth perception. In R. Held, H. W. Leibowitz, & H. L. Teuber (Eds.), Perception: Vol. 8: Handbook of Sensory Physiology(p. 215). Springer, Berlin, Heidelberg. |
[66] |
Julesz, B. (1986). Stereoscopic vision. Vision Research, 26(9), 1601-1612.
URL pmid: 3303677 |
[67] |
Katsuyama, N., Yamashita, A., Sawada, K., Naganuma, T., Sakata, H., & Taira, M. (2010). Functional and histological properties of caudal intraparietal area of macaque monkey. Neuroscience, 167(1), 1-10.
URL pmid: 20096334 |
[68] |
Leat, S. J., Pierre, J. S., Hasan-Abadi, S., & Faubert, J. (2001). The moving dynamic random dot stereosize test: Development, age norms, and comparison with the frisby, randot, and stereo smile tests. Journal of Pediatric Ophthalmology & Strabismus, 38(5), 284-294.
URL pmid: 11587177 |
[69] |
Levi, D. M., Harwerth, R. S., & Smith, E. L. (1980). Binocular interactions in normal and anomalous binocular vision. Documenta Ophthalmologica, 49(2), 303-324.
URL pmid: 7438987 |
[70] |
Liu, Y., Vogels, R., & Orban, G. A. (2004). Convergence of depth from texture and depth from disparity in macaque inferior temporal cortex. The Journal of Neuroscience, 24(15), 3795-3800.
URL pmid: 15084660 |
[71] |
Long, N. R. (1982). Transfer of learning in transformed random-dot stereostimuli. Perception, 11(4), 409-414.
URL pmid: 7182800 |
[72] |
Lu, Z.-L., Hua, T., Huang, C.-B., Zhou, Y., & Dosher, B. A. (2011). Visual perceptual learning. Neurobiology of Learning and Memory, 95(2), 145-151.
doi: 10.1016/j.nlm.2010.09.010 URL pmid: 20870024 |
[73] |
Manning, M. L., Finlay, D. C., Neill, R. A., & Frost, B. G. (1987). Detection threshold differences to crossed and uncrossed disparities. Vision Research, 27(9), 1683-1686.
URL pmid: 3445498 |
[74] |
Marr, D. (1982). Vision. San Francisco: Freeman.
URL pmid: 32575705 |
[75] |
Maruko, I., Zhang, B., Tao, X., Tong, J., Smith, E. L., & Chino, Y. M. (2008). Postnatal development of disparity sensitivity in visual area 2 (V2) of macaque monkeys. Journal of Neurophysiology, 100(5), 2486-2495.
URL pmid: 18753321 |
[76] |
Mazziotti, R., Baroncelli, L., Ceglia, N., Chelini, G., Sala, G. D., Magnan, C., ... Pizzorusso, T. (2017). Mir-132/212 is required for maturation of binocular matching of orientation preference and depth perception. Nature Communication, 8, 15488.
doi: 10.1038/ncomms15488 URL |
[77] |
McKee, S. P., Levi, D. M., & Movshon, J. A. (2003). The pattern of visual deficits in amblyopia. Journal of Vision, 3(5), 380-405.
URL pmid: 12875634 |
[78] |
Mendola, J. D., Dale, A. M., Fischl, B., Liu, A. K., & Tootell, R. B. H. (1999). The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. The Journal of Neuroscience, 19(19), 8560-8572.
URL pmid: 10493756 |
[79] |
Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. Journal of Neurophysiology, 83(5), 2580-2601.
URL pmid: 10805659 |
[80] |
Neri, P., Bridge, H., & Heeger, D. J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology, 92(3), 1880-1891.
URL pmid: 15331652 |
[81] |
Neri, P., Parker, A. J., & Blakemore, C. (1999). Probing the human stereoscopic system with reverse correlation. Nature, 401, 695-698.
URL pmid: 10537107 |
[82] |
Nguyenkim, J. D., & DeAngelis, G. C. (2003). Disparity-based coding of three-dimensional surface orientation by macaque middle temporal neurons. The Journal of Neuroscience, 23(18), 7117-7128.
URL pmid: 12904472 |
[83] |
Nienborg, H., & Cumming, B. G. (2006). Macaque V2 neurons, but not V1 neurons, show choice-related activity. The Journal of Neuroscience, 26(37), 9567-9578.
doi: 10.1523/JNEUROSCI.2256-06.2006 URL |
[84] |
Nikara, T., Bishop, P. O., & Pettigrew, J. D. (1968). Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research, 6(4), 353-372.
URL pmid: 5721765 |
[85] |
Nongpiur, M. E, & Sharma, P. (2010). Horizontal Lang two-pencil test as a screening test for stereopsis and binocularity. Indian Journal of Ophthalmology, 58(4), 287-290.
URL pmid: 20534917 |
[86] |
Ogle, K. N. (1952). Disparity limits of stereopsis. Archives of Ophthalmology, 48(1), 50-60.
URL pmid: 14932562 |
[87] |
Ogle, K. N. (1958). Note on stereoscopic acuity and observation distance. Journal of the optical society of America, 48(11), 794-798.
URL pmid: 13588453 |
[88] |
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: Neurons ideally suited as disparity detectors. Science, 249(4972), 1037-1041.
URL pmid: 2396096 |
[89] |
Ohzawa, I., DeAngelis, G. C., & Freeman, R. D. (1997). Encoding of binocular disparity by complex cells in the cat's visual cortex. Journal of Neurophysiology, 77(6), 2879-2909.
URL pmid: 9212245 |
[90] | Orban, G. A. (2011). The extraction of 3D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience, 34(1), 361-388. |
[91] |
O'Toole, A. J., & Kersten, D. J. (1992). Learning to see random-dot stereograms. Perception, 21(2), 227-243.
URL pmid: 1513672 |
[92] | Panum, P. L. (1940). Physiological investigations concerning vision with two eyes (C. Hubscher, Trans.). Hanover, NH: Dartmouth Eye Institute. |
[93] |
Patterson, R., & Fox, R. (1984). The effect of testing method on stereoanomaly. Vision Research, 24(5), 403-408.
URL pmid: 6740961 |
[94] |
Poggio, G. F., & Fischer, B. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. Journal of Neurophysiology, 40(6), 1392-1405.
URL pmid: 411898 |
[95] |
Poggio, G. F., Gonzalez, F., & Krause, F. (1988). Stereoscopic mechanisms in monkey visual cortex: Binocular correlation and disparity selectivity. The Journal of Neuroscience, 8(12), 4531-4550.
URL pmid: 3199191 |
[96] |
Poggio, G. F., Motter, B. C., Squatrito, S., & Trotter, Y. (1985). Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. Vision Research, 25(3), 397-406.
URL pmid: 4024459 |
[97] |
Portela-Camino, J. A., Martín-González, S., Ruiz-Alcocer, J., Illarramendi-Mendicute, I., & Garrido-Mercado, R. (2018). A random dot computer video game improves stereopsis. Optometry and Vision Science, 95(6), 523-535.
URL pmid: 29787486 |
[98] |
Ramachandran, V. S. (1976). Learning-like phenomena in stereopsis. Nature, 262(5567), 382-384.
URL pmid: 958387 |
[99] |
Ramachandran, V. S., & Braddick, O. (1973). Orientation-specific learning in stereopsis. Perception, 2(3), 371-376.
URL pmid: 4794134 |
[100] |
Richards, W. (1970). Stereopsis and stereoblindness. Experimental Brain Research, 10(4), 380-388.
URL pmid: 5422472 |
[101] |
Richards, W. (1971). Anomalous stereoscopic depth perception. Journal of the Optical Society of America, 61(3), 410-414.
doi: 10.1364/josa.61.000410 URL pmid: 5542548 |
[102] |
Rogers, B., & Graham, M. (1982). Similarities between motion parallax and stereopsis in human depth perception. Vision Research, 22(2), 261-270.
URL pmid: 7101762 |
[103] |
Romano, P. E., Romano, J. A., & Puklin, J. E. (1975). Stereoacuity development in children with normal binocular single vision. American Journal of Ophthalmology, 79(6), 966-971.
doi: 10.1016/0002-9394(75)90679-0 URL pmid: 1137000 |
[104] |
Roy, J. P., Komatsu, H., & Wurtz, R. H. (1992). Disparity sensitivity of neurons in monkey extrastriate area MST. The Journal of Neuroscience, 12(7), 2478-2492.
URL pmid: 1613542 |
[105] |
Sakata, H. (2003). The role of the parietal cortex in grasping. Advances in Neurology, 93, 121-139.
URL pmid: 12894405 |
[106] |
Sakata, H., Taira, M., Murata, A., & Mine, S. (1995). Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cerebral Cortex, 5(5), 429-438.
URL pmid: 8547789 |
[107] | Sasieni, L. S. (1978). The frisby stereotest. Optician, 176, 7-10. |
[108] |
Schmitt, C., Kromeier, M., Bach, M., & Kommerell, G. (2002). Interindividual variability of learning in stereoacuity. Graefe's Archive for Clinical and Experimental Ophthalmology, 240(9), 704-709.
doi: 10.1007/s00417-002-0458-y URL |
[109] |
Schoemann, M. D., Lochmann, M., Paulus, J., & Michelson, G. (2017). Repetitive dynamic stereo test improved processing time in young athletes. Restorative Neurology and Neuroscience, 35(4), 413-421.
URL pmid: 28671146 |
[110] |
Scholl, B., Burge, J., & Priebe, N. J. (2013). Binocular integration and disparity selectivity in mouse primary visual cortex. Journal of Neurophysiology, 109(12), 3013-3024.
URL pmid: 23515794 |
[111] |
Sereno, M. E., Trinath, T., Augath, M., & Logothetis, N. K. (2002). Three-dimensional shape representation in monkey cortex. Neuron, 33(4), 635-652.
URL pmid: 11856536 |
[112] |
Simons, K. (1981). Stereoacuity norms in young children. Archives of Ophthalmology, 99(3), 439-445.
URL pmid: 7213162 |
[113] |
Snyder, L. H., Batista, A. P., & Andersen, R. A. (1997). Coding of intention in the posterior parietal cortex. Nature (London), 386(6621), 167-170.
doi: 10.1038/386167a0 URL |
[114] |
Solimini, A. G. (2013). Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS ONE, 8(2), e56160.
URL pmid: 23418530 |
[115] |
Sowden, P., Davies, I., Rose, D., & Kaye, M. (1996). Perceptual learning of stereoacuity. Perception, 25(9), 1043-1052.
URL pmid: 8983044 |
[116] |
Srivastava, S., Orban, G. A., de Mazière, P. A., & Janssen, P. (2009). A distinct representation of three-dimensional shape in macaque anterior intraparietal area: Fast, metric, and coarse. The Journal of Neuroscience, 29(34), 10613-10626.
doi: 10.1523/JNEUROSCI.6016-08.2009 URL pmid: 19710314 |
[117] |
Taira, M., Mine, S., Georgopoulos, A. P., Murata, A., & Sakata, H. (1990). Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Experimental Brain Research, 83(1), 29-36.
URL pmid: 2073947 |
[118] |
Takemura, A., Inoue, Y., Kawano, K., Quaia, C., & Miles, F. A. (2001). Single-unit activity in cortical area MST associated with disparity-vergence eye movements: Evidence for population coding. Journal of Neurophysiology, 85(5), 2245-2266.
URL pmid: 11353039 |
[119] |
Tanabe, S., Umeda, K., & Fujita, I. (2004). Rejection of false matches for binocular correspondence in macaque visual cortical area V4. The Journal of Neuroscience, 24(37), 8170-8180.
URL pmid: 15371518 |
[120] |
Tanabe, S., Yasuoka, S., & Fujita, I. (2008). Disparity-energy signals in perceived stereoscopic depth. Journal of Vision, 8(3), 1-10.
URL pmid: 18484820 |
[121] |
Tanaka, H., Uka, T., Yoshiyama, K., Kato, M., & Fujita, I. (2001). Processing of shape defined by disparity in monkey inferior temporal cortex. Journal of Neurophysiology, 85(2), 735-744.
URL pmid: 11160508 |
[122] |
Thomas, O. M., Cumming, B. G., & Parker, A. J. (2002). A specialization for relative disparity in V2. Nature Neuroscience, 5(5), 472-478.
URL pmid: 11967544 |
[123] |
Tomac, S., & Altay, Y. (2000). Near stereoacuity: Development in preschool children; Normative values and screening for binocular vision abnormalities; A study of 115 children. Binocular Vision Strabismus Quarterly, 15(3), 221-228.
URL pmid: 10960225 |
[124] |
Tootell, R. B. H., & Nasr, S. (2017). Columnar segregation of magnocellular and parvocellular streams in human extrastriate cortex. The Journal of Neuroscience, 37(33), 8014-8032.
URL pmid: 28724749 |
[125] |
Tsao, D. Y., Vanduffel, W., Sasaki, Y., Fize, D., Knutsen, T. A., Mandeville, J. B., ... Tootell, R. B. H. (2003). Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron, 39(3), 555-568.
URL pmid: 12895427 |
[126] |
Tsodyks, M., & Gilbert, C. (2004). Neural networks and perceptual learning. Nature, 431(7010), 775-781.
URL pmid: 15483598 |
[127] |
Tsutsui, K. I., Jiang, M., Yara, K., Sakata, H., & Taira, M. (2001). Integration of perspective and disparity cues in surface-orientation-selective neurons of area CIP. Journal of Neurophysiology, 86(6), 2856-2867.
URL pmid: 11731542 |
[128] |
Uka, T., & DeAngelis, G. C. (2006). Linking neural representation to function in stereoscopic depth perception: Roles of the middle temporal area in coarse versus fine disparity discrimination. The Journal of Neuroscience, 26(25), 6791-6802.
URL pmid: 16793886 |
[129] |
Uka, T., Tanaka, H., Yoshiyama, K., Kato, M., & Fujita, I. (2000). Disparity selectivity of neurons in monkey inferior temporal cortex. Journal of Neurophysiology, 84(1), 120-132.
URL pmid: 10899190 |
[130] |
Uka, T., Tanabe, S., Watanabe, M., & Fujita, I. (2005). Neural correlates of fine depth discrimination in monkey inferior temporal cortex. The Journal of Neuroscience, 25(46), 10796-10802.
URL pmid: 16291953 |
[131] |
Ukai, K., & Howarth, P. A. (2008). Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations. Displays, 29(2), 106-116.
doi: 10.1016/j.displa.2007.09.004 URL |
[132] |
Umeda, K., Tanabe, S., & Fujita, I. (2007). Representation of stereoscopic depth based on relative disparity in macaque area V4. Journal of Neurophysiology, 98(1), 241-252.
doi: 10.1152/jn.01336.2006 URL pmid: 17507498 |
[133] |
Verhoef, B.-E., Vogels, R., & Janssen, P. (2016). Binocular depth processing in the ventral visual pathway. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1697), 20150259.
doi: 10.1098/rstb.2015.0259 URL |
[134] |
von der Heydt, R., Zhou, H., & Friedman, H. S. (2000). Representation of stereoscopic edges in monkey visual cortex. Vision Research, 40(15), 1955-1967.
URL pmid: 10828464 |
[135] |
Watanabe, M., Tanaka, H., Uka, T., & Fujita, I. (2002). Disparity-selective neurons in area V4 of macaque monkeys. Journal of Neurophysiology, 87(4), 1960-1973.
doi: 10.1152/jn.00780.2000 URL pmid: 11929915 |
[136] |
Westheimer, G. (1979). Cooperative neural processes involved in stereoscopic acuity. Experimental Brain Research, 36(3), 585-597.
URL pmid: 477784 |
[137] | Wheatstone, C. (1838). On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions - Royal Society, 53, 371-394. |
[138] |
Wilcox, L. M., & Allison, R. S. (2009). Coarse-fine dichotomies in human stereopsis. Vision Research, 49(22), 2653-2665.
URL pmid: 19520102 |
[139] |
Wong, B. P. H., Woods, R. L., & Peli, E. (2002). Stereoacuity at distance and near. Optometry and Vision Science, 79(12), 771-778.
URL pmid: 12512685 |
[140] |
Wright, L. A., & Wormald, R. P. (1992). Stereopsis and ageing. Eye, 6(5), 473-476.
doi: 10.1038/eye.1992.100 URL |
[141] |
Xi, J., Jia, W.-L., Feng, L.-X., Lu, Z.-L., & Huang, C.-B. (2014). Perceptual learning improves stereoacuity in amblyopia. Investigative Ophthalmology and Visual Science, 55(4), 2384-2391.
doi: 10.1167/iovs.13-12627 URL pmid: 24508791 |
[142] |
Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z., & Connor, C. E. (2008). A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience, 11(11), 1352-1360.
doi: 10.1038/nn.2202 URL pmid: 18836443 |
[1] | WANG Yongli, GE Shengnan, Lancy Lantin Huang, WAN Qin, LU Haidan. Neural mechanism of speech imagery [J]. Advances in Psychological Science, 2023, 31(4): 608-621. |
[2] | ZHANG Mingxia, LI Yuxin, LI Jin, LIU Xun. The influence of extrinsic and intrinsic motivation on memory in adolescents and the underlying neural mechanisms [J]. Advances in Psychological Science, 2023, 31(1): 1-9. |
[3] | WANG Songxue, CHENG Si, JIANG Ting, LIU Xun, ZHANG Mingxia. The effect of external rewards on declarative memory [J]. Advances in Psychological Science, 2023, 31(1): 78-86. |
[4] | ZHAO Bingjie, ZHANG Qihan, CHEN Yixin, ZHANG Peng, BAI Xuejun. Processing characteristics and mechanisms of perception and memory of mind sports experts in domain-specific tasks [J]. Advances in Psychological Science, 2022, 30(9): 1993-2003. |
[5] | DENG Xun, CHEN Ning, WANG Dandan, ZHAO Huanhuan, HE Wen. Neural mechanism of NSSI and comparative study with comorbidities [J]. Advances in Psychological Science, 2022, 30(7): 1561-1573. |
[6] | DENG Yao, WANG Mengmeng, RAO Hengyi. Risk-taking research based on the Balloon Analog Risk Task [J]. Advances in Psychological Science, 2022, 30(6): 1377-1392. |
[7] | LI Liang, LI Hong. Cognitive mechanism and neural basis of shyness [J]. Advances in Psychological Science, 2022, 30(5): 1038-1049. |
[8] | CHEN Xingming, FU Tong, LIU Chang, ZHANG Bin, FU Yunfa, LI Enze, ZHANG Jian, CHEN Shengqiang, DANG Caiping. Neuroplasticity induced by working memory training: A spatio-temporal model of decreased distribution in brain regions based on fMRI experiments [J]. Advances in Psychological Science, 2022, 30(2): 255-274. |
[9] | ZHANG Lina, XUAN Bin. Neural mechanisms and time course of the age-related word frequency effect in language production [J]. Advances in Psychological Science, 2022, 30(2): 333-342. |
[10] | LI Hehui, HUANG Huiya, DONG Lin, LUO Yuejia, TAO Wuhai. Developmental dyslexia and cerebellar abnormalities: Multiple roles of the cerebellum and causal relationships between the two [J]. Advances in Psychological Science, 2022, 30(2): 343-353. |
[11] | HU Jia-Bao, LEI Yang, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Shared vs. private aesthetic tastes: The cognitive and neural mechanisms [J]. Advances in Psychological Science, 2022, 30(2): 354-364. |
[12] | CHEN Qunlin, DING Ke. Serial order effect during divergent thinking: A new perspective on the dynamic mechanism of creative thought processes [J]. Advances in Psychological Science, 2022, 30(11): 2507-2517. |
[13] | HUANG Jianping, XU Jingxian, WAN Xiaoang. Influence of associative learning on consumer behavior: From the perspective of product search experience [J]. Advances in Psychological Science, 2022, 30(11): 2414-2423. |
[14] | WANG Zile, ZHANG Qi. The internal mechanisms of attentional templates in facilitating visual search [J]. Advances in Psychological Science, 2022, 30(10): 2206-2218. |
[15] | LIU Wang-Juan, DING Xian-Feng, CHENG Xiao-Rong, FAN Zhao. Serial dependence effect: A novel “history effect” [J]. Advances in Psychological Science, 2022, 30(10): 2228-2239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||