心理科学进展 ›› 2026, Vol. 34 ›› Issue (2): 239-250.doi: 10.3724/SP.J.1042.2026.0239 cstr: 32111.14.2026.0239
收稿日期:2025-05-15
出版日期:2026-02-15
发布日期:2025-12-15
通讯作者:
张丹丹, E-mail: zhangdd05@gmail.com基金资助:
DONG Yaohua, TANG Yuyao, ZHANG Dandan(
)
Received:2025-05-15
Online:2026-02-15
Published:2025-12-15
摘要:
经颅交流电刺激(transcranial alternating current stimulation, tACS)是一种非侵入性的电神经调控技术, 它通过向头皮施加特定频率的周期性微电流, 调节大脑特定脑区的神经振荡, 从而改变个体的特定认知功能或改善临床症状。自2008年以来, 心理学研究者们利用tACS揭示了大脑不同神经振荡频段与特定认知活动的因果性联系。我们首先介绍tACS技术调控神经振荡的作用机制, 接着分别介绍tACS在改变单脑和双脑认知功能研究中的应用。未来研究需精确控制tACS施加电流与大脑自发脑电节律间的相位关系、考虑脑神经节律等方面的个体差异, 实现精准的tACS神经调控, 从而更好地揭示不同认知功能的神经电机制。同时需系统评估tACS在临床应用研究中的施治方案和疗效持续性, 为临床治疗提供科学指导。
中图分类号:
董耀华, 汤煜尧, 张丹丹. (2026). 经颅交流电刺激在心理学研究中的应用. 心理科学进展 , 34(2), 239-250.
DONG Yaohua, TANG Yuyao, ZHANG Dandan. (2026). Applications of transcranial alternating current stimulation in psychological research. Advances in Psychological Science, 34(2), 239-250.
| 论文信息 | 频段 | 样本量 | 认知 过程 | 刺激 靶点 | 电流强度(mA) | 刺激频率(Hz) | 刺激时长 (min) | 刺激 次数 | 刺激 模式 | 研究 任务 | 信号 采集 | 主要结果 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bramson et al., eLife, | theta | 41 | 情绪调节 | rPFC, lM1 | 2.00 | 6-75 | 1 | 24 | 在线 | 情绪接近-趋避 | fMRI | 同相位theta-gamma跨频率tACS提升了情绪任务的行为控制 |
| Grover et al., Nature Neuroscience, | 150 | 记忆 | AF3, CP5 | 1.58 | 4/60 | 20 | 4 | 离线 | 自由回忆 | - | theta-tACS促进工作记忆, 而gamma-tACS改善长时记忆 | |
| Mosbacher et al., Neuroscience, | 137 | 学习 | F3/P3 | 1.00 | 3~14 | 25 | 1 | 在线 | 算术学习 | EEG | theta-tACS减少了学习重复次数, 并加快了运算速度 | |
| Reinhart & Nguyen, Nature Neuroscience, | 154 | 记忆 | lPFC, 颞叶 | 1.60 | 8 | 25 | 1 | 在线 | 物体变化检测 | EEG | theta-tACS提高了老年人被试的工作记忆准确率 | |
| Tang et al., Emotion, | 86 | 情绪调节 | F3, F8 | 1.50 | 6 | 20 | 3/2 | 离线 | 负性图片观看 | EEG | 同相位theta-tACS显著下调被试认知重评策略后的负性情绪体验 | |
| Violante et al., Nature Neuroscience, | 20 | 记忆 | 海马 | 3 | 5 | 1.5 | 3 | 在线 | 面孔-名字联结 | fMRI | 5 Hz-TI提高了被试的情景记忆准确性 | |
| Zhang et al., Frontiers in Human Neuroscience, | 60 | 记忆 | F4, P4 | 2 | 6 | 15 | 1 | 在线 | N-back | - | 6 Hz-TI提高了被试的在3-back任务难度下的工作记忆准确性 | |
| Ahn et al., NeuroImage, | alpha | 22 | 听觉 | F3-FP1, T3-P3 | 2.00 | 10 | 20 | 10 | 离线 | 听觉序列点击 | EEG | 10Hz-tACS增强了精神分裂患者脑内的alpha振荡以及40 Hz听觉稳态反应 |
| Alexander et al., Translational Psychiatry, | 32 | 情绪 | F3, F4, Cz | 2.00 | 10 | 10/40 | 5 | 离线 | - | EEG | alpha-tACS缓解了重度抑郁症患者的抑郁水平 | |
| Arendsen et al., The Journal of Pain, | 23 | 痛觉 | CP3, CP4 | 1.00 | 10 | 15~20 | 2 | 在线 | 视觉线索 | - | alpha-tACS降低了疼痛强度和不愉悦评分 | |
| Clayton et al., Journal of Experimental Psychology:General, | 37 | 注意 | Cz, Oz | 2.00 | 10/50 | 11 | 1 | 在线 | 视听觉阈值检测 | EEG | 10 Hz alpha-tACS降低了视觉注意的反应时 | |
| Deng et al., eLife, | 38 | 注意 | P2 | 1.50 | 10 | 20 | 1 | 离线 | 选择性注意 | EEG | alpha-tACS干扰了左侧目标的听觉空间注意 | |
| Janssens et al., NeuroImage, | 24 | 注意 | P3 | 2.00 | 5~15 | 30 | 6 | 在线 | 内源性 注意 | EEG | alpha-tACS改善了内源性注意且减少了右侧视野视空间注意 | |
| May et al., The Journal of Pain, | alpha | 29 | 痛觉 | CP3, CP4, F3, F4, | 1.00 | 10/80 | 10 | 6 | 在线 | 热痛刺激 | EEG | tACS刺激对疼痛感知的调节没有显著影响 |
| Mellin et al., European Psychiatry, | 24 | 听觉 | F3-FP1, T3-P3 | 2.00 | 10 | 20 | 10 | 离线 | - | - | 10 Hz-tACS有效改善了精神分裂症患者的幻听症状 | |
| Peng et al., Pain, | 53 | 痛觉 | C3, C4 | 1.00 | 10 | 20 | 1 | 离线 | 激光热痛 | fMRI | 10 Hz alpha-tACS降低了疼痛强度 | |
| Qi et al., NeuroImage, | 31 | 痛觉 | F3, C4 | 1.50 | 10 | 30 | 1 | 在线 | 辣椒素热痛 | EEG | 10 Hz alpha-tACS缓解了疼痛感受 | |
| Riddle et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, | 82 | 情绪 | F3, F4, Cz | 2.00 | 8~13 | 40 | 1 | 离线 | 情绪效价 | EEG | alpha-tACS降低了抑郁症患者的左额叶alpha频率且改善抑郁水平强度 | |
| Sun et al., NeuroImage, | 45 | 痛觉 | F3, FC5, F5, AF3 | 1.50 | 10 | 0 | 1 | 在线 | 辣椒素热痛 | EEG | 10 Hz alpha-tACS缓解了疼痛感受 | |
| Wei et al., The Journal of Neuroscience, | 33 | 视觉 | Fz, Oz | 0.37 | 10 | 15 | 3 | 在线 | 视觉对比 | EEG | 45°相位的alpha-tACS提高了视觉对比度阈值 | |
| Battaglini et al., NeuroImage, | beta | 20 | 视觉 | P4 | 1.60 | 18 | 45 | 3 | 在线 | 定向辨别 | EEG | 18 Hz beta-tACS减弱了视觉拥挤现象的出现 |
| Grover, Nguyen, Viswanathan, & Reinhart, Nature Medicine, | 128 | 认知控制 | OFC | 1.80 | 10~27 | 30 | 5 | 离线 | - | - | beta-gamma tACS有效改善强迫症患者的控制行为 | |
| Guerra et al., Brain, | 34 | 运动 | M1 | 1.00 | 20/70 | 4 | 3 | 离线 | - | - | beta-tACS有效抑制了帕金森病患者的运动幅度 | |
| Guerra et al., Neurobiology of Disease, | 30 | 运动 | M1 | 1.00 | 20/70 | 4 | 3 | 离线 | - | - | beta-tACS抑制了帕金森病患者的运动迟缓 | |
| Liu et al., Cell Reports Medicine, | 60 | 运动 | M1 (C3) | 2.00 | 20 | 20 | 1 | 在线 | 简单视觉反应 | EEG | beta-tACS改善帕金森患者的运动灵活性 | |
| Benussi et al., Brain Stimulation, | gamma | 20 | 记忆 | Pz | 3.00 | 40 | 60 | 2 | 在线 | 面孔-名字联结 | - | gamma-tACS改善了阿尔兹海默病患者的情景记忆表现 |
| Wang et al., Brain, | 100 | 情绪 | Fpz, Fp1, Fp2 | 15.00 | 77.5 | 40 | 20 | 离线 | - | - | gamma-tACS显著降低了抑郁症患者的抑郁水平 | |
| Zhou et al., Brain Stimulation, | 66 | 情绪 | Fpz, Fp1, Fp2 | 15.00 | 77.5 | 40 | 20 | 离线 | - | EEG | gamma-tACS显著降低了抑郁症患者的抑郁水平 |
附表1 tACS在个体认知功能及临床干预研究中的应用
| 论文信息 | 频段 | 样本量 | 认知 过程 | 刺激 靶点 | 电流强度(mA) | 刺激频率(Hz) | 刺激时长 (min) | 刺激 次数 | 刺激 模式 | 研究 任务 | 信号 采集 | 主要结果 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Bramson et al., eLife, | theta | 41 | 情绪调节 | rPFC, lM1 | 2.00 | 6-75 | 1 | 24 | 在线 | 情绪接近-趋避 | fMRI | 同相位theta-gamma跨频率tACS提升了情绪任务的行为控制 |
| Grover et al., Nature Neuroscience, | 150 | 记忆 | AF3, CP5 | 1.58 | 4/60 | 20 | 4 | 离线 | 自由回忆 | - | theta-tACS促进工作记忆, 而gamma-tACS改善长时记忆 | |
| Mosbacher et al., Neuroscience, | 137 | 学习 | F3/P3 | 1.00 | 3~14 | 25 | 1 | 在线 | 算术学习 | EEG | theta-tACS减少了学习重复次数, 并加快了运算速度 | |
| Reinhart & Nguyen, Nature Neuroscience, | 154 | 记忆 | lPFC, 颞叶 | 1.60 | 8 | 25 | 1 | 在线 | 物体变化检测 | EEG | theta-tACS提高了老年人被试的工作记忆准确率 | |
| Tang et al., Emotion, | 86 | 情绪调节 | F3, F8 | 1.50 | 6 | 20 | 3/2 | 离线 | 负性图片观看 | EEG | 同相位theta-tACS显著下调被试认知重评策略后的负性情绪体验 | |
| Violante et al., Nature Neuroscience, | 20 | 记忆 | 海马 | 3 | 5 | 1.5 | 3 | 在线 | 面孔-名字联结 | fMRI | 5 Hz-TI提高了被试的情景记忆准确性 | |
| Zhang et al., Frontiers in Human Neuroscience, | 60 | 记忆 | F4, P4 | 2 | 6 | 15 | 1 | 在线 | N-back | - | 6 Hz-TI提高了被试的在3-back任务难度下的工作记忆准确性 | |
| Ahn et al., NeuroImage, | alpha | 22 | 听觉 | F3-FP1, T3-P3 | 2.00 | 10 | 20 | 10 | 离线 | 听觉序列点击 | EEG | 10Hz-tACS增强了精神分裂患者脑内的alpha振荡以及40 Hz听觉稳态反应 |
| Alexander et al., Translational Psychiatry, | 32 | 情绪 | F3, F4, Cz | 2.00 | 10 | 10/40 | 5 | 离线 | - | EEG | alpha-tACS缓解了重度抑郁症患者的抑郁水平 | |
| Arendsen et al., The Journal of Pain, | 23 | 痛觉 | CP3, CP4 | 1.00 | 10 | 15~20 | 2 | 在线 | 视觉线索 | - | alpha-tACS降低了疼痛强度和不愉悦评分 | |
| Clayton et al., Journal of Experimental Psychology:General, | 37 | 注意 | Cz, Oz | 2.00 | 10/50 | 11 | 1 | 在线 | 视听觉阈值检测 | EEG | 10 Hz alpha-tACS降低了视觉注意的反应时 | |
| Deng et al., eLife, | 38 | 注意 | P2 | 1.50 | 10 | 20 | 1 | 离线 | 选择性注意 | EEG | alpha-tACS干扰了左侧目标的听觉空间注意 | |
| Janssens et al., NeuroImage, | 24 | 注意 | P3 | 2.00 | 5~15 | 30 | 6 | 在线 | 内源性 注意 | EEG | alpha-tACS改善了内源性注意且减少了右侧视野视空间注意 | |
| May et al., The Journal of Pain, | alpha | 29 | 痛觉 | CP3, CP4, F3, F4, | 1.00 | 10/80 | 10 | 6 | 在线 | 热痛刺激 | EEG | tACS刺激对疼痛感知的调节没有显著影响 |
| Mellin et al., European Psychiatry, | 24 | 听觉 | F3-FP1, T3-P3 | 2.00 | 10 | 20 | 10 | 离线 | - | - | 10 Hz-tACS有效改善了精神分裂症患者的幻听症状 | |
| Peng et al., Pain, | 53 | 痛觉 | C3, C4 | 1.00 | 10 | 20 | 1 | 离线 | 激光热痛 | fMRI | 10 Hz alpha-tACS降低了疼痛强度 | |
| Qi et al., NeuroImage, | 31 | 痛觉 | F3, C4 | 1.50 | 10 | 30 | 1 | 在线 | 辣椒素热痛 | EEG | 10 Hz alpha-tACS缓解了疼痛感受 | |
| Riddle et al., Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, | 82 | 情绪 | F3, F4, Cz | 2.00 | 8~13 | 40 | 1 | 离线 | 情绪效价 | EEG | alpha-tACS降低了抑郁症患者的左额叶alpha频率且改善抑郁水平强度 | |
| Sun et al., NeuroImage, | 45 | 痛觉 | F3, FC5, F5, AF3 | 1.50 | 10 | 0 | 1 | 在线 | 辣椒素热痛 | EEG | 10 Hz alpha-tACS缓解了疼痛感受 | |
| Wei et al., The Journal of Neuroscience, | 33 | 视觉 | Fz, Oz | 0.37 | 10 | 15 | 3 | 在线 | 视觉对比 | EEG | 45°相位的alpha-tACS提高了视觉对比度阈值 | |
| Battaglini et al., NeuroImage, | beta | 20 | 视觉 | P4 | 1.60 | 18 | 45 | 3 | 在线 | 定向辨别 | EEG | 18 Hz beta-tACS减弱了视觉拥挤现象的出现 |
| Grover, Nguyen, Viswanathan, & Reinhart, Nature Medicine, | 128 | 认知控制 | OFC | 1.80 | 10~27 | 30 | 5 | 离线 | - | - | beta-gamma tACS有效改善强迫症患者的控制行为 | |
| Guerra et al., Brain, | 34 | 运动 | M1 | 1.00 | 20/70 | 4 | 3 | 离线 | - | - | beta-tACS有效抑制了帕金森病患者的运动幅度 | |
| Guerra et al., Neurobiology of Disease, | 30 | 运动 | M1 | 1.00 | 20/70 | 4 | 3 | 离线 | - | - | beta-tACS抑制了帕金森病患者的运动迟缓 | |
| Liu et al., Cell Reports Medicine, | 60 | 运动 | M1 (C3) | 2.00 | 20 | 20 | 1 | 在线 | 简单视觉反应 | EEG | beta-tACS改善帕金森患者的运动灵活性 | |
| Benussi et al., Brain Stimulation, | gamma | 20 | 记忆 | Pz | 3.00 | 40 | 60 | 2 | 在线 | 面孔-名字联结 | - | gamma-tACS改善了阿尔兹海默病患者的情景记忆表现 |
| Wang et al., Brain, | 100 | 情绪 | Fpz, Fp1, Fp2 | 15.00 | 77.5 | 40 | 20 | 离线 | - | - | gamma-tACS显著降低了抑郁症患者的抑郁水平 | |
| Zhou et al., Brain Stimulation, | 66 | 情绪 | Fpz, Fp1, Fp2 | 15.00 | 77.5 | 40 | 20 | 离线 | - | EEG | gamma-tACS显著降低了抑郁症患者的抑郁水平 |
| 论文信息 | 频段 | 样本量 | 互动类型 | 刺激 靶点 | 电流强度 (mA) | 刺激频率(Hz) | 刺激时长 (min) | 刺激次数 | 刺激模式 | 研究 任务 | 信号 采集 | 主要结果 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pan et al., Social Cognitive and Affective Neuroscience, | theta | 28 | 身体 运动 | FC5, FP2 | 1.00 | 6/10 | 8 | 2 | 在线 | 音乐 学习 | - | 同相位theta-tACS促进了被试双方音乐学习的身体运动同步 |
| Lu et al., NeuroImage, | beta | 124 | 按键 速度 | FC6 | 1.50 | 20 | 10 | 1 | 在线 | 按键 协作 | fNIRS | beta-tACS提高了双人按键协作一致的成功率 |
| Novembre et al., Social Cognitive and Affective Neuroscience, | 60 | 按键 节奏 | C3, Pz | 1.00 | 2/10/20 | 1.22 | 6 | 在线 | 联合 按键 | - | 同相位beta-tACS促进了被试双方的运动节奏同步 | |
| Chen et al., Human Brain Mapping, | gamma | 54 | 符号 理解 | CP5, FP2 | 1.00 | 40 | 30 | 1 | 在线 | 符号 沟通 | EEG | gamma-tACS增强了概念对齐成功组的沟通正确率 |
| Liu et al., Communications Biology, | 140 | 符号 理解 | CP6, FP1 | 1.00 | 40 | 20 | 1 | 在线 | 协调符号交流 | fNIRS | 同相位gamma-tACS增强了被试双方颞上回的脑间同步性 |
附表2 tACS在社会互动研究中的应用
| 论文信息 | 频段 | 样本量 | 互动类型 | 刺激 靶点 | 电流强度 (mA) | 刺激频率(Hz) | 刺激时长 (min) | 刺激次数 | 刺激模式 | 研究 任务 | 信号 采集 | 主要结果 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pan et al., Social Cognitive and Affective Neuroscience, | theta | 28 | 身体 运动 | FC5, FP2 | 1.00 | 6/10 | 8 | 2 | 在线 | 音乐 学习 | - | 同相位theta-tACS促进了被试双方音乐学习的身体运动同步 |
| Lu et al., NeuroImage, | beta | 124 | 按键 速度 | FC6 | 1.50 | 20 | 10 | 1 | 在线 | 按键 协作 | fNIRS | beta-tACS提高了双人按键协作一致的成功率 |
| Novembre et al., Social Cognitive and Affective Neuroscience, | 60 | 按键 节奏 | C3, Pz | 1.00 | 2/10/20 | 1.22 | 6 | 在线 | 联合 按键 | - | 同相位beta-tACS促进了被试双方的运动节奏同步 | |
| Chen et al., Human Brain Mapping, | gamma | 54 | 符号 理解 | CP5, FP2 | 1.00 | 40 | 30 | 1 | 在线 | 符号 沟通 | EEG | gamma-tACS增强了概念对齐成功组的沟通正确率 |
| Liu et al., Communications Biology, | 140 | 符号 理解 | CP6, FP1 | 1.00 | 40 | 20 | 1 | 在线 | 协调符号交流 | fNIRS | 同相位gamma-tACS增强了被试双方颞上回的脑间同步性 |
| [1] |
邓虎, 符艳冉, 吴刚. (2025). 时间干涉刺激干预精神分裂症工作记忆缺陷有效性与脑区特异性及跨频耦合机制. 心理科学进展, 33(4), 620-631.
doi: 10.3724/SP.J.1042.2025.0620 |
| [2] | 刘珍莉, 莫李澄, 谢慧, 张丹丹. (2021). 经颅电磁刺激在社会认知研究中的应用. 心理学通讯, 4(4), 247-255. |
| [3] |
周士人, 仇秀芙, 何振宏, 张丹丹. (2023). 基于无损脑刺激的情绪调节干预. 心理科学进展, 31(8), 1477-1495.
doi: 10.3724/SP.J.1042.2023.01477 |
| [4] |
Ahn S., Mellin J. M., Alagapan S., Alexander M. L., Gilmore J. H., Jarskog L. F., & Fröhlich F. (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. NeuroImage, 186, 126-136.
doi: S1053-8119(18)32028-7 pmid: 30367952 |
| [5] | Alekseichuk I., Falchier A. Y., Linn G., Xu T., Milham M. P., Schroeder C. E., & Opitz A. (2019). Electric field dynamics in the brain during multi-electrode transcranial electric stimulation. Nature Communications, 10(1), 2573. |
| [6] | Alexander M. L., Alagapan S., Lugo C. E., Mellin J. M., Lustenberger C., Rubinow D. R., & Fröhlich F. (2019). Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Translational Psychiatry, 9(1), 106. |
| [7] |
Ali M. M., Sellers K. K., & Fröhlich F. (2013). Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. The Journal of Neuroscience, 33(27), 11262-11275.
doi: 10.1523/JNEUROSCI.5867-12.2013 URL |
| [8] |
Antal A., Alekseichuk I., Bikson M., Brockmöller J., Brunoni A. R., Chen R.,... Paulus W. (2017). Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clinical Neurophysiology, 128(9), 1774-1809.
doi: S1388-2457(17)30212-2 pmid: 28709880 |
| [9] |
Antal A., Boros K., Poreisz C., Chaieb L., Terney D., & Paulus W. (2008). Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation, 1(2), 97-105.
doi: 10.1016/j.brs.2007.10.001 pmid: 20633376 |
| [10] |
Arendsen L. J., Hugh-Jones S., & Lloyd D. M. (2018). Transcranial alternating current stimulation at alpha frequency reduces pain when the intensity of pain is uncertain. The Journal of Pain, 19(7), 807-818.
doi: 10.1016/j.jpain.2018.02.014 URL |
| [11] |
Battaglini L., Ghiani A., Casco C., & Ronconi L. (2020). Parietal tACS at beta frequency improves vision in a crowding regime. NeuroImage, 208, 116451.
doi: 10.1016/j.neuroimage.2019.116451 URL |
| [12] | Beanato E., Moon H., Windel F., Vassiliadis P., Wessel M. J., Popa T.,... Gauthier B. (2024). Noninvasive modulation of the hippocampal-entorhinal complex during spatial navigation in humans. Science Advances, 10(44), eado4103. |
| [13] |
Benussi A., Cantoni V., Cotelli M. S., Cotelli M., Brattini C., Datta A., … Borroni B. (2021). Exposure to gamma tACS in Alzheimer's disease: A randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimulation, 14(3), 531-540.
doi: 10.1016/j.brs.2021.03.007 pmid: 33762220 |
| [14] |
Booth S. J., Taylor J. R., Brown L., & Pobric G. (2022). The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex, 147, 112-139.
doi: 10.1016/j.cortex.2021.12.001 URL |
| [15] | Bramson B., den Ouden H. E., Toni I., & Roelofs K. (2020). Improving emotional-action control by targeting long-range phase-amplitude neuronal coupling. eLife, 9, e59600. |
| [16] |
Buzsaki G., & Draguhn A. (2004). Neuronal oscillations in cortical networks. Science, 304(5679), 1926-1929.
doi: 10.1126/science.1099745 pmid: 15218136 |
| [17] |
Chen D., Zhang R., Liu J., Wang P., Bei L., Liu C. C., & Li X. (2022). Gamma-band neural coupling during conceptual alignment. Human Brain Mapping, 43(9), 2992-3006.
doi: 10.1002/hbm.25831 pmid: 35285571 |
| [18] |
Clayton M. S., Yeung N., & Cohen Kadosh R. (2019). Electrical stimulation of alpha oscillations stabilizes performance on visual attention tasks. Journal of Experimental Psychology: General, 148(2), 203-220.
doi: 10.1037/xge0000502 URL |
| [19] |
Colgin L. L. (2013). Mechanisms and functions of theta rhythms. Annual Review of Neuroscience, 36(1), 295-312.
doi: 10.1146/neuro.2013.36.issue-1 URL |
| [20] |
Datta A., Bansal V., Diaz J., Patel J., Reato D., & Bikson M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201-207.
doi: 10.1016/j.brs.2009.03.005 pmid: 20648973 |
| [21] |
Davis N. J., Tomlinson S. P., & Morgan H. M. (2012). The role of beta-frequency neural oscillations in motor control. The Journal of Neuroscience, 32(2), 403-404.
doi: 10.1523/JNEUROSCI.5106-11.2012 URL |
| [22] | Del Felice A., Castiglia L., Formaggio E., Cattelan M., Scarpa B., Manganotti P., … Masiero S. (2019). Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson’ s disease: A randomized cross-over trial. NeuroImage, 22, 101768. |
| [23] | Deng Y., Reinhart R. M., Choi I., & Shinn-Cunningham B. G. (2019). Causal links between parietal alpha activity and spatial auditory attention. eLife, 8, e51184. |
| [24] |
Denison T., & Morrell M. J. (2022). Neuromodulation in 2035: The neurology future forecasting series. Neurology, 98(2), 65-72.
doi: 10.1212/WNL.0000000000013061 pmid: 35263267 |
| [25] | Ding Z., Wang Y., Li J., & Li X. (2022). Closed-loop TMS-EEG reactivity with occipital alpha-phase synchronized. Journal of Neural Engineering, 19(5), 056027. |
| [26] | Dmochowski J. P., Datta A., Bikson M., Su Y., & Parra L. C. (2011). Optimized multi-electrode stimulation increases focality and intensity at target. Journal of Neural Engineering, 8(4), 046011. |
| [27] |
Dupuis J. P., Nicole O., & Groc L. (2023). NMDA receptor functions in health and disease: Old actor, new dimensions. Neuron, 111(15), 2312-2328.
doi: 10.1016/j.neuron.2023.05.002 URL |
| [28] |
Edwards D., Cortes M., Datta A., Minhas P., Wassermann E. M., & Bikson M. (2013). Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS. NeuroImage, 74, 266-275.
doi: 10.1016/j.neuroimage.2013.01.042 pmid: 23370061 |
| [29] |
Ertl M., Hildebrandt M., Ourina K., Leicht G., & Mulert C. (2013). Emotion regulation by cognitive reappraisal — The role of frontal theta oscillations. NeuroImage, 81, 412-421.
doi: 10.1016/j.neuroimage.2013.05.044 URL |
| [30] |
Fiene M., Radecke J. O., Misselhorn J., Sengelmann M., Herrmann C. S., Schneider T. R., … Engel A. K. (2022). tACS phase-specifically biases brightness perception of flickering light. Brain Stimulation, 15(1), 244-253.
doi: 10.1016/j.brs.2022.01.001 pmid: 34990876 |
| [31] |
Fries P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480.
doi: 10.1016/j.tics.2005.08.011 pmid: 16150631 |
| [32] |
Grossman N., Bono D., Dedic N., Kodandaramaiah S. B., Rudenko A., Suk H., … Tsai L. (2017). Noninvasive deep brain stimulation via temporally interfering electric fields. Cell, 169(6), 1029-1041.
doi: S0092-8674(17)30584-6 pmid: 28575667 |
| [33] |
Grover S., Fayzullina R., Bullard B. M., Levina V., & Reinhart R. (2023). A meta-analysis suggests that tACS improves cognition in healthy, aging, and psychiatric populations. Science Translational Medicine, 15(697), eabo2044.
doi: 10.1126/scitranslmed.abo2044 URL |
| [34] |
Grover S., Nguyen J. A., & Reinhart R. M. G. (2021). Synchronizing brain rhythms to improve cognition. Annual Review of Medicine, 72(1), 29-43.
doi: 10.1146/med.2021.72.issue-1 URL |
| [35] |
Grover S., Nguyen J. A., Viswanathan V., & Reinhart R. (2021). High-frequency neuromodulation improves obsessive- compulsive behavior. Nature Medicine, 27(2), 232-238.
doi: 10.1038/s41591-020-01173-w pmid: 33462447 |
| [36] |
Grover S., Wen W., Viswanathan V., Gill C. T., & Reinhart R. (2022). Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nature Neuroscience, 25(9), 1237-1246.
doi: 10.1038/s41593-022-01132-3 pmid: 35995877 |
| [37] |
Guan A., Wang S., Huang A., Qiu C., Li Y., Li X., … Deng B. (2022). The role of gamma oscillations in central nervous system diseases: Mechanism and treatment. Frontiers in Cellular Neuroscience, 16, 962957.
doi: 10.3389/fncel.2022.962957 URL |
| [38] |
Guerra A., Colella D., Cannavacciuolo A., Giangrosso M., Paparella G., Fabbrini G., … Bologna M. (2023). Short-term plasticity of the motor cortex compensates for bradykinesia in Parkinson’ s disease. Neurobiology of Disease, 182, 106137.
doi: 10.1016/j.nbd.2023.106137 URL |
| [39] |
Guerra A., Colella D., Giangrosso M., Cannavacciuolo A., Paparella G., Fabbrini G., … Bologna M. (2022). Driving motor cortex oscillations modulates bradykinesia in Parkinson’ s disease. Brain, 145(1), 224-236.
doi: 10.1093/brain/awab257 URL |
| [40] |
Gundlach C., Müller M. M., Hoff M., Ragert P., Nierhaus T., Villringer A., & Sehm B. (2020). Reduction of somatosensory functional connectivity by transcranial alternating current stimulation at endogenous mu- frequency. NeuroImage, 221, 117175.
doi: 10.1016/j.neuroimage.2020.117175 URL |
| [41] | Harmon-Jones E., & Gable P. A. (2017). On the role of asymmetric frontal cortical activity in approach and withdrawal motivation: An updated review of the evidence. Psychophysiology, 55(1), e12879. |
| [42] |
Haslacher D., Nasr K., Robinson S. E., Braun C., & Soekadar S. R. (2021). Stimulation artifact source separation (SASS) for assessing electric brain oscillations during transcranial alternating current stimulation (tACS). NeuroImage, 228, 117571.
doi: 10.1016/j.neuroimage.2020.117571 URL |
| [43] |
Helfrich R. F., Huang M., Wilson G., & Knight R. T. (2017). Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception. Proceedings of the National Academy of Sciences, 114(35), 9457-9462.
doi: 10.1073/pnas.1705965114 URL |
| [44] |
Helfrich R. F., Schneider T. R., Rach S., Trautmann- Lengsfeld S. A., Engel A. K., & Herrmann C. S. (2014). Entrainment of brain oscillations by transcranial alternating current stimulation. Current Biology, 24(3), 333-339.
doi: 10.1016/j.cub.2013.12.041 pmid: 24461998 |
| [45] |
Janssens S., Oever S. T., Sack A. T., & de Graaf T. A. (2022). "Broadband alpha transcranial alternating current Stimulation": Exploring a new biologically calibrated brain stimulation protocol. NeuroImage, 253, 119109.
doi: 10.1016/j.neuroimage.2022.119109 URL |
| [46] |
Jensen O., Kaiser J., & Lachaux J. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317-324.
doi: 10.1016/j.tins.2007.05.001 pmid: 17499860 |
| [47] | Kasten F. H., Duecker K., Maack M. C., Meiser A., & Herrmann C. S. (2019). Integrating electric field modeling and neuroimaging to explain inter-individual variability of tACS effects. Nature Communications, 10(1), 5427. |
| [48] |
Kemmerer S. K., De Graaf T. A., Ten Oever S., Erkens M., De Weerd P., & Sack A. T. (2022). Parietal but not temporoparietal alpha-tACS modulates endogenous visuospatial attention. Cortex, 154, 149-166.
doi: 10.1016/j.cortex.2022.01.021 pmid: 35779382 |
| [49] |
Kim J., Kim H., Jeong H., Roh D., & Kim D. H. (2021). TACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: A direct comparison between tACS and tDCS. Journal of Psychiatric Research, 141, 248-256.
doi: 10.1016/j.jpsychires.2021.07.012 pmid: 34256276 |
| [50] | Klink K., Paßmann S., Kasten F. H., & Peter J. (2020). The modulation of cognitive performance with transcranial alternating current stimulation: A systematic review of frequency-specific effects. Brain Sciences, 10(12), 932. |
| [51] |
Langers D. R. M., van Dijk P., & Backes W. H. (2005). Lateralization, connectivity and plasticity in the human central auditory system. NeuroImage, 28(2), 490-499.
pmid: 16051500 |
| [52] | Lasbareilles C., Pogosyan A., Mancini V., Tan H., & Stagg C. (2023). The functional role of theta-gamma oscillations in healthy human motor learning using theta-gamma phase amplitude coupling tACS. Brain Stimulation, 16(1), 261-262. |
| [53] |
Lebedev V. P., Malygin A. V., Kovalevski A. V., Rychkova S. V., Sisoev V. N., Kropotov S. P.,... Kozlowski G. P. (2002). Devices for noninvasive transcranial electrostimulation of the brain endorphinergic system: Application for improvement of human psycho-physiological status. Artificial Organs, 26(3), 248-251.
pmid: 11940025 |
| [54] |
Lee H. J., Jung D. H., Jung Y. J., Shin H. K., & Choi B. T. (2022). Transcranial alternating current stimulation rescues motor deficits in a mouse model of Parkinson’ s disease via the production of glial cell line-derived neurotrophic factor. Brain Stimulation, 15(3), 645-653.
doi: 10.1016/j.brs.2022.04.002 URL |
| [55] |
Lee T. L., Lee H., & Kang N. (2023). A meta-analysis showing improved cognitive performance in healthy young adults with transcranial alternating current stimulation. NPJ Science of Learning, 8(1), 1-20.
doi: 10.1038/s41539-022-00152-9 pmid: 36593247 |
| [56] |
Li Z. J., Zhang L. B., Chen Y. X., & Hu L. (2023). Advancements and challenges in neuromodulation technology: Interdisciplinary opportunities and collaborative endeavors. Science Bulletin, 68(18), 1978-1982.
doi: 10.1016/j.scib.2023.08.019 URL |
| [57] | Liu A., Vöröslakos M., Kronberg G., Henin S., Krause M. R., Huang Y.,... Buzsáki G. (2018). Immediate neurophysiological effects of transcranial electrical stimulation. Nature Communications, 9(1), 5092. |
| [58] | Liu J., Zhang R., Xie E., Lin Y., Chen D., Liu Y.,... Li X. (2023). Shared intentionality modulates interpersonal neural synchronization at the establishment of communication system. Communications Biology, 6(1), 832. |
| [59] | Liu J., Zhu Y., Chen B., Meng Q., Hu P., Chen X., & Bu J. (2025). Common and specific effects in brain oscillations and motor symptoms of tDCS and tACS in Parkinson's disease. Cell Reports Medicine, 102044. |
| [60] |
Lu H., Wang X., Zhang Y., Huang P., Xing C., Zhang M., & Zhu X. (2023). Increased interbrain synchronization and neural efficiency of the frontal cortex to enhance human coordinative behavior: A combined hyper-tES and fNIRS study. NeuroImage, 282, 120385.
doi: 10.1016/j.neuroimage.2023.120385 URL |
| [61] |
Manippa V., Palmisano A., Nitsche M. A., Filardi M., Vilella D., Logroscino G., & Rivolta D. (2023). Cognitive and neuropathophysiological outcomes of gamma-tACS in Dementia: A systematic review. Neuropsychology Review, 34(1), 338-361.
doi: 10.1007/s11065-023-09589-0 pmid: 36877327 |
| [62] |
May E. S., Hohn V. D., Nickel M. M., Tiemann L., Gil Ávila C., Heitmann H., … Ploner M. (2021). Modulating brain rhythms of pain using transcranial alternating current stimulation (tACS)-A sham-controlled study in healthy human participants. The Journal of Pain, 22(10), 1256-1272.
doi: 10.1016/j.jpain.2021.03.150 URL |
| [63] |
McAleer J., Stewart L., Shepard R., Sheena M., Stange J. P., Leow A., … Ajilore O. (2023). Neuromodulatory effects of transcranial electrical stimulation on emotion regulation in internalizing psychopathologies. Clinical Neurophysiology, 145, 62-70.
doi: 10.1016/j.clinph.2022.10.015 URL |
| [64] |
Mellin J. M., Alagapan S., Lustenberger C., Lugo C. E., Alexander M. L., Gilmore J. H., … Fröhlich F. (2018). Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. European Psychiatry, 51, 25-33.
doi: S0924-9338(18)30023-3 pmid: 29533819 |
| [65] |
Mosbacher J. A., Halverscheid S., Pustelnik K., Danner M., Prassl C., Brunner C.,... Grabner R. H. (2021). Theta band transcranial alternating current stimulation enhances arithmetic learning: A systematic comparison of different direct and alternating current stimulations. Neuroscience, 477, 89-105.
doi: 10.1016/j.neuroscience.2021.10.006 pmid: 34648868 |
| [66] |
Naro A., Leo A., Russo M., Cannavò A., Milardi D., Bramanti P., & Calabrò R. S. (2016). Does transcranial alternating current stimulation induce cerebellum plasticity? Feasibility, safety and efficacy of a novel electrophysiological approach. Brain Stimulation, 9(3), 388-395.
doi: S1935-861X(16)30019-5 pmid: 26946958 |
| [67] |
Nissim N. R., Pham D., Poddar T., Blutt E., & Hamilton R. H. (2023). The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer’ s disease: A literature review. Brain Stimulation, 16(3), 748-755.
doi: 10.1016/j.brs.2023.04.001 pmid: 37028756 |
| [68] |
Novembre G., & Iannetti G. D. (2021). Hyperscanning alone cannot prove causality. Multibrain stimulation can. Trends in Cognitive Sciences, 25(2), 96-99.
doi: 10.1016/j.tics.2020.11.003 pmid: 33293210 |
| [69] |
Novembre G., Knoblich G., Dunne L., & Keller P. E. (2017). Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Social Cognitive and Affective Neuroscience, 12(4), 662-670.
doi: 10.1093/scan/nsw172 URL |
| [70] |
Nozaradan S., Peretz I., Missal M., & Mouraux A. (2011). Tagging the neuronal entrainment to beat and meter. The Journal of Neuroscience, 31(28), 10234-10240.
doi: 10.1523/JNEUROSCI.0411-11.2011 URL |
| [71] | Nutt D. J. (2008). Relationship of neurotransmitters to the symptoms of major depressive disorder. The Journal of Clinical Psychiatry, 69(Suppl E1), 4-7. |
| [72] |
Pan Y., Novembre G., Song B., Zhu Y., & Hu Y. (2021). Dual brain stimulation enhances interpersonal learning through spontaneous movement synchrony. Social Cognitive and Affective Neuroscience, 16(1), 210-221.
doi: 10.1093/scan/nsaa080 URL |
| [73] |
Paulus W. (2011). Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation, 21(5), 602-617.
doi: 10.1080/09602011.2011.557292 URL |
| [74] |
Peng W., Zhan Y., Jin R., Lou W., & Li X. (2023). Aftereffects of alpha transcranial alternating current stimulation over the primary sensorimotor cortex on cortical processing of pain. Pain, 164(6), 1280-1290.
doi: 10.1097/j.pain.0000000000002814 URL |
| [75] |
Peylo C., Hilla Y., & Sauseng P. (2021). Cause or consequence? Alpha oscillations in visuospatial attention. Trends in Neurosciences, 44(9), 705-713.
doi: 10.1016/j.tins.2021.05.004 pmid: 34167840 |
| [76] |
Polanía R., Nitsche M. A., Korman C., Batsikadze G., & Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Current Biology, 22(14), 1314-1318.
doi: 10.1016/j.cub.2012.05.021 pmid: 22683259 |
| [77] | Preisig B. C., Riecke L., Sjerps M. J., Kösem A., Kop B. R., Bramson B., … Hervais-Adelman A. (2021). Selective modulation of interhemispheric connectivity by transcranial alternating current stimulation influences binaural integration. Proceedings of the National Academy of Sciences, 118(7), e2015488118. |
| [78] |
Qi X., Jia T., Sun B., Xia J., Wang C., Hong Z.,... Liu J. (2025). Individual differences in resting alpha band power and changes in theta band power during sustained pain are correlated with the pain-relieving efficacy of alpha HD-tACS on SM1. NeuroImage, 312, 121237.
doi: 10.1016/j.neuroimage.2025.121237 URL |
| [79] |
Radecke J. O., Fiene M., Misselhorn J., Herrmann C. S., Engel A. K., Wolters C. H., & Schneider T. R. (2023). Personalized alpha-tACS targeting left posterior parietal cortex modulates visuo-spatial attention and posterior evoked EEG activity. Brain Stimulation, 16(4), 1047-1061.
doi: 10.1016/j.brs.2023.06.013 URL |
| [80] |
Reinhart R. M. G. (2017). Disruption and rescue of interareal theta phase coupling and adaptive behavior. Proceedings of the National Academy of Sciences, 114(43), 11542-11547.
doi: 10.1073/pnas.1710257114 URL |
| [81] |
Reinhart R., & Nguyen J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nature Neuroscience, 22(5), 820-827.
doi: 10.1038/s41593-019-0371-x pmid: 30962628 |
| [82] |
Riddle J., Alexander M. L., Schiller C. E., Rubinow D. R., & Frohlich F. (2022). Reduction in left frontal alpha oscillations by transcranial alternating current stimulation in major depressive disorder is context dependent in a randomized clinical trial. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(3), 302-311.
doi: 10.1016/j.bpsc.2021.07.001 URL |
| [83] |
Riddle J., McFerren A., & Frohlich F. (2021). Causal role of cross-frequency coupling in distinct components of cognitive control. Progress in Neurobiology, 202, 102033.
doi: 10.1016/j.pneurobio.2021.102033 URL |
| [84] |
Ruffini G., Fox M. D., Ripolles O., Miranda P. C., & Pascual-Leone A. (2014). Optimization of multifocal transcranial current stimulation for weighted cortical pattern targeting from realistic modeling of electric fields. NeuroImage, 89, 216-225.
doi: 10.1016/j.neuroimage.2013.12.002 pmid: 24345389 |
| [85] |
Sadaghiani S., & Kleinschmidt A. (2016). Brain networks and α-oscillations: Structural and functional foundations of cognitive control. Trends in Cognitive Sciences, 20(11), 805-817.
doi: S1364-6613(16)30147-4 pmid: 27707588 |
| [86] |
Shan Y., Wang H., Yang Y., Wang J., Zhao W., Huang Y.,... Zhao G. (2023). Evidence of a large current of transcranial alternating current stimulation directly to deep brain regions. Molecular Psychiatry, 28(12), 5402-5410.
doi: 10.1038/s41380-023-02150-8 pmid: 37468529 |
| [87] |
Soleimani G., Kupliki R., Bodurka J., Paulus M. P., & Ekhtiari H. (2022). How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimulation, 15(2), 337-351.
doi: 10.1016/j.brs.2022.01.008 pmid: 35042056 |
| [88] |
Sun B., Zhang C., Zhang Q., Xu X., Liu J., & Yang H. (2025). Analgesic aftereffects of alpha high-definition transcranial alternating current stimulation over the DLPFC during experimental pain. NeuroImage, 317, 121332.
doi: 10.1016/j.neuroimage.2025.121332 URL |
| [89] |
Takeuchi N. (2023). Pain control based on oscillatory brain activity using transcranial alternating current stimulation: An integrative review. Frontiers in Human Neuroscience, 17, 941979.
doi: 10.3389/fnhum.2023.941979 URL |
| [90] |
Tang Y., Mo L., Peng Z., Li Y., & Zhang D. (2025). Causal enhancement of cognitive reappraisal through synchronized dorsolateral and ventrolateral prefrontal cortex activity. Emotion. Advance online publication, 25(6), 1418-1428. https://doi.org/10.1037/emo0001507
doi: 10.1037/emo0001507 URL pmid: 39977692 |
| [91] |
Tavakoli A. V., & Yun K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Frontiers in Cellular Neuroscience, 11, 214.
doi: 10.3389/fncel.2017.00214 pmid: 28928634 |
| [92] |
Van der Groen, O., Potok W., Wenderoth N., Edwards G., Mattingley J. B., & Edwards D. (2022). Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neuroscience and Biobehavioral Reviews, 138, 104702.
doi: 10.1016/j.neubiorev.2022.104702 URL |
| [93] |
Van Overwalle F., & Baetens K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: A meta-analysis. NeuroImage, 48(3), 564-584.
doi: 10.1016/j.neuroimage.2009.06.009 pmid: 19524046 |
| [94] |
Violante I. R., Alania K., Cassarà A. M., Neufeld E., Acerbo E., Carron R., … Hampshire A. (2023). Non-invasive temporal interference electrical stimulation of the human hippocampus. Nature Neuroscience, 26(11), 1994-2004.
doi: 10.1038/s41593-023-01456-8 pmid: 37857775 |
| [95] |
Wang H., Wang K., Xue Q., Peng M., Yin L., Gu X.,... Wang Y. (2022). Transcranial alternating current stimulation for treating depression: A randomized controlled trial. Brain, 145(1), 83-91.
doi: 10.1093/brain/awab252 pmid: 35353887 |
| [96] |
Wang H. X., Wang L., Zhang W. R., Xue Q., Peng M., Sun Z. C.,... Wang Y. P. (2020). Effect of Transcranial alternating current stimulation for the treatment of chronic insomnia: A randomized, double-blind, parallel-group, placebo-controlled clinical trial. Psychotherapy and Psychosomatics, 89(1), 38-47.
doi: 10.1159/000504609 URL |
| [97] |
Wei J., Alamia A., Yao Z., Huang G., Li L., Liang Z.,... Zhang Z. (2024). State-dependent tACS effects reveal the potential causal role of prestimulus alpha traveling waves in visual contrast detection. The Journal of Neuroscience, 44(27), e2023232024.
doi: 10.1523/JNEUROSCI.2023-23.2024 URL |
| [98] |
Wessel M. J., Beanato E., Popa T., Windel F., Vassiliadis P., Menoud P.,... Dzialecka P. (2023). Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nature Neuroscience, 26(11), 2005-2016.
doi: 10.1038/s41593-023-01457-7 pmid: 37857774 |
| [99] |
Wischnewski M., Alekseichuk I., & Opitz A. (2023). Neurocognitive, physiological, and biophysical effects of transcranial alternating current stimulation. Trends in Cognitive Sciences, 27(2), 189-205.
doi: 10.1016/j.tics.2022.11.013 pmid: 36543610 |
| [100] | Wischnewski M., Berger T. A., Opitz A., & Alekseichuk I. (2024). Causal functional maps of brain rhythms in working memory. Proceedings of the National Academy of Sciences, 121(14), e2318528121. |
| [101] |
Wischnewski M., Engelhardt M., Salehinejad M. A., Schutter D., Kuo M. F., & Nitsche M. A. (2019a). NMDA receptor-mediated motor cortex plasticity after 20 hz transcranial alternating current stimulation. Cerebral Cortex, 29(7), 2924-2931.
doi: 10.1093/cercor/bhy160 URL |
| [102] |
Wischnewski M., Schutter D. J., & Nitsche M. A. (2019b). Effects of beta-tACS on corticospinal excitability: A meta-analysis. Brain Stimulation, 12(6), 1381-1389.
doi: 10.1016/j.brs.2019.07.023 URL |
| [103] |
Wu L., Zhang W., Li S., Li Y., Yuan Y., Huang L.,... Wang J. (2023). Transcranial alternating current stimulation improves memory function in alzheimer's mice by ameliorating abnormal gamma oscillation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 2060-2068.
doi: 10.1109/TNSRE.2023.3265378 URL |
| [104] |
Xing M., Tadayonnejad R., MacNamara A., Ajilore O., DiGangi J., Phan K. L., … Klumpp H. (2017). Resting- state theta band connectivity and graph analysis in generalized social anxiety disorder. NeuroImage, 13, 24-32.
doi: 10.1016/S1053-8119(01)91367-9 URL |
| [105] |
Yang C., Xu Y., Feng X., Wang B., Du Y., Wang K.,... Wang Z. (2025). Transcranial temporal interference stimulation of the right globus pallidus in Parkinson's disease. Movement Disorders, 40(6), 1061-1069.
doi: 10.1002/mds.v40.6 URL |
| [106] | Zaehle T., Rach S., & Herrmann C. S. (2010). Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PloS One, 5(11), e13766. |
| [107] |
Zhang R., Ren J., & Zhang C. (2023). Efficacy of transcranial alternating current stimulation for schizophrenia treatment: A systematic review. Journal of Psychiatric Research, 168, 52-63.
doi: 10.1016/j.jpsychires.2023.10.021 pmid: 37897837 |
| [108] |
Zhang Y., Zhou Z., Zhou J., Qian Z., Lü J., Li L., & Liu Y. (2022). Temporal interference stimulation targeting right frontoparietal areas enhances working memory in healthy individuals. Frontiers in Human Neuroscience, 16, 918470.
doi: 10.3389/fnhum.2022.918470 URL |
| [109] |
Zhou J., Li D., Ye F., Liu R., Feng Y., Feng Z.,... Wang G. (2024). Effect of add-on transcranial alternating current stimulation (tACS) in major depressive disorder: A randomized controlled trial. Brain Stimulation, 17(4), 760-768.
doi: 10.1016/j.brs.2024.06.004 pmid: 38880208 |
| [1] | 高可翔, 汤煜尧, 张岳瑶, 张丹丹. 内隐情绪调节的认知神经机制[J]. 心理科学进展, 2026, 34(1): 108-122. |
| [2] | 王一峰, 唐雨竹, 肖坤辰, 荆秀娟. 持续性注意低频波动的机制与干预[J]. 心理科学进展, 2025, 33(7): 1091-1103. |
| [3] | 楚克群, 朱风书. 运动干预对攻击行为的抑制及其作用机制[J]. 心理科学进展, 2025, 33(7): 1257-1266. |
| [4] | 高伟, 李艳萍, 黄悦媛, 袁加锦. 目标与情境转换对情绪调节灵活性的作用机制[J]. 心理科学进展, 2025, 33(2): 202-211. |
| [5] | 昌思琴, 黄辰, 戴元富, 蒋长好. VR训练对轻度认知障碍老年人认知功能的影响及神经机制[J]. 心理科学进展, 2025, 33(2): 322-335. |
| [6] | 蔡嘉琳, 陈彩琦. 认知脱离综合征的特征:与注意缺陷多动障碍等障碍的比较[J]. 心理科学进展, 2025, 33(11): 1967-1982. |
| [7] | 常茜芮, 何蔚祺. 网络游戏成瘾者的情绪加工异常[J]. 心理科学进展, 2024, 32(7): 1152-1163. |
| [8] | 詹紫薇, 王梦梦, 索涛, 蒋艳菊. “一个连续过程”与“三个阶段”:抑郁青少年情绪失调的原因探析[J]. 心理科学进展, 2024, 32(6): 928-938. |
| [9] | 苏瑞, 王成志, 李昊, 马海林, 苏彦捷. 高原运动对认知功能的影响[J]. 心理科学进展, 2024, 32(5): 800-812. |
| [10] | 喻婧, 牛程程, 徐红州, 姜海鑫, 林国俊, 吴柯, 续子含. 志愿服务对老年人认知功能的改善及神经心理机制[J]. 心理科学进展, 2024, 32(3): 413-420. |
| [11] | 董婉欣, 于文汶, 谢慧, 张丹丹. 人际情绪调节的认知神经基础[J]. 心理科学进展, 2024, 32(1): 131-137. |
| [12] | 周士人, 仇秀芙, 何振宏, 张丹丹. 基于无损脑刺激的情绪调节干预[J]. 心理科学进展, 2023, 31(8): 1477-1495. |
| [13] | 叶伟豪, 于美琪, 张利会, 高琪, 傅明珠, 卢家楣. 精准的意义:负性情绪粒度的作用机制与干预[J]. 心理科学进展, 2023, 31(6): 1030-1043. |
| [14] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
| [15] | 王鑫麟, 邱晓悦, 翁旭初, 杨平. 工作记忆的神经振荡调控:基于神经振荡夹带现象[J]. 心理科学进展, 2022, 30(4): 802-816. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||