心理科学进展 ›› 2026, Vol. 34 ›› Issue (2): 271-282.doi: 10.3724/SP.J.1042.2026.0271 cstr: 32111.14.2026.0271
李沛祺1, 张毓1, 田梦雨2
收稿日期:2025-04-21
出版日期:2026-02-15
发布日期:2025-12-15
通讯作者:
田梦雨, E-mail: mengyutian@bnu.edu.cn
基金资助:LI Peiqi1, ZHANG Yu1, TIAN Mengyu2
Received:2025-04-21
Online:2026-02-15
Published:2025-12-15
摘要: 感知觉经验缺失和阅读等文化技能的习得, 都会引发脑的可塑性改变。研究盲人阅读触觉盲文的神经基础为理解这一机制提供了独特视角。本文综述了近年的神经影像学证据, 聚焦三个核心问题:1)早期视觉皮层是否存在阅读特异性表征; 2)腹侧枕颞皮层“视觉词形区”是否保留跨通道词形加工功能; 3)顶叶是否存在“触觉词形区”。结果发现, 早期视觉皮层和腹侧枕颞皮层的功能仍存在争议, 而顶叶在触觉词形加工中可能发挥重要作用。未来研究应进一步揭示盲人“视觉”皮层在盲文阅读中表征的具体信息, 并检验“触觉词形区”的存在。同时, 还需要探讨盲文阅读水平的神经基础。这将深化我们对脑可塑性机制的理解, 并为盲文阅读教育提供理论依据。
中图分类号:
李沛祺, 张毓, 田梦雨. (2026). 感觉通道与经验剥夺对阅读神经基础的影响——来自盲文触觉阅读的证据. 心理科学进展 , 34(2), 271-282.
LI Peiqi, ZHANG Yu, TIAN Mengyu. (2026). The influence of sensory modalities and experience deprivation on the neural basis of reading: Evidence from tactile Braille reading. Advances in Psychological Science, 34(2), 271-282.
| [1] Abboud, S., & Cohen, L. (2019). Distinctive interaction between cognitive networks and the visual cortex in early blind individuals. Cerebral Cortex, 29(11), 4725-4742. https://doi.org/10.1093/cercor/bhz006 [2] Amedi A., Raz N., Azulay H., Malach R., & Zohary E. (2010). Cortical activity during tactile exploration of objects in blind and sighted humans. Restorative Neurology and Neuroscience, 28(2), 143-156. https://doi.org/10.3233/RNN-2010-0503 [3] Baeck A., Kravitz D., Baker C.,& Op De Beeck, H. P.(2015). Influence of lexical status and orthographic similarity on the multi-voxel response of the visual word form area. NeuroImage, 111, 321-328. https://doi.org/10.1016/j.neuroimage.2015.01.060 [4] Baker C. I., Liu J., Wald L. L., Kwong K. K., Benner T., & Kanwisher N. (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proceedings of the National Academy of Sciences, 104(21), 9087-9092. https://doi.org/10.1073/pnas.0703300104 [5] Bauer C., Yazzolino L., Hirsch G., Cattaneo Z., Vecchi T.,& Merabet, L. B.(2015). Neural correlates associated with superior tactile symmetry perception in the early blind. Cortex, 63, 104-117. https://doi.org/10.1016/j.cortex.2014.08.003 [6] Beck J.,Dzięgiel-Fivet, G., & Jednoróg, K.(2023). Similarities and differences in the neural correlates of letter and speech sound integration in blind and sighted readers. NeuroImage, 278, 120296. https://doi.org/10.1016/j.neuroimage.2023.120296 [7] Bedny, M. (2017). Evidence from blindness for a cognitively pluripotent cortex. Trends in Cognitive Sciences, 21(9), 637-648. https://doi.org/10.1016/j.tics.2017.06.003 [8] Bedny M., Konkle T., Pelphrey K., Saxe R.,& Pascual- Leone, A.(2010). Sensitive period for a multimodal response in human visual motion area MT/MST. Current Biology, 20 2010.09.044 [9] Bedny M., Pascual-Leone A., Dodell-Feder D., Fedorenko E., & Saxe R. (2011). Language processing in the occipital cortex of congenitally blind adults. Proceedings of the National Academy of Sciences of the United States of America, 108(11), 4429-4434. https://doi.org/10.1073/pnas.1014818108 [10] Bolger D. J., Perfetti C. A., & Schneider W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25(1), 92-104. https://doi.org/10.1002/hbm.20124 [11] Bouhali F., de Schotten M. T., Pinel P., Poupon C., Mangin J. F., Dehaene S., & Cohen L. (2014). Anatomical connections of the visual word form area. Journal of Neuroscience, 34(46), 15402-15414. https://doi.org/10.1523/JNEUROSCI.4918-13.2014 [12] Buchel, C. (1998). Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain, 121(3), 409-419. https://doi.org/10.1093/brain/121.3.409 [13] Burks J. D., Boettcher L. B., Conner A. K., Glenn C. A., Bonney P. A., Baker C. M., … Sughrue M. E. (2017). White matter connections of the inferior parietal lobule: A study of surgical anatomy. Brain and Behavior, 7(4), e00640. https://doi.org/10.1002/brb3.640 [14] Burton H., Sinclair R. J.,& Agato, A.(2012). Recognition memory for Braille or spoken words: An fMRI study in early blind. Brain Research, 1438, 22-34. https://doi.org/10.1016/j.brainres.2011.12.032 [15] Burton H., Snyder A. Z., Conturo T. E., Akbudak E., Ollinger J. M., & Raichle M. E. (2002). Adaptive changes in early and late blind: A fMRI study of Braille reading. Journal of Neurophysiology, 87(1), 589-607. https://doi.org/10.1152/jn.00285.2001 [16] Cohen L. G., Celnik P., Pascual-Leone A., Corwell B., Faiz L., Dambrosia J., … Hallett M. (1997). Functional relevance of cross-modal plasticity in blind humans. Nature, 389(6647), 180-183. https://doi.org/10.1038/38278 [17] Cohen L., Dehaene S., Naccache L., Lehericy S., Dehaene-Lambertz G., Henaff M.-A., & Michel F. (2000). The visual word form area: Spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123(2), 291-307. https://doi.org/10.1093/brain/123.2.291 [18] Cohen, L. G. Robert A. Weeks, Sadato, N., Celnik P., Ishii K., & Hallett M. (1999). Period of susceptibility for cross- modal plasticity in the blind. Annals of Neurology, 45(4), 451-460. https://doi.org/10.1002/1531-8249(199904)45:4<451::AID-ANA6>3.0.CO;2-B [19] Collignon O., Vandewalle G., Voss P., Albouy G., Charbonneau G., Lassonde M., & Lepore F. (2011). Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. Proceedings of the National Academy of Sciences, 108(11), 4435-4440. https://doi.org/10.1073/pnas.1013928108 [20] Debowska W., Wolak T., Nowicka A., Kozak A., Szwed M.,& Kossut, M.(2016). Functional and structural neuroplasticity induced by short-term tactile training based on Braille reading. Frontiers in Neuroscience, 102016.00460 [21] Dȩbska A., Wójcik M., Chyl K.,Dziȩgiel-Fivet, G., & Jednoróg, K.(2023). Beyond the visual word form area - A cognitive characterization of the left ventral occipitotemporal cortex. Frontiers in Human Neuroscience, 17, 1199366. https://doi.org/10.3389/fnhum.2023.1199366 [22] Deen B., Saxe R., & Bedny M. (2015). Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex. Journal of Cognitive Neuroscience, 27(8), 1633-1647. https://doi.org/10.1162/jocn_a_00807 [23] Dehaene S.,& Cohen, L.(2007). Cultural recycling of cortical maps. Neuron, 562007.10.004 [24] Dehaene S.,& Cohen, L.(2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15 2011.04.003 [25] Dehaene S., Cohen L., Sigman M.,& Vinckier, F.(2005). The neural code for written words: A proposal. Trends in Cognitive Sciences, 92005.05.004 [26] Dehaene S., Jobert A., Naccache L., Ciuciu P., Poline J.-B., Le Bihan D., & Cohen L. (2004). Letter binding and invariant recognition of masked words: Behavioral and neuroimaging evidence. Psychological Science, 15(5), 307-313. https://doi.org/10.1111/j.0956-7976.2004.00674.x [27] Dehaene S., Le Clec’H G., Poline J.-B., Le Bihan D., & Cohen L. (2002). The visual word form area: A prelexical representation of visual words in the fusiform gyrus. Neuroreport, 13(3), 321-325. https://doi.org/10.1097/00001756-200203040-00015 [28] Dehaene S., Pegado F., Braga L. W., Ventura P., Filho G. N., Jobert A., … Cohen L. (2010). How learning to read changes the cortical networks for vision and language. Science, 330(6009), 1359-1364. https://doi.org/10.1126/science.1194140 [29] Dehaene-Lambertz G., Monzalvo K., & Dehaene S. (2018). The emergence of the visual word form: Longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLoS Biology, 16(3), e2004103- e2004103. https://doi.org/10.1371/journal.pbio.2004103 [30] Duhamel J. R., Colby C. L., & Goldberg M. E. (1998). Ventral intraparietal area of the macaque: Congruent visual and somatic response properties. Journal of Neurophysiology, 79(1), 126-136. https://doi.org/10.1152/jn.1998.79.1.126 [31] Dzięgiel-Fivet,G., Plewko, J., Szczerbiński, M., Marchewka, A., Szwed, M., & Jednoróg, K.(2021). Neural network for Braille reading and the speech-reading convergence in the blind: Similarities and differences to visual reading. NeuroImage, 2312021.117851 [32] Feng X., Altarelli I., Monzalvo K., Ding G., Ramus F., Shu H., … Dehaene-Lambertz G. (2020). A universal reading network and its modulation by writing system and reading ability in French and Chinese children. eLife, 9, e54591. https://doi.org/10.7554/eLife.54591 [33] Fischer-Baum,S., Bruggemann, D., Gallego, I. F., Li, D. S. P., & Tamez, E. R.(2017). Decoding levels of representation in reading: A representational similarity approach. Cortex, 90, 88-102. https://doi.org/10.1016/j.cortex.2017.02.017 [34] Glezer L. S., Jiang X.,& Riesenhuber, M.(2009). Evidence for highly selective neuronal tuning to whole words in the “visual word form area”. Neuron, 622009.03.017 [35] Glezer L. S., Kim J., Rule J., Jiang X., & Riesenhuber M. (2015). Adding words to the brain’s visual dictionary: Novel word learning selectively sharpens orthographic representations in the VWFA. Journal of Neuroscience, 35(12), 4965-4972. https://doi.org/10.1523/JNEUROSCI.4031-14.2015 [36] Hamilton R., Keenan J. P., Catala M., & Pascual-Leone A. (2000). Alexia for Braille following bilateral occipital stroke in an early blind woman. NeuroReport, 11(2), 237- 240. https://doi.org/10.1097/00001756-200002070-00003 [37] Hannagan T., Agrawal A., Cohen L., & Dehaene S. (2021). Emergence of a compositional neural code for written words: Recycling of a convolutional neural network for reading. Proceedings of the National Academy of Sciences, 118(46), e2104779118. https://doi.org/10.1073/pnas.2104779118 [38] Hannagan T., Amedi A., Cohen L.,Dehaene-Lambertz, G., & Dehaene, S.(2015). Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends in Cognitive Sciences, 192015.05.006 [39] Hasson U., Levy I., Behrmann M., Hendler T., & Malach R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron, 34(3), 479-490. https://doi.org/10.1016/S0896-6273(02)00662-1 [40] Haupt M., Graumann M., Teng S., Kaltenbach C., & Cichy R. (2024). The transformation of sensory to perceptual Braille letter representations in the visually deprived brain. eLife, 13, RP98148. https://doi.org/10.7554/eLife.98148 [41] Hegner Y. L., Lee Y., Grodd W., & Braun C. (2010). Comparing tactile pattern and vibrotactile frequency discrimination: A human fMRI study. Journal of Neurophysiology, 103(6), 3115-3122. https://doi.org/10.1152/jn.00940.2009 [42] Heimler B.,Striem-Amit, E., & Amedi, A.(2015). Origins of task-specific sensory-independent organization in the visual and auditory brain: Neuroscience evidence, open questions and clinical implications. Current Opinion in Neurobiology, 35, 169-177. https://doi.org/10.1016/j.conb.2015.09.001 [43] Kaas J. H.(2012). Somatosensory system. In J. K. Mai, & G. Paxinos (Eds.), The human nervous system (3rd ed., pp. 1074-1109). Academic Press. https://doi.org/10.1016/B978-0-12-374236-0.10030-6 [44] Kanjlia S., Lane C., Feigenson L., & Bedny M. (2016). Absence of visual experience modifies the neural basis of numerical thinking. Proceedings of the National Academy of Sciences of the United States of America, 113(40), 11172-11177. https://doi.org/10.1073/pnas.1524982113 [45] Kanjlia S., Loiotile R. E., Harhen N.,& Bedny, M.(2021). ‘Visual’ cortices of congenitally blind adults are sensitive to response selection demands in a go/no-go task. NeuroImage, 2362021.118023 [46] Kanjlia S., Pant R., & Bedny M. (2019). Sensitive period for cognitive repurposing of human visual cortex. Cerebral Cortex, 29(9), 3993-4005. https://doi.org/10.1093/cercor/bhy280 [47] Kim J. S., Kanjlia S., Merabet L. B., & Bedny M. (2017). Development of the visual word form area requires visual experience: Evidence from blind Braille readers. Journal of Neuroscience, 37(47), 11495-11504. https://doi.org/10.1523/JNEUROSCI.0997-17.2017 [48] Krafnick A. J., Tan L. H., Flowers D. L., Luetje M. M., Napoliello E. M., Siok W. T., .. Eden G. F. (2016). Chinese Character and English Word processing in children’s ventral occipitotemporal cortex: fMRI evidence for script invariance. NeuroImage, 133, 302-312. https://doi.org/10.1016/j.neuroimage.2016.03.021 [49] Kubota E., Grotheer M., Finzi D., Natu V. S., Gomez J., & Grill-Spector K. (2023). White matter connections of high-level visual areas predict cytoarchitecture better than category-selectivity in childhood, but not adulthood. Cerebral Cortex, 33(6), 2485-2506. https://doi.org/10.1093/cercor/bhac221 [50] Kupers R., Pappens M., De Noordhout A. M., Schoenen J., Ptito M., & Fumal A. (2007). rTMS of the occipital cortex abolishes Braille reading and repetition priming in blind subjects. Neurology, 68(9), 691-693. https://doi.org/10.1212/01.wnl.0000255958.60530.11 [51] Lane C., Kanjlia S., Omaki A., & Bedny M. (2015). “Visual” cortex of congenitally blind adults responds to syntactic movement. Journal of Neuroscience, 35(37), 12859- 12868. https://doi.org/10.1523/JNEUROSCI.1256-15.2015 [52] Lane C., Kanjlia S., Richardson H., Fulton A., Omaki A., & Bedny M. (2017). Reduced left lateralization of language in congenitally blind individuals. Journal of Cognitive Neuroscience, 29(1), 65-78. https://doi.org/10.1162/jocn_a_01045 [53] Lerma-Usabiaga G., Carreiras M., & Paz-Alonso P. M. (2018). Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. Proceedings of the National Academy of Sciences, 115(42), E9981-E9990. https://doi.org/10.1073/pnas.1803003115 [54] Lewis, J. W., & Van Essen, D. C. (2000). Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey. Journal of Comparative Neurology, 428(1), 112-137. https://doi.org/10.1002/1096-9861(20001204)428:1<112::AID-CNE8>3.0.CO;2-9 [55] Liu Y.-F., Rapp B., & Bedny M. (2023). Reading Braille by touch recruits posterior parietal cortex. Journal of Cognitive Neuroscience, 35(10), 1593-1616. https://doi.org/10.1162/jocn_a_02041 [56] Malach R., Levy I., & Hasson U. (2002). The topography of high-order human object areas. Trends in Cognitive Sciences, 6(4), 176-184. https://doi.org/10.1016/S1364-6613(02)01870-3 [57] Matuszewski J., Kossowski B., Bola Ł., Banaszkiewicz A., Paplińska M., Gyger L.,… Marchewka, A.(2021). Brain plasticity dynamics during tactile Braille learning in sighted subjects: Multi-contrast MRI approach. NeuroImage, 227, 117613. https://doi.org/10.1016/j.neuroimage.2020.117613 [58] McCandliss B. D., Cohen L., & Dehaene S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293- 299. https://doi.org/10.1016/S1364-6613(03)00134-7 [59] Nakamura K., Kuo W. J., Pegado F., Cohen L., Tzeng O. J. L., & Dehaene S. (2012). Universal brain systems for recognizing word shapes and handwriting gestures during reading. Proceedings of the National Academy of Sciences of the United States of America, 109(50), 20762-20767. https://doi.org/10.1073/pnas.1217749109 [60] Oshima K., Arai T., Ichihara S., & Nakano Y. (2014). Tactile sensitivity and Braille reading in people with early blindness and late blindness. Journal of Visual Impairment and Blindness, 108(2), 122-131. https://doi.org/10.1177/0145482x1410800204 [61] Ptito M., Fumal A., De Noordhout A. M., Schoenen J., Gjedde A., & Kupers R. (2008). TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Experimental Brain Research, 184(2), 193-200. https://doi.org/10.1007/s00221-007-1091-0 [62] Rączy K., Urbańczyk A., Korczyk M., Szewczyk J. M., Sumera E., & Szwed M. (2019). Orthographic priming in Braille reading as evidence for task-specific reorganization in the ventral visual cortex of the congenitally blind. Journal of Cognitive Neuroscience, 31(7), 1065-1078. https://doi.org/10.1162/jocn_a_01407 [63] Raz N., Amedi A., & Zohary E. (2005). V1 activation in congenitally blind humans is associated with episodic retrieval. Cerebral Cortex, 15(9), 1459-1468. https://doi.org/10.1093/cercor/bhi026 [64] Reich L., Szwed M., Cohen L.,& Amedi, A.(2011). A ventral visual stream reading center independent of visual experience. Current Biology, 212011.01.040 [65] Röder B., Kekunnaya R.,& Guerreiro, M. J. S.(2021). Neural mechanisms of visual sensitive periods in humans. Neuroscience & Biobehavioral Reviews, 120, 86-99. https://doi.org/10.1016/j.neubiorev.2020.10.030 [66] Rothlein D.,& Rapp, B.(2014). The similarity structure of distributed neural responses reveals the multiple representations of letters. NeuroImage, 89, 331-344. https://doi.org/10.1016/j.neuroimage.2013.11.054 [67] Rueckl J. G., Paz-Alonso P. M., Molfese P. J., Kuo W. J., Bick A., Frost S. J., … Frost R. (2015). Universal brain signature of proficient reading: Evidence from four contrasting languages. Proceedings of the National Academy of Sciences of the United States of America, 112(50), 15510-15515. https://doi.org/10.1073/pnas.1509321112 [68] Ruschel M., Knösche T. R., Friederici A. D., Turner R., Geyer S., & Anwander A. (2014). Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cerebral Cortex, 24(9), 2436-2448. https://doi.org/10.1093/cercor/bht098 [69] Sadato N., Pascual-Leone A., Grafman J., Deiber M. P., Ibañez V., & Hallett M. (1998). Neural networks for Braille reading by the blind. Brain, 121(7), 1213-1229. https://doi.org/10.1093/brain/121.7.1213 [70] Sadato N., Pascual-Leone A., Grafman J., Ibañez V., Deiber M., Dold G., & Hallett M. (1996). Activation of the primary visual cortex by Braille reading in blind subjects. Nature, 380(6574), 526-528. https://doi.org/10.1038/380526a0 [71] Schlaggar, B. L., & McCandliss, B. D. (2007). Development of neural systems for reading. Annual Review of Neuroscience, 30(1), 475-503. https://doi.org/10.1146/annurev.neuro.28.061604.135645 [72] Siuda-Krzywicka K., Bola Ł., Paplińska M., Sumera E., Jednoróg K., Marchewka A., … Szwed M. (2016). Massive cortical reorganization in sighted Braille readers. eLife, 5, e10762. https://doi.org/10.7554/eLife.10762 [73] Stevens W. D., Kravitz D. J., Peng C. S., Tessler M. H., & Martin A. (2017). Privileged functional connectivity between the visual word form area and the language system. Journal of Neuroscience, 37(21), 5288-5297. https://doi.org/10.1523/JNEUROSCI.0138-17.2017 [74] Szwed M., Cohen L., Qiao E., & Dehaene S. (2009). The role of invariant line junctions in object and visual word recognition. Vision Research, 49(7), 718-725. https://doi.org/10.1016/j.visres.2009.01.003 [75] Szwed M., Dehaene S., Kleinschmidt A., Eger E., Valabrègue R., Amadon A.,& Cohen, L.(2011). Specialization for written words over objects in the visual cortex. NeuroImage, 562011.01.073 [76] Tian M., Saccone E. J., Kim J. S., Kanjlia S., & Bedny M. (2023). Sensory modality and spoken language shape reading network in blind readers of Braille. Cerebral Cortex, 33(6), 2426-2440. https://doi.org/10.1093/cercor/bhac216 [77] Vinckier F., Dehaene S., Jobert A., Dubus J. P., Sigman M.,& Cohen, L.(2007). Hierarchical coding of letter strings in the ventral stream: Dissecting the inner organization of the visual word-form system. Neuron, 552007.05.031 [78] Voss P., Alary F., Lazzouni L., Chapman C. E., Goldstein R., Bourgoin P.,& Lepore, F.(2016). Crossmodal processing of haptic inputs in sighted and blind individuals. Frontiers in Systems Neuroscience, 10, 62. https://doi.org/10.3389/fnsys.2016.00062 [79] Wang R., Gong J., Zhao C., Xu Y.,& Hong, B.(2024). Distinct neural pathway and its information flow for blind individual’s Braille reading. NeuroImage, 300, 120852. https://doi.org/10.1016/j.neuroimage.2024.120852 [80] Wang X., Peelen M. V., Han Z., He C., Caramazza A., & Bi Y. (2015). How visual is the visual cortex? Comparing connectional and functional fingerprints between congenitally blind and sighted individuals. Journal of Neuroscience, 35(36), 12545-12559. https://doi.org/10.1523/JNEUROSCI.3914-14.2015 [81] Watkins K. E., Cowey A., Alexander I., Filippini N., Kennedy J. M., Smith S. M., … Bridge H. (2012). Language networks in anophthalmia: Maintained hierarchy of processing in “visual” cortex. Brain, 135(5), 1566-1577. https://doi.org/10.1093/brain/aws067 [82] Weiner K. S., Barnett M. A., Lorenz S., Caspers J., Stigliani A., Amunts K., … Grill-Spector K. (2017). The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cerebral Cortex, 27(1), 146-161. https://doi.org/10.1093/cercor/bhw361 [83] White A. L., Palmer J., Boynton G. M., & Yeatman J. D. (2019). Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proceedings of the National Academy of Sciences, 116(20), 10087-10096. https://doi.org/10.1073/pnas.1822137116 [84] Yablonski M., Karipidis I. I., Kubota E., & Yeatman J. D. (2024). The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Human Brain Mapping, 45(4), e26655. https://doi.org/10.1002/hbm.26655 [85] Yeatman J. D., Rauschecker A. M.,& Wandell, B. A.(2013). Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections. Brain and Language, 1252012.04.010 [86] Zhan M., Pallier C., Agrawal A., Dehaene S., & Cohen L. (2023). Does the visual word form area split in bilingual readers? A millimeter-scale 7-T fMRI study. Science Advances, 9(14), eadf6140. https://doi.org/10.1126/sciadv.adf6140 [87] Zhou W., Pang W., Zhang L., Xu H., Li P.,& Shu, H.(2020). Altered connectivity of the visual word form area in the low-vision population: A resting-state fMRI study. Neuropsychologia, 137, 107302. https://doi.org/10.1016/j.neuropsychologia.2019.107302 |
| [1] | 高飞, 蔡厚德, 齐星亮. 文字与面孔识别的半球偏侧化互补模式的竞争性发展机制[J]. 心理科学进展, 2023, 31(11): 2063-2077. |
| [2] | 赵冰洁, 张琪涵, 陈怡馨, 章鹏, 白学军. 智力运动专家领域内知觉与记忆的加工特点及其机制[J]. 心理科学进展, 2022, 30(9): 1993-2003. |
| [3] | 明莉莉, 胡学平. 人类嗓音加工的神经机制——来自正常视力者和盲人的脑神经证据[J]. 心理科学进展, 2021, 29(12): 2147-2160. |
| [4] | 冯杰, 徐娟, 伍新春. 视觉经验缺失对盲人听觉词汇识别的影响[J]. 心理科学进展, 2021, 29(12): 2131-2146. |
| [5] | 齐星亮, 蔡厚德. 镜像等效或守恒及其打破:从行为到认知神经机制的研究证据[J]. 心理科学进展, 2021, 29(10): 1855-1865. |
| [6] | 张畅芯. 早期听觉剥夺后的大脑可塑性:来自先天性听力障碍群体的证据[J]. 心理科学进展, 2019, 27(2): 278-288. |
| [7] | 程凯文, 邓颜蕙, 颜红梅. 第二语言学习与脑可塑性[J]. 心理科学进展, 2019, 27(2): 209-220. |
| [8] | 霍丽娟, 郑志伟, 李瑾, 李娟. 老年人的脑可塑性:来自认知训练的证据[J]. 心理科学进展, 2018, 26(5): 846-858. |
| [9] | 丁国盛;李妍妍. 聋人早期手语经验对脑功能及结构的塑造作用[J]. 心理科学进展, 2012, 20(3): 328-337. |
| [10] | 陶维东;孙弘进;张旭东;郑剑虹. 非面孔物体倒置效应形成过程的认知神经机制[J]. 心理科学进展, 2011, 19(8): 1104-1114. |
| [11] | 王小娟;舒华;杨剑峰. 大脑视觉词形区及其在阅读神经网络中的作用[J]. 心理科学进展, 2010, 18(8): 1199-1207. |
| [12] | 李艳玮;李燕芳. 儿童青少年认知能力发展与脑发育[J]. 心理科学进展, 2010, 18(11): 1700-1706. |
| [13] | 单春雷;李静薇;翁旭初. 视觉词形加工:从脑区到神经通路[J]. 心理科学进展, 2008, 16(3): 441-445. |
| [14] | 吴健辉,罗跃嘉. 盲人的跨感觉通道重组[J]. 心理科学进展, 2005, 13(4): 406-412. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||