心理科学进展 ›› 2025, Vol. 33 ›› Issue (11): 1942-1956.doi: 10.3724/SP.J.1042.2025.1942 cstr: 32111.14.2025.1942
刘凯航1,3, 朴忠淑2, 田英3, 王丽岩4, 王洪彪1(
)
收稿日期:2025-07-03
出版日期:2025-11-15
发布日期:2025-09-19
通讯作者:
王洪彪, E-mail: wanghb@sumhs.edu.cn基金资助:
LIU Kaihang1,3, PIAO Zhongshu2, TIAN Ying3, WANG Liyan4, WANG Hongbiao1(
)
Received:2025-07-03
Online:2025-11-15
Published:2025-09-19
摘要:
运动感染作为人类社会互动中感知与动作系统动态耦合的核心机制, 其神经机制与进化意义长期存在争议。在社会交往中, 个体通过观察他人动作引发的对自身动作的无意识影响被称为运动感染。运动感染构成了人类模仿和社会学习的基础, 在社会认知、群体协同等方面发挥着关键作用。研究认为, 运动感染的本质是感知系统、运动系统与社会认知网络的动态交互。镜像神经系统在动作观察与执行共享表征中发挥基础作用, 但其功能需置于预测误差调控与意识路径竞争的整体框架中理解。预测加工理论通过前馈模型校准内部动作表征, 揭示预测误差对运动感染方向可塑性的调节作用, 阐释从模仿到偏离的行为多样性。社会情境通过前额叶皮层调控感染强度, 表明运动感染具有进化赋予的适应性功能。未来研究需结合心理学、神经科学与计算建模的跨学科整合, 深化动态交互机制的解析, 并探索其在复杂社会场景中的实践路径。
中图分类号:
刘凯航, 朴忠淑, 田英, 王丽岩, 王洪彪. (2025). 从动作模仿到预测加工:运动感染的动态神经机制与实践应用图景. 心理科学进展 , 33(11), 1942-1956.
LIU Kaihang, PIAO Zhongshu, TIAN Ying, WANG Liyan, WANG Hongbiao. (2025). From action imitation to predictive processing: The dynamic neural mechanism and practical application prospect of motor contagion. Advances in Psychological Science, 33(11), 1942-1956.
| [1] |
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Annual Review of Psychology, 60, 693-716.
doi: 10.1146/annurev.psych.60.110707.163514 pmid: 18771388 |
| [2] |
Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109-1116.
pmid: 19160510 |
| [3] | American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596 |
| [4] | Baldissera, F., Cavallari, P., Craighero, L., & Fadiga, L. (2001). Modulation of spinal excitability during observation of hand actions in humans. The European Journal of Neuroscience, 13(1), 190-194. |
| [5] |
Becchio, C., Pierno, A., Mari, M., Lusher, D., & Castiello, U. (2007). Motor contagion from gaze: The case of autism. Brain, 130(Pt 9), 2401-2411.
pmid: 17711981 |
| [6] |
Belot, M., Crawford, V. P., & Heyes, C. (2013). Players of Matching Pennies automatically imitate opponents' gestures against strong incentives. Proceedings of the National Academy of Sciences of the United States of America, 110(8), 2763-2768.
doi: 10.1073/pnas.1209981110 pmid: 23382227 |
| [7] | Blakemore, S. J., & Frith, C. (2005). The role of motor contagion in the prediction of action. Neuropsychologia, 43(2), 260-267. |
| [8] |
Brass, M., Bekkering, H., & Prinz, W. (2001). Movement observation affects movement execution in a simple response task. Acta Psychologica, 106(1-2), 3-22.
pmid: 11256338 |
| [9] | Buccino, G. (2014). Action observation treatment: A novel tool in neurorehabilitation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1644), 20130185. https://doi.org/10.1098/rstb.2013.0185 |
| [10] | Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: An fMRI study. The European Journal of Neuroscience, 13(2), 400-404. |
| [11] | Carey, M. R. (2024). The cerebellum. Current Biology, 34(1), R7-R11. |
| [12] |
Caspers, S., Zilles, K., Laird, A. R., & Eickhoff, S. B. (2010). ALE meta-analysis of action observation and imitation in the human brain. NeuroImage, 50(3), 1148-1167.
doi: 10.1016/j.neuroimage.2009.12.112 pmid: 20056149 |
| [13] |
Castiello, U. (1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3(7), 264-271.
pmid: 10377541 |
| [14] | Castiello, U. (2003). Understanding other people's actions: Intention and attention. Journal of Experimental Psychology. Human Perception and Performance, 29(2), 416-430. |
| [15] |
Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Archives of Neurology, 66(5), 557-560.
doi: 10.1001/archneurol.2009.41 pmid: 19433654 |
| [16] |
Decety, J., Chaminade, T., Grèzes, J., & Meltzoff, A. N. (2002). A PET exploration of the neural mechanisms involved in reciprocal imitation. NeuroImage, 15(1), 265-272.
pmid: 11771994 |
| [17] |
Decety, J., Jackson, P. L., Sommerville, J. A., Chaminade, T., & Meltzoff, A. N. (2004). The neural bases of cooperation and competition: An fMRI investigation. NeuroImage, 23(2), 744-751.
pmid: 15488424 |
| [18] |
de Gelder, B., & Poyo Solanas, M. (2021). A computational neuroethology perspective on body and expression perception. Trends in Cognitive Sciences, 25(9), 744-756.
doi: 10.1016/j.tics.2021.05.010 pmid: 34147363 |
| [19] |
de la, Rosa, S., Ferstl, Y., & Bülthoff, H. H. (2016). Visual adaptation dominates bimodal visual-motor action adaptation. Scientific Reports, 6, 23829.
doi: 10.1038/srep23829 pmid: 27029781 |
| [20] |
di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: A neurophysiological study. Experimental Brain Research, 91(1), 176-180.
doi: 10.1007/BF00230027 pmid: 1301372 |
| [21] | Dumas, G., Nadel, J., Soussignan, R., Martinerie, J., & Garnero, L. (2010). Inter-brain synchronization during social interaction. Plos One, 5(8), e12166. https://doi.org/10.1371/journal.pone.0012166 |
| [22] |
Fadiga, L., Fogassi, L., Pavesi, G., & Rizzolatti, G. (1995). Motor facilitation during action observation: A magnetic stimulation study. Journal of Neurophysiology, 73(6), 2608-2611.
pmid: 7666169 |
| [23] | Frank, M. J. (2025). Adaptive cost-benefit control fueled by striatal dopamine. Annual Review of Neuroscience, https://doi.org/10.1146/annurev-neuro-112723-025228 |
| [24] | Friston, K., & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1521), 1211-1221. |
| [25] | Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J. O., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 1761-1770. |
| [26] |
Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8(9), 396-403.
doi: 10.1016/j.tics.2004.07.002 pmid: 15350240 |
| [27] |
Gangitano, M., Mottaghy, F. M., & Pascual-Leone, A. (2001). Phase-specific modulation of cortical motor output during movement observation. Neuroreport, 12(7), 1489-1492.
pmid: 11388435 |
| [28] | Gibson, J. J. (1979). The ecological approach to visual perception: Classic edition. Houghton Mifflin. |
| [29] |
Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews. Neuroscience, 4(3), 179-192.
pmid: 12612631 |
| [30] |
Gray, R. (2021). Review: Approaches to visual-motor control in baseball batting. Optometry and Vision Science, 98(7), 738-749.
doi: 10.1097/OPX.0000000000001719 pmid: 34328452 |
| [31] | Gray, R., & Beilock, S. L. (2011). Hitting is contagious: Experience and action induction. Journal of Experimental Psychology. Applied, 17(1), 49-59. |
| [32] |
Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to "mirror" and "canonical" neurones in the human brain: An fMRI study. NeuroImage, 18(4), 928-937.
doi: 10.1016/s1053-8119(03)00042-9 pmid: 12725768 |
| [33] |
Heyes, C. (2011). Automatic imitation. Psychological Bulletin, 137(3), 463-483.
doi: 10.1037/a0022288 pmid: 21280938 |
| [34] | Hogeveen, J., & Obhi, S. S. (2012). Social interaction enhances motor resonance for observed human actions. The Journal of Neuroscience, 32(17), 5984-5989. |
| [35] | Hohwy, J. (2020). New directions in predictive processing. Mind & Language, 35(2), 209-223. |
| [36] | Hurley, S. (2008). The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. The Behavioral and Brain Sciences, 31(1), 1-22. |
| [37] |
Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526-2528.
doi: 10.1126/science.286.5449.2526 pmid: 10617472 |
| [38] |
Ikegami, T., & Ganesh, G. (2014). Watching novice action degrades expert motor performance: Causation between action production and outcome prediction of observed actions by humans. Scientific Reports, 4, 6989.
doi: 10.1038/srep06989 pmid: 25384755 |
| [39] | Ikegami, T., Ganesh, G., Takeuchi, T., & Nakamoto, H. (2018). Prediction error induced motor contagions in human behaviors. eLife, 7, e33392. https://doi.org/10.7554/eLife.33392 |
| [40] | Ikegami, T., Nakamoto, H., & Ganesh, G. (2019). Action imitative and prediction error-induced contagions in human actions. In M. L. Cappuccio (Ed.), Handbook of Embodied Cognition and Sport Psychology (pp. 381-412). The MIT Press. |
| [41] |
Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159-166.
doi: 10.1007/s10339-007-0170-2 pmid: 17429704 |
| [42] | Leighton, J., Bird, G., Orsini, C., & Heyes, C. (2010). Social attitudes modulate automatic imitation. Journal of Experimental Social Psychology, 46(6), 905-910. |
| [43] | Liepelt, R., & Brass, M. (2010). Automatic imitation of physically impossible movements. Social Cognition, 28(1), 59-73. |
| [44] | Longo, M. R., Kosobud, A., & Bertenthal, B. I. (2008). Automatic imitation of biomechanically possible and impossible actions: Effects of priming movements versus goals. Journal of Experimental Psychology: Human Perception and Performance, 34(2), 489-501. |
| [45] |
Maeda, F., Kleiner-Fisman, G., & Pascual-Leone, A. (2002). Motor facilitation while observing hand actions: Specificity of the effect and role of observer's orientation. Journal of Neurophysiology, 87(3), 1329-1335.
pmid: 11877507 |
| [46] | Manthey, S., Schubotz, R. I., & von Cramon, D. Y. (2003). Premotor cortex in observing erroneous action: An fMRI study. Brain Research. Cognitive Brain Research, 15(3), 296-307. |
| [47] |
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198(4312), 74-78.
pmid: 897687 |
| [48] | Mezzarobba, S., Grassi, M., Pellegrini, L., Catalan, M., Kruger, B., Furlanis, G., Manganotti, P., & Bernardis, P. (2018). Action observation plus sonification. A novel therapeutic protocol for Parkinson's patient with freezing of gait. Frontiers in Neurology, 8, 723. |
| [49] | Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T., & Barabási, A. L. (2000). The sound of many hands clapping. Nature, 403(6772), 849-850. |
| [50] | Parr, T., & Pezzulo, G. (2021). Understanding, explanation, and active inference. Frontiers in Systems Neuroscience, 15, 772641. |
| [51] | Pereira, L. M., & Lopes, A. B. (2020). Machine ethics: From machine morals to the machinery of morality. Cham, Switzerland: Springer. |
| [52] | Popa, L. S., & Ebner, T. J. (2019). Cerebellum, predictions and errors. Frontiers in Cellular Neuroscience, 12, 524. |
| [53] | Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154. |
| [54] | Ricciardi, E., Bonino, D., Sani, L., Vecchi, T., Guazzelli, M., Haxby, J. V., Fadiga, L., & Pietrini, P. (2009). Do we really need vision? How blind people "see" the actions of others. The Journal of Neuroscience, 29(31), 9719-9724. |
| [55] |
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.
pmid: 15217330 |
| [56] |
Rizzolatti, G., Fadiga, L., Fogassi, L., & Gallese, V. (1999). Resonance behaviors and mirror neurons. Archives Italiennes De Biologie, 137(2-3), 85-100.
pmid: 10349488 |
| [57] | Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131-141. |
| [58] |
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews. Neuroscience, 2(9), 661-670.
doi: 10.1038/35090060 pmid: 11533734 |
| [59] |
Schubotz, R. I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211-218.
pmid: 17383218 |
| [60] | Schubotz, R. I., & von Cramon, D. Y. (2001). Functional organization of the lateral premotor cortex: fMRI reveals different regions activated by anticipation of object properties, location and speed. Brain Research. Cognitive Brain Research, 11(1), 97-112. |
| [61] |
Sokolov, A. A., Miall, R. C., & Ivry, R. B. (2017). The cerebellum: Adaptive prediction for movement and cognition. Trends in Cognitive Sciences, 21(5), 313-332.
doi: S1364-6613(17)30034-7 pmid: 28385461 |
| [62] | Sparks, S., Douglas, T., & Kritikos, A. (2016). Verbal social primes alter motor contagion during action observation. Quarterly Journal of Experimental Psychology, 69(6), 1041-1048. |
| [63] |
Streng, M. L., Popa, L. S., & Ebner, T. J. (2022). Cerebellar representations of errors and internal models. Cerebellum, 21(5), 814-820.
doi: 10.1007/s12311-022-01406-3 pmid: 35471627 |
| [64] | Takeuchi, T., Ikudome, S., Unenaka, S., Ishii, Y., Mori, S., Mann, D. L., & Nakamoto, H. (2018). The inhibition of motor contagion induced by action observation. Plos One, 13(10), e0205725. https://doi.org/10.1371/journal.pone.0205725 |
| [65] | Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. MIT Press. |
| [66] |
Uithol, S., van Rooij, I., Bekkering, H., & Haselager, P. (2011). Understanding motor resonance. Social Neuroscience, 6(4), 388-397.
doi: 10.1080/17470919.2011.559129 pmid: 21391148 |
| [67] |
Van Overwalle, F., & Baetens, K. (2009). Understanding others' actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564-584.
doi: 10.1016/j.neuroimage.2009.06.009 pmid: 19524046 |
| [68] | Wang, K. P., Frank, C., Hung, T. M., & Schack, T. (2022). Neurofeedback training: Decreases in Mu rhythm lead to improved motor performance in complex visuomotor skills. Current Psychology, 1-12. doi: 10.1007/s12144-022-03190-z |
| [69] |
Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460-473.
doi: 10.1037/0033-2909.131.3.460 pmid: 15869341 |
| [1] | 郭小丽, 常骏垚, 沙吗阿杰, 杨紫嫣. 内隐社会认知的干预方法[J]. 心理科学进展, 2025, 33(9): 1630-1646. |
| [2] | 彭玉佳, 王愉茜, 鞠芊芊, 刘峰, 徐佳. 贝叶斯框架下社交焦虑的社会认知特性[J]. 心理科学进展, 2025, 33(8): 1267-1274. |
| [3] | 隋雪, 安禹思, 许艺楠, 李雨桐. 快速阅读的眼动特征、认知特点及神经机制[J]. 心理科学进展, 2025, 33(8): 1358-1366. |
| [4] | 何鸿, 张馨月, 石京鸿, 刘强. 转回努力训练对心智游移的影响及其机制探索[J]. 心理科学进展, 2025, 33(7): 1077-1090. |
| [5] | 余凌峰, 张婕, 明先超, 雷怡. 无意识恐惧及其神经机制[J]. 心理科学进展, 2025, 33(7): 1234-1245. |
| [6] | 程晓荣, 仇式明, 定险峰, 范炤. 动作如何影响元认知?——基于认知模型和神经机制的探讨[J]. 心理科学进展, 2025, 33(3): 425-438. |
| [7] | 巩芳颍, 孙逸梵, 贺琴, 石可, 刘伟, 陈宁. 教学互动中师生脑间同步性及其调节因素[J]. 心理科学进展, 2025, 33(3): 452-464. |
| [8] | 夏熠, 张婕, 张火垠, 雷怡, 窦皓然. 焦虑个体趋避冲突失调的认知神经机制[J]. 心理科学进展, 2025, 33(3): 477-493. |
| [9] | 靳帅, 刘思佳, 李爽, 刘志远, 郭秀艳. 后悔情绪及其调节[J]. 心理科学进展, 2025, 33(12): 2182-2195. |
| [10] | 蔡嘉琳, 陈彩琦. 认知脱离综合征的特征:与注意缺陷多动障碍等障碍的比较[J]. 心理科学进展, 2025, 33(11): 1967-1982. |
| [11] | 刘月月, 何文广. 书写认知老化发生机制及神经机理[J]. 心理科学进展, 2024, 32(9): 1502-1513. |
| [12] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
| [13] | 丁颖, 汪紫滢, 李卫东. 抑郁症疼痛加工的行为特点及神经机制[J]. 心理科学进展, 2024, 32(8): 1315-1327. |
| [14] | 曾庆贺, 崔晓宇, 唐为, 李娟. 记忆辨别力受老化影响的认知神经机制及其应用[J]. 心理科学进展, 2024, 32(7): 1138-1151. |
| [15] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||