心理科学进展 ›› 2026, Vol. 34 ›› Issue (2): 251-270.doi: 10.3724/SP.J.1042.2026.0251 cstr: 32111.14.2026.0251
孙焕翔1,#, 张帆1,2,#, 李思嘉1, 张秀玲1(
), 蒋毅3,4
收稿日期:2025-07-01
出版日期:2026-02-15
发布日期:2025-12-15
通讯作者:
张秀玲, E-mail: zhangxl556@nenu.edu.cn作者简介:#孙焕翔和张帆为本文的共同第一作者
基金资助:
SUN Huanxiang1,#, ZHANG Fan1,2,#, LI Sijia1, ZHANG Xiuling1(
), JIANG Yi3,4
Received:2025-07-01
Online:2026-02-15
Published:2025-12-15
摘要:
集合感知是视觉系统高效地从复杂的外部世界中提取均值、方差等概要信息的过程, 这对于人类适应环境具有重要意义。对其神经机制的研究有助于理解视觉系统如何实现高效的抽象表征。本文总结了集合感知的时间进程, 综述了这种整合机制的理论模型和实证证据, 并区分了集合编码与成员或个体编码的功能及神经基础。在现有研究成果的基础上, 提出了“粗略−细节−校准”的整合模型:大脑在加工不同水平的视觉特征时, 可能依次存在领域通用与特异性机制, 早期依赖于通用性的大细胞通路的粗略加工, 随后是特异性的、依赖于各特征脑区小细胞通路的相对精细表征, 最后通过前馈−反馈循环迭代进行校准。未来研究可关注视觉集合感知的神经通路与具体脑区、前馈与反馈的角色、信息编码的通用性与特异性, 以及发育与经验对集合感知的影响。
中图分类号:
孙焕翔, 张帆, 李思嘉, 张秀玲, 蒋毅. (2026). 化繁为简:视觉集合感知的神经机制. 心理科学进展 , 34(2), 251-270.
SUN Huanxiang, ZHANG Fan, LI Sijia, ZHANG Xiuling, JIANG Yi. (2026). Simplify complexity: The neural mechanisms underlying ensemble perception. Advances in Psychological Science, 34(2), 251-270.
图1 传统层级结构和逆层级理论(RHT)。 注:传统观点认为, 视觉输入首先由低层级视觉皮层区域的神经元接收和处理, 对刺激的简单几何形状做出反应。随后, 信息自下而上逐层传递, 表征全局特征。最终, 信息在更高层级的皮层区域得到整合, 形成抽象形状、物体和类别的表征, 这一过程并不涉及反馈。逆层级理论则提出, 前馈路径仅内隐地加工特征信息, 有意识的视觉整体感知在高层级皮层形成, 表现为对场景要点的概要表征。随后, 意识感知通过反馈连接, 自上而下返回至相应的低层级皮层, 以形成更详细的表征。(资料来源Hochstein & Ahissar, Neuron (pp. 791−804) (2002), 已获得改编许可)
| [1] |
陈子龙, 季琭妍. (2025). 多面孔情绪变异性的自动加工:来自视觉失匹配成分的证据. 心理学报, 57(9), 1553-1571. https://journal.psych.ac.cn/xlxb/CN/10.3724/SP.J.1041.2025.1553
doi: 10.3724/SP.J.1041.2025.1553 URL |
| [2] | 郝爽, 叶倩君, 何蔚祺. (2023). 群体面孔情绪的整体编码及其影响因素. 心理科学, 46(01), 50-56. https://jps.ecnu.edu.cn/CN/Y2023/V46/I1/50 |
| [3] | 励奇添, 陈文锋. (2022). 集群表征在不同刺激及属性间的差异. 科学通报, 67(21), 2463-2472. https://doi.org/10.1360/TB-2021-1068 |
| [4] | 刘丁睿. (2021). 集合表征对知觉决策调节效应的认知神经机制 [博士学位论文]. 中国科学院大学, 北京. |
| [5] |
田欣然, 侯文霞, 欧玉晓, 易冰, 陈文锋, 尚俊辰. (2021). 基于合成平均刺激的平均表征机制—来自平均面孔吸引力的证据. 心理学报, 53(7), 714-728. https://doi.org/10.3724/sp.J.1041.2021.00714
doi: 10.3724/SP.J.1041.2021.00714 URL |
| [6] |
仝可, 唐薇, 陈文锋, 傅小兰. (2015). 统计概要表征的内容与机制. 心理科学进展, 23(10), 1723-1731. https://doi.org/10.3724/sp.J.1042.2015.01723
doi: 10.3724/SP.J.1042.2015.01723 URL |
| [7] | 赵冰洁, 何婕, 刘颖, 杨邵峰, 王峥, 张琪涵, 白学军. (2024). 凸显刺激对整体知觉集合数量效应的影响. 心理与行为研究, 22(2), 212. https://psybeh.tjnu.edu.cn/CN/Y2024/V22/I2/212 |
| [8] | Allard R., Ramanoël S., Silvestre D., & Arleo A. (2021). Variance-dependent neural activity in an unvoluntary averaging task. Attention, Perception, & Psychophysics, 83( 3), 1094-1105. https://doi.org/10.3758/s13414-020-02223-8 |
| [9] |
Allik J., Toom M., Naar R., & Raidvee A. (2022). How are local orientation signals pooled? Attention, Perception, & Psychophysics, 84(3), 981-991. https://doi.org/10.3758/s13414-022-02456-9
doi: 10.3758/s13414-022-02456-9 URL |
| [10] |
Alvarez G. A. (2011). Representing multiple objects as an ensemble enhances visual cognition. Trends in Cognitive Sciences, 15(3), 122-131. https://doi.org/10.1016/j.tics.2011.01.003
doi: 10.1016/j.tics.2011.01.003 URL pmid: 21292539 |
| [11] |
Ariely D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157-162. https://doi.org/10.1111/1467-9280.00327
pmid: 11340926 |
| [12] |
Bar M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15(4), 600-609. https://doi.org/10.1162/089892903321662976
URL pmid: 12803970 |
| [13] |
Bar M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617-629. https://doi.org/10.1038/nrn1476
URL pmid: 15263892 |
| [14] |
Bar M., Kassam K. S., Ghuman A. S., Boshyan J., Schmid A. M., Dale A. M.,... Halgren E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449-454. https://doi.org/10.1073/pnas.0507062103
doi: 10.1073/pnas.0507062103 URL |
| [15] |
Bauer B. (2009). The danger of trial-by-trial knowledge of results in perceptual averaging studies. Attention, Perception, & Psychophysics, 71(3), 655-665. https://doi.org/10.3758/APP.71.3.655
doi: 10.3758/APP.71.3.655 URL |
| [16] |
Bonin V., Mante V., & Carandini M. (2006). The statistical computation underlying contrast gain control. Journal of Neuroscience, 26(23), 6346-6353. https://doi.org/10.1523/JNEUROSCI.0284-06.2006
doi: 10.1523/JNEUROSCI.0284-06.2006 URL pmid: 16763043 |
| [17] |
Cha O., Blake R., & Gauthier I. (2022). Contribution of a common ability in average and variability judgments. Psychonomic Bulletin & Review, 29(1), 108-115. https://doi.org/10.3758/s13423-021-01982-1
doi: 10.3758/s13423-021-01982-1 URL |
| [18] | Chaney W., Fischer J., & Whitney D. (2014). The hierarchical sparse selection model of visual crowding. Frontiers in Integrative Neuroscience, 8, 73. https://doi.org/10.3389/fnint.2014.00073 |
| [19] |
Chang Q., Hao B., Fan C., Luo W., & He W. (2025). Ensemble coding of crowd facial emotion in Internet gaming disorder under the emotional interference condition: An ERP study. Journal of Behavioral Addictions, 14(2), 817-830. https://doi.org/10.1556/2006.2025.00027
doi: 10.1556/2006.2025.00027 URL pmid: 40193207 |
| [20] |
Chang T. Y., Cha O., & Gauthier I. (2024). A general ability for judging simple and complex ensembles. Journal of Experimental Psychology: General, 153(6), 1517-1536. https://doi.org/10.1037/xge0001582
doi: 10.1037/xge0001582 URL |
| [21] |
Chang T. Y., Cha O., McGugin R., Tomarken A., & Gauthier I. (2024). How general is ensemble perception?. Psychological Research, 88(3), 695-708. https://doi.org/10.1007/s00426-023-01883-z
doi: 10.1007/s00426-023-01883-z URL |
| [22] |
Chang T. Y., & Gauthier I. (2022). Domain-general ability underlies complex object ensemble processing. Journal of Experimental Psychology: General, 151(4), 966-972. https://doi.org/10.1037/xge0001110
doi: 10.1037/xge0001110 URL |
| [23] |
Chen J., Yu Q., Zhu Z., Peng Y., & Fang F. (2016). Spatial summation revealed in the earliest visual evoked component C1 and the effect of attention on its linearity. Journal of Neurophysiology, 115(1), 500-509. https://doi.org/10.1152/jn.00044.2015
doi: 10.1152/jn.00044.2015 URL pmid: 26561595 |
| [24] |
Choi J., & Chong S. C. (2020). Contextual cueing in target absent trials by distractor-distractor associations. Journal of Experimental Psychology: Human Perception and Performance, 46(12), 1458. https://doi.org/10.1037/xhp0000867
doi: 10.1037/xhp0000867 URL |
| [25] |
Chong S. C., & Treisman A. (2003). Representation of statistical properties. Vision Research, 43(4), 393-404. https://doi.org/10.1016/S0042-6989(02)00596-5
URL pmid: 12535996 |
| [26] |
Chwe J. A. H., & Freeman J. B. (2024). Trustworthiness of crowds is gleaned in half a second. Social Psychological and Personality Science, 15(3), 351-359. https://doi.org/10.1177/19485506231164703
doi: 10.1177/19485506231164703 URL |
| [27] | Corbett J. E., Utochkin I., & Hochstein S. (2023). The pervasiveness of ensemble perception: Not just your average review. Cambridge University Press. |
| [28] |
Davis E. E., Matthews C. M., & Mondloch C. J. (2021). Ensemble coding of facial identity is not refined by experience: Evidence from other-race and inverted faces. British Journal of Psychology, 112(1), 265-281. https://doi.org/10.1111/bjop.12457
doi: 10.1111/bjop.v112.1 URL |
| [29] |
De Fockert J. W., & Marchant A. P. (2008). Attention modulates set representation by statistical properties. Perception & Psychophysics, 70(5), 789-794. https://doi.org/10.3758/PP.70.5.789
doi: 10.3758/PP.70.5.789 URL |
| [30] |
de Fockert J., & Wolfenstein C. (2009). Rapid extraction of mean identity from sets of faces. Quarterly Journal of Experimental Psychology, 62(9), 1716-1722. https://doi.org/10.1080/17470210902811249
doi: 10.1080/17470210902811249 URL |
| [31] |
De Gardelle V., & Summerfield C. (2011). Robust averaging during perceptual judgment. Proceedings of the National Academy of Sciences, 108(32), 13341-13346. https://doi.org/10.1073/pnas.1104517108
doi: 10.1073/pnas.1104517108 URL |
| [32] |
Dodgson D. B., & Raymond J. E. (2020). Value associations bias ensemble perception. Attention, Perception, & Psychophysics, 82(1), 109-117. https://doi.org/10.3758/s13414-019-01744-1
doi: 10.3758/s13414-019-01744-1 URL |
| [33] |
Epstein M. L., & Emmanouil T. A. (2021). Ensemble statistics can be available before individual item properties: Electroencephalography evidence using the oddball paradigm. Journal of Cognitive Neuroscience, 33(6), 1056-1068. https://doi.org/10.1162/jocn_a_01704
doi: 10.1162/jocn_a_01704 URL pmid: 34428790 |
| [34] |
Epstein M. L., Quilty-Dunn J., Mandelbaum E., & Emmanouil T. A. (2020). The outlier paradox: The role of iterative ensemble coding in discounting outliers. Journal of Experimental Psychology: Human Perception and Performance, 46(11), 1267. https://doi.org/10.1037/xhp0000857
doi: 10.1037/xhp0000857 URL |
| [35] |
Fischer J., & Whitney D. (2011). Object-level visual information gets through the bottleneck of crowding. Journal of Neurophysiology, 106(3), 1389-1398. https://doi.org/10.1152/jn.00904.2010
doi: 10.1152/jn.00904.2010 URL pmid: 21676930 |
| [36] |
Florey J., Clifford C. W., Dakin S., & Mareschal I. (2016). Spatial limitations in averaging social cues. Scientific Reports, 6, 32210. https://doi.org/10.1038/srep32210
doi: 10.1038/srep32210 URL pmid: 27573589 |
| [37] |
Gilbert C. D., & Sigman M. (2007). Brain states: Top-down influences in sensory processing. Neuron, 54(5), 677-696. https://doi.org/10.1016/j.neuron.2007.05.019
doi: 10.1016/j.neuron.2007.05.019 URL pmid: 17553419 |
| [38] | Gong X., He T., Wang Q., Lu J., & Fang F. (2025). Time course of orientation ensemble representation in the human brain. Journal of Neuroscience, 45(7). https://doi.org/10.1523/JNEUROSCI.1688-23.2024 |
| [39] |
Haberman J., Brady T. F., & Alvarez G. A. (2015). Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. Journal of Experimental Psychology: General, 144(2), 432-446. https://doi.org/10.1037/xge0000053
doi: 10.1037/xge0000053 URL |
| [40] | Haberman J., Harp T., & Whitney D. (2009). Averaging facial expression over time. Journal of Vision, 9(11), 1-1. https://doi.org/10.1167/9.11.1 |
| [41] | Haberman J., Lee P., & Whitney D. (2015). Mixed emotions: Sensitivity to facial variance in a crowd of faces. Journal of Vision, 15(4), 16. https://doi.org/10.1167/15.4.16 |
| [42] |
Haberman J., & Suresh S. (2021). Ensemble size judgments account for size constancy. Attention, Perception, & Psychophysics, 83(3), 925-933. https://doi.org/10.3758/s13414-020-02144-6
doi: 10.3758/s13414-020-02144-6 URL |
| [43] |
Haberman J., & Whitney D. (2007). Rapid extraction of mean emotion and gender from sets of faces. Current Biology, 17(17), R751-753. https://doi.org/10.1016/j.cub.2007.06.039
doi: 10.1016/j.cub.2007.06.039 URL pmid: 17803921 |
| [44] |
Haberman J., & Whitney D. (2009). Seeing the mean: Ensemble coding for sets of faces. Journal of Experimental Psychology: Human Perception and Performance, 35(3), 718-734. https://doi.org/10.1037/a0013899
doi: 10.1037/a0013899 URL |
| [45] | Haberman J., & Whitney D. (2012). Ensemble perception:Summarizing the scene and broadening the limits of visual processing. In J. Wolfe & L. Robertson (Eds.), From perception to consciousness: Searching with Anne Treisman (pp. 339-349). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199734337.003.0030 |
| [46] |
Hansmann-Roth S., Kristjánsson Á., Whitney D., & Chetverikov A. (2021). Dissociating implicit and explicit ensemble representations reveals the limits of visual perception and the richness of behavior. Scientific Reports, 11(1), 3899. https://doi.org/10.1038/s41598-021-83358-y
doi: 10.1038/s41598-021-83358-y URL |
| [47] |
He D., Kersten D., & Fang F. (2012). Opposite modulation of high-and low-level visual aftereffects by perceptual grouping. Current Biology, 22(11), 1040-1045. https://doi.org/10.1016/j.cub.2012.04.026
doi: 10.1016/j.cub.2012.04.026 URL |
| [48] |
Hochstein S., & Ahissar M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron, 36(5), 791-804. https://doi.org/10.1016/S0896-6273(02)01091-7
URL pmid: 12467584 |
| [49] | Hochstein S., Pavlovskaya M., Bonneh Y. S., & Soroker N. (2015). Global statistics are not neglected. Journal of Vision, 15(4), 7. https://doi.org/10.1167/15.4.7 |
| [50] | Iakovlev A. U., & Utochkin I. S. (2023). Ensemble averaging: What can we learn from skewed feature distributions? Journal of Vision, 23(1), 5. https://doi.org/10.1167/jov.23.1.5 |
| [51] |
Im H. Y., Albohn D. N., Steiner T. G., Cushing C. A., Adams R. B., Jr., & Kveraga K. (2017). Differential hemispheric and visual stream contributions to ensemble coding of crowd emotion. Nature Human Behaviour, 1, 828-842. https://doi.org/10.1038/s41562-017-0225-z
doi: 10.1038/s41562-017-0225-z URL pmid: 29226255 |
| [52] | Im H. Y., Cushing C. A., Ward N., & Kveraga K. (2021). Differential neurodynamics and connectivity in the dorsal and ventral visual pathways during perception of emotional crowds and individuals: A MEG study. Cognitive, Affective, & Behavioral Neuroscience, 21(4), 776-792. https://doi.org/10.3758/s13415-021-00880-2 |
| [53] |
Jeong J., & Chong S. C. (2020). Adaptation to mean and variance: Interrelationships between mean and variance representations in orientation perception. Vision Research, 167, 46-53. https://doi.org/10.1016/j.visres.2020.01.002
doi: S0042-6989(20)30003-1 URL pmid: 31954877 |
| [54] |
Ji L., Chen Z., Zeng X., Sun B., & Fu S. (2024). Automatic processing of unattended mean emotion: Evidence from visual mismatch responses. Neuropsychologia, 202, 108963. https://doi.org/10.1016/j.neuropsychologia.2024.108963
doi: 10.1016/j.neuropsychologia.2024.108963 URL |
| [55] |
Ji L., Rossi V., & Pourtois G. (2018). Mean emotion from multiple facial expressions can be extracted with limited attention: Evidence from visual ERPs. Neuropsychologia, 111, 92-102. https://doi.org/10.1016/j.neuropsychologia.2018.01.022
doi: S0028-3932(18)30022-8 URL pmid: 29371095 |
| [56] |
Jia J., Wang T., Chen S., Ding N., & Fang F. (2022). Ensemble size perception: Its neural signature and the role of global interaction over individual items. Neuropsychologia, 173, 108290. https://doi.org/10.1016/j.neuropsychologia.2022.108290
doi: 10.1016/j.neuropsychologia.2022.108290 URL |
| [57] | Joo S. J., Shin K., Chong S. C., & Blake R. (2009). On the nature of the stimulus information necessary for estimating mean size of visual arrays. Journal of Vision, 9(9), 7-12. https://doi.org/10.1167/9.9.7 |
| [58] |
Kacin M., Gauthier I., & Cha O. (2021). Ensemble coding of average length and average orientation are correlated. Vision Research, 187, 94-101. https://doi.org/10.1016/j.visres.2021.04.010
doi: 10.1016/j.visres.2021.04.010 URL pmid: 34237691 |
| [59] |
Kanaya S., Hayashi M. J., & Whitney D. (2018). Exaggerated groups: Amplification in ensemble coding of temporal and spatial features. Proceedings of the Royal Society B: Biological Sciences, 285(1879), 20172770. https://doi.org/10.1098/rspb.2017.2770
doi: 10.1098/rspb.2017.2770 URL |
| [60] | Kandel E. R., Koester J. D., Mack S., & Siegelbaum S. A. (Eds.). (2021). Principles of neural science (6th ed.). McGraw-Hill. |
| [61] |
Karaminis T., Neil L., Manning C., Turi M., Fiorentini C., Burr D., & Pellicano E. (2018). Reprint of “Investigating ensemble perception of emotions in autistic and typical children and adolescents”. Developmental Cognitive Neuroscience, 29, 97-107. https://doi.org/10.1016/j.dcn.2018.02.003
doi: S1878-9293(18)30033-1 URL pmid: 29475799 |
| [62] | Kauffmann L., Ramanoël S., & Peyrin C. (2014). The neural bases of spatial frequency processing during scene perception. Frontiers in Integrative Neuroscience, 8, 37. https://doi.org/10.3389/fnint.2014.00037 |
| [63] | Khvostov V. A., & Utochkin I. S. (2019). Independent and parallel visual processing of ensemble statistics: Evidence from dual tasks. Journal of Vision, 19(9), 3. https://doi.org/10.1167/19.9.3 |
| [64] |
Kveraga K., Ghuman A. S., & Bar M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65(2), 145-168. https://doi.org/10.1016/j.bandc.2007.06.007
doi: 10.1016/j.bandc.2007.06.007 URL pmid: 17923222 |
| [65] |
Kwon D., & Chong S. C. (2023). The relationship between ensemble representations of facial information. Vision Research, 203, 108156. https://doi.org/10.1016/j.visres.2022.108156
doi: 10.1016/j.visres.2022.108156 URL |
| [66] |
Lee J., & Chong S. C. (2021). Quality of average representation can be enhanced by refined individual items. Attention, Perception, & Psychophysics, 83(3), 970-981. https://doi.org/10.3758/s13414-020-02139-3
doi: 10.3758/s13414-020-02139-3 URL |
| [67] | Li H., Ji L., Tong K., Ren N., Chen W., Liu C. H., & Fu X. (2016). Processing of individual items during ensemble coding of facial expressions. Frontiers in Psychology, 7, 1332. https://doi.org/10.3389/fpsyg.2016.01332 |
| [68] | Liu L., Wang F., Zhou K., Ding N., & Luo H. (2017). Perceptual integration rapidly activates dorsal visual pathway to guide local processing in early visual areas. PLoS Biology, 15(11), e2003646. https://doi.org/10.1371/journal.pbio.2003646 |
| [69] |
Liu R., Ye Q., Hao S., Li Y., Shen L., & He W. (2023). The relationship between ensemble coding and individual representation of crowd facial emotion. Biological Psychology, 180, 108593. https://doi.org/10.1016/j.biopsycho.2023.108593
doi: 10.1016/j.biopsycho.2023.108593 URL |
| [70] |
Lukashevich A., Sigurdardottir H. M., Kudriavtsev N., & Utochkin I. (2025). The role of attention in basic ensemble statistics processing. Neuropsychologia, 208, 109086. https://doi.org/10.1016/j.neuropsychologia.2025.109086
doi: 10.1016/j.neuropsychologia.2025.109086 URL |
| [71] |
Marchant A. P., Simons D. J., & de Fockert J. W. (2013). Ensemble representations: Effects of set size and item heterogeneity on average size perception. Acta Psychologica, 142(2), 245-250. https://doi.org/10.1016/j.actpsy.2012.11.002
doi: 10.1016/j.actpsy.2012.11.002 URL pmid: 23376135 |
| [72] |
Marini F., Sutherland C. A., Ostrovska B., & Manassi M. (2023). Three's a crowd: Fast ensemble perception of first impressions of trustworthiness. Cognition, 239, 105540. https://doi.org/10.1016/j.cognition.2023.105540
doi: 10.1016/j.cognition.2023.105540 URL |
| [73] |
Maule J., & Franklin A. (2020). Adaptation to variance generalizes across visual domains. Journal of Experimental Psychology: General, 149(4), 662-675. https://doi.org/10.1037/xge0000678
doi: 10.1037/xge0000678 URL |
| [74] |
Michael E., de Gardelle V., Nevado-Holgado A., & Summerfield C. (2015). Unreliable evidence: 2 sources of uncertainty during perceptual choice. Cerebral Cortex, 25(4), 937-947. https://doi.org/10.1093/cercor/bht287
doi: 10.1093/cercor/bht287 URL |
| [75] |
Michael E., de Gardelle V., & Summerfield C. (2014). Priming by the variability of visual information. Proceedings of the National Academy of Sciences, 111(21), 7873-7878. https://doi.org/10.1073/pnas.1308674111
doi: 10.1073/pnas.1308674111 URL |
| [76] |
Nemrodov D., Ling S., Nudnou I., Roberts T., Cant J. S., Lee A. C. H., & Nestor A. (2020). A multivariate investigation of visual word, face, and ensemble processing: Perspectives from EEG-based decoding and feature selection. Psychophysiology, 57(3), e13511. https://doi.org/10.1111/psyp.13511
doi: 10.1111/psyp.v57.3 URL |
| [77] |
Nguyen T. T. N., Vuong Q. C., Mather G., & Thornton I. M. (2021). Ensemble coding of crowd speed using biological motion. Attention, Perception, & Psychophysics, 83(3), 1014-1035. https://doi.org/10.3758/s13414-020-02163-3
doi: 10.3758/s13414-020-02163-3 URL |
| [78] | Norman L. J., Heywood C. A., & Kentridge R. W. (2015). Direct encoding of orientation variance in the visual system. Journal of Vision, 15(4), 3. https://doi.org/10.1167/15.4.3 |
| [79] |
Oh B. I., Kim Y. J., & Kang M. S. (2019). Ensemble representations reveal distinct neural coding of visual working memory. Nature Communications, 10(1), 5665. https://doi.org/10.1038/s41467-019-13592-6
doi: 10.1038/s41467-019-13592-6 URL |
| [80] |
Parkes L., Lund J., Angelucci A., Solomon J. A., & Morgan M. (2001). Compulsory averaging of crowded orientation signals in human vision. Nature Neuroscience, 4(7), 739-744. https://doi.org/10.1038/89532
doi: 10.1038/89532 URL pmid: 11426231 |
| [81] |
Pavlovskaya M., Soroker N., Bonneh Y. S., & Hochstein S. (2015). Computing an average when part of the population is not perceived. Journal of Cognitive Neuroscience, 27(7), 1397-1411. https://doi.org/10.1162/jocn_a_00791
doi: 10.1162/jocn_a_00791 URL pmid: 25647339 |
| [82] |
Peng S., Liu C. H., & Hu P. (2021). Effects of subjective similarity and culture on ensemble perception of faces. Attention, Perception, & Psychophysics, 83(3), 1070-1079. https://doi.org/10.3758/s13414-020-02133-9
doi: 10.3758/s13414-020-02133-9 URL |
| [83] |
Phillips L. T., Slepian M. L., & Hughes B. L. (2018). Perceiving groups: The people perception of diversity and hierarchy. Journal of Personality and Social Psychology, 114(5), 766-785. https://doi.org/10.1037/pspi0000120
doi: 10.1037/pspi0000120 URL pmid: 29337582 |
| [84] | Puce A., McNeely M. E., Berrebi M. E., Thompson J. C., Hardee J., & Brefczynski-Lewis J. (2013). Multiple faces elicit augmented neural activity. Frontiers in Human Neuroscience, 7, 282. https://doi.org/10.3389/fnhum.2013.00282 |
| [85] |
Rajendran S., Maule J., Franklin A., & Webster M. A. (2021). Ensemble coding of color and luminance contrast. Attention, Perception, & Psychophysics, 83(3), 911-924. https://doi.org/10.3758/s13414-020-02136-6
doi: 10.3758/s13414-020-02136-6 URL |
| [86] |
Roberts T., Cant J. S., & Nestor A. (2019). Elucidating the neural representation and the processing dynamics of face ensembles. The Journal of Neuroscience, 39(39), 7737-7747. https://doi.org/10.1523/JNEUROSCI.0471-19.2019
doi: 10.1523/JNEUROSCI.0471-19.2019 URL |
| [87] |
Robinson M. M., & Brady T. F. (2023). A quantitative model of ensemble perception as summed activation in feature space. Nature Human Behaviour, 7(10), 1638-1651. https://doi.org/10.1038/s41562-023-01602-z
doi: 10.1038/s41562-023-01602-z URL pmid: 37402880 |
| [88] |
Rousselet G. A., Thorpe S. J., & Fabre-Thorpe M. (2004). How parallel is visual processing in the ventral pathway? Trends in Cognitive Sciences, 8(8), 363-370. https://doi.org/10.1016/j.tics.2004.06.003
doi: 10.1016/j.tics.2004.06.003 URL pmid: 15335463 |
| [89] | Sama M. A., Nestor A., & Cant J. S. (2024). The neural dynamics of face ensemble and central face processing. Journal of Neuroscience, 44(7), e1027232023. https://doi.org/10.1523/JNEUROSCI.1027-23.2023 |
| [90] | Shipp S. (2016). Neural elements for predictive coding. Frontiers in Psychology, 7, 1792. https://doi.org/10.3389/fpsyg.2016.01792 |
| [91] |
Sun P., Chu V., & Sperling G. (2021). Multiple concurrent centroid judgments imply multiple within-group salience maps. Attention, Perception, & Psychophysics, 83(3), 934-955. https://doi.org/10.3758/s13414-020-02197-7
doi: 10.3758/s13414-020-02197-7 URL |
| [92] |
Sweeny T. D., Haroz S., & Whitney D. (2013). Perceiving group behavior: Sensitive ensemble coding mechanisms for biological motion of human crowds. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 329-337. https://doi.org/10.1037/a0028712
doi: 10.1037/a0028712 URL pmid: 22708744 |
| [93] |
Sweeny T. D., Wurnitsch N., Gopnik A., & Whitney D. (2015). Ensemble perception of size in 4-5-year-old children. Developmental Science, 18(4), 556-568. https://doi.org/10.1111/desc.12239
doi: 10.1111/desc.12239 URL pmid: 25442844 |
| [94] |
Tark K. J., Kang M. S., Chong S. C., & Shim W. M. (2021). Neural representations of ensemble coding in the occipital and parietal cortices. Neuroimage, 245, 118680. https://doi.org/10.1016/j.neuroimage.2021.118680
doi: 10.1016/j.neuroimage.2021.118680 URL |
| [95] |
Tiurina N. A., Markov Y. A., Whitney D., & Pascucci D. (2024). The functional role of spatial anisotropies in ensemble perception. BMC Biology, 22(1), 28. https://doi.org/10.1186/s12915-024-01822-3
doi: 10.1186/s12915-024-01822-3 URL |
| [96] | Tokita M., Ueda S., & Ishiguchi A. (2016). Evidence for a global sampling process in extraction of summary statistics of item sizes in a set. Frontiers in Psychology, 7, 711. https://doi.org/10.3389/fpsyg.2016.00711 |
| [97] | Tong K., Ji L., Chen W., & Fu X. (2015). Unstable mean context causes sensitivity loss and biased estimation of variability. Journal of Vision, 15(4), 15. https://doi.org/10.1167/15.4.15 |
| [98] |
Utochkin I. S., Choi J., & Chong S. C. (2024). A population response model of ensemble perception. Psychological Review, 131(1), 36-57. https://doi.org/10.1037/rev0000426
doi: 10.1037/rev0000426 URL |
| [99] |
Utochkin I. S., & Tiurina N. A. (2014). Parallel averaging of size is possible but range-limited: A reply to Marchant, Simons, and De Fockert. Acta Psychologica, 146, 7-18. https://doi.org/10.1016/j.actpsy.2013.11.012
doi: 10.1016/j.actpsy.2013.11.012 URL pmid: 24361740 |
| [100] | Wang T., Zhao Y., & Jia J. (2023). Nonadditive integration of visual information in ensemble processing. Iscience, 26(10). https://doi.org/10.1016/j.isci.2023.107988. |
| [101] |
Ward E. J., Bear A., & Scholl B. J. (2016). Can you perceive ensembles without perceiving individuals?: The role of statistical perception in determining whether awareness overflows access. Cognition, 152, 78-86. https://doi.org/10.1016/j.cognition.2016.01.010
doi: S0010-0277(16)30010-5 URL pmid: 27038156 |
| [102] |
Wardle S. G., Bex P. J., Cass J., & Alais D. (2012). Stereoacuity in the periphery is limited by internal noise. Journal of Vision, 12(6), 12-12. https://doi.org/10.1167/12.6.12
doi: 10.1167/12.6.12 URL pmid: 22685339 |
| [103] | Whitney D., Haberman J., & Sweeny T. D. (2014). From textures to crowds:Multiple levels of summary statistical perception. In J. S. Werner, L. M. Chalupa, & M. E. Burns (Eds.), The new visual neurosciences (pp. 695-710). MIT Press. |
| [104] |
Whitney D., & Yamanashi Leib A. (2018). Ensemble perception. Annual Review of Psychology, 69, 105-129. https://doi.org/10.1146/annurev-psych-010416-044232
doi: 10.1146/annurev-psych-010416-044232 URL pmid: 28892638 |
| [105] | Wolfe B. A., Kosovicheva A. A., Leib A. Y., Wood K., & Whitney D. (2015). Foveal input is not required for perception of crowd facial expression. Journal of Vision, 15(4), 11. https://doi.org/10.1167/15.4.11 |
| [106] | Yamanashi Leib A., Landau A. N., Baek Y., Chong S. C., & Robertson L. (2012). Extracting the mean size across the visual field in patients with mild, chronic unilateral neglect. Frontiers in Human Neuroscience, 6, 267. https://doi.org/10.3389/fnhum.2012.00267 |
| [107] | Yang Y., Tokita M., & Ishiguchi A. (2018). Is there a common summary statistical process for representing the mean and variance? A study using illustrations of familiar items. i-Perception, 9(1), 2041669517747297. https://doi.org/10.1177/2041669517747297 |
| [108] |
Yashiro R., Sawayama M., & Amano K. (2024). Decoding time-resolved neural representations of orientation ensemble perception. Frontiers in Neuroscience, 18, 1387393. https://doi.org/10.3389/fnins.2024.1387393
doi: 10.3389/fnins.2024.1387393 URL |
| [109] |
Ying H. (2022). Attention modulates the ensemble coding of facial expressions. Perception, 51(4), 276-285. https://doi.org/10.1177/03010066221079686
doi: 10.1177/03010066221079686 URL pmid: 35188854 |
| [110] | Yörük H., & Boduroglu A. (2020). Feature-specificity in visual statistical summary processing. Attention, Perception, & Psychophysics, 82( 2), 852-864. https://doi.org/10.3758/s13414-019-01942-x |
| [111] | Yuan J., Pan H., Sun Y., Wang Y., & Jia J. (2025). Neural responses to global and local visual information processing provide neural signatures of ADHD symptoms. International Journal of Psychophysiology, 112582. https://doi.org/10.1016/j.ijpsycho.2025.112582 |
| [112] |
Zeng T., Zhao Y., Cao B., & Jia J. (2024). Perception of visual variance is mediated by subcortical mechanisms. Brain and Cognition, 175, 106131. https://doi.org/10.1016/j.bandc.2024.106131
doi: 10.1016/j.bandc.2024.106131 URL |
| [113] |
Zhang X., Qiu J., Zhang Y., Han S., & Fang F. (2014). Misbinding of color and motion in human visual cortex. Current Biology, 24(12), 1354-1360. https://doi.org/10.1016/j.cub.2014.04.045
doi: S0960-9822(14)00483-7 URL pmid: 24856212 |
| [114] |
Zhao D., Shen X., Li S., & He W. (2023). The impact of spatial frequency on the perception of crowd emotion: An fMRI study. Brain Sciences, 13(12), 1699. https://doi.org/10.3390/brainsci13121699
doi: 10.3390/brainsci13121699 URL |
| [115] |
Zhao Y., Zeng T., Wang T., Fang F., Pan Y., & Jia J. (2023). Subcortical encoding of summary statistics in humans. Cognition, 234, 105384. https://doi.org/10.1016/j.cognition.2023.105384
doi: 10.1016/j.cognition.2023.105384 URL |
| [116] |
Zhao Z., Yaoma K., Wu Y., Burns E., Sun M., & Ying H. (2024). Other ethnicity effects in ensemble coding of facial expressions. Attention, Perception, & Psychophysics, 86(7), 2412-2423. https://doi.org/10.3758/s13414-024-02920-8
doi: 10.3758/s13414-024-02920-8 URL |
| [1] | 郭新宇, 汤煜尧, 张丹丹. 同步TMS-EEG技术在心理学研究中的应用[J]. 心理科学进展, 2026, 34(3): 441-460. |
| [2] | 岳丽明, 刘振南, 高湘萍. 不同类型元认知反思的特异性与协同神经机制:一个整合性理论模型[J]. 心理科学进展, 2026, 34(3): 487-498. |
| [3] | 务凯. 东方正念的心理治疗机制与神经基础[J]. 心理科学进展, 2026, 34(2): 331-347. |
| [4] | 彭玉佳, 王愉茜, 鞠芊芊, 刘峰, 徐佳. 贝叶斯框架下社交焦虑的社会认知特性[J]. 心理科学进展, 2025, 33(8): 1267-1274. |
| [5] | 隋雪, 安禹思, 许艺楠, 李雨桐. 快速阅读的眼动特征、认知特点及神经机制[J]. 心理科学进展, 2025, 33(8): 1358-1366. |
| [6] | 何鸿, 张馨月, 石京鸿, 刘强. 转回努力训练对心智游移的影响及其机制探索[J]. 心理科学进展, 2025, 33(7): 1077-1090. |
| [7] | 余凌峰, 张婕, 明先超, 雷怡. 无意识恐惧及其神经机制[J]. 心理科学进展, 2025, 33(7): 1234-1245. |
| [8] | 程晓荣, 仇式明, 定险峰, 范炤. 动作如何影响元认知?——基于认知模型和神经机制的探讨[J]. 心理科学进展, 2025, 33(3): 425-438. |
| [9] | 巩芳颍, 孙逸梵, 贺琴, 石可, 刘伟, 陈宁. 教学互动中师生脑间同步性及其调节因素[J]. 心理科学进展, 2025, 33(3): 452-464. |
| [10] | 夏熠, 张婕, 张火垠, 雷怡, 窦皓然. 焦虑个体趋避冲突失调的认知神经机制[J]. 心理科学进展, 2025, 33(3): 477-493. |
| [11] | 靳帅, 刘思佳, 李爽, 刘志远, 郭秀艳. 后悔情绪及其调节[J]. 心理科学进展, 2025, 33(12): 2182-2195. |
| [12] | 刘凯航, 朴忠淑, 田英, 王丽岩, 王洪彪. 从动作模仿到预测加工:运动感染的动态神经机制与实践应用图景[J]. 心理科学进展, 2025, 33(11): 1942-1956. |
| [13] | 蔡嘉琳, 陈彩琦. 认知脱离综合征的特征:与注意缺陷多动障碍等障碍的比较[J]. 心理科学进展, 2025, 33(11): 1967-1982. |
| [14] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
| [15] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||