心理科学进展 ›› 2025, Vol. 33 ›› Issue (2): 322-335.doi: 10.3724/SP.J.1042.2025.0322
昌思琴1, 黄辰1, 戴元富1, 蒋长好2
收稿日期:
2024-03-20
出版日期:
2025-02-15
发布日期:
2024-12-06
通讯作者:
蒋长好, E-mail: jiangchanghao@cupes.edu.cn
基金资助:
CHANG Siqin1, HUANG Chen1, DAI Yuanfu1, JIANG Changhao2
Received:
2024-03-20
Online:
2025-02-15
Published:
2024-12-06
摘要: 轻度认知障碍(mild cognitive impairment, MCI)老年人是痴呆的高危人群, 然而其大脑仍具有可塑性。基于虚拟现实(virtual reality, VR)技术的训练干预有助于延缓MCI向痴呆的进展。VR训练能够改善MCI老年人的整体认知功能, 特别是记忆、注意和执行功能, 其干预效果受到沉浸程度、训练形式和任务内容等因素的影响。VR训练提高了MCI老年人大脑神经的活动效率, 表现为相关脑区激活程度的变化以及脑区间连通性的提高。VR训练有望成为MCI老年人认知改善的补充方法, 未来研究应明确VR干预的量效关系, 关注其长期效应, 并深入探索VR训练改善MCI老年人认知功能的潜在机制。
昌思琴, 黄辰, 戴元富, 蒋长好. (2025). VR训练对轻度认知障碍老年人认知功能的影响及神经机制. 心理科学进展 , 33(2), 322-335.
CHANG Siqin, HUANG Chen, DAI Yuanfu, JIANG Changhao. (2025). Effects of VR training on cognitive function in older adults with mild cognitive impairment and its neural mechanisms. Advances in Psychological Science, 33(2), 322-335.
[1] 边继萍, 刘晓凤, 魏利荣, 刘云, 王申. (2023). 虚拟现实技术用于轻度认知障碍患者康复的Meta分析. [2] 董宣如. (2020). [3] 霍丽娟, 郑志伟, 李瑾, 李娟. (2018). 老年人的脑可塑性: 来自认知训练的证据. [4] 田金洲, 解恒革, 秦斌, 时晶, 王荫华, 王新平, .. 王鲁宁. (2016). 中国简短认知测试在痴呆诊断中的应用指南. [5] Ahn I. S., Kim J. H., Kim S., Chung J. W., Kim H., Kang H. S., .. Kim D. K. (2009). Impairment of instrumental activities of daily living in patients with mild cognitive impairment.Psychiatry Investigation, 6(3), 180-184. [6] Amjad I., Toor H., Niazi I. K., Pervaiz S., Jochumsen M., Shafique M., .. Ahmed T. (2019). Xbox 360 Kinect cognitive games improve slowness, complexity of EEG, and cognitive functions in subjects with mild cognitive impairment: A randomized control trial.Games for Health, 8(2), 144-152. [7] Angelidis A., van der Does W., Schakel L., & Putman P. (2016). Frontal EEG theta/beta ratio as an electrophysiological marker for attentional control and its test-retest reliability.Biological Psychology, 121(Pt A), 49-52. [8] Bamodu, O., & Ye, X. M. (2013). Virtual reality and virtual reality system components.Advanced Materials Research, 765-767, 1169-1172. [9] Ban J. Y., Park H. K., & Kim S. K. (2020). Effect of glycyrrhizic acid on scopolamine-induced cognitive impairment in mice.International Neurourology Journal, 24(Suppl 1), S48-S55. [10] Belleville S., Clement F., Mellah S., Gilbert B., Fontaine F., & Gauthier S. (2011). Training-related brain plasticity in subjects at risk of developing Alzheimer's disease.Brain, 134(Pt 6), 1623-1634. [11] Brehmer Y., Rieckmann A., Bellander M., Westerberg H., Fischer H., .. Bäckman L. (2011). Neural correlates of training-related working-memory gains in old age.Neuroimage, 58(4), 1110-1120. [12] Bruderer-Hofstetter M., Rausch-Osthoff A. K., Meichtry A., Münzer T., & Niedermann K. (2018). Effective multicomponent interventions in comparison to active control and no interventions on physical capacity, cognitive function and instrumental activities of daily living in elderly people with and without mild impaired cognition - A systematic review and network meta- analysis.Ageing Research Reviews, 45, 1-14. [13] Burton R. L., O'Connell M. E., & Morgan D. G. (2018). Cognitive and neuropsychiatric correlates of functional impairment across the continuum of no cognitive impairment to dementia.Archives of Clinical Neuropsychology, 33(7), 795-807. [14] Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: The HAROLD model.Psychology and Aging, 17(1), 85-100. [15] Carrieri M., Petracca A., Lancia S., Basso Moro S., Brigadoi S., Spezialetti M., .. Quaresima V. (2016). Prefrontal cortex activation upon a demanding virtual hand-controlled task: A new frontier for neuroergonomics.Frontiers in Human Neuroscience, 10, 53. [16] Choi, W., & Lee, S. (2019). The effects of virtual kayak paddling exercise on postural balance, muscle performance, and cognitive function in older adults with mild cognitive impairment: A randomized controlled trial.Journal of Aging and Physical Activity, 27(6), 861-870. [17] Christman S., Bermudez C., Hao L., Landman B. A., Boyd B., Albert K., .. Taylor W. D. (2020). Accelerated brain aging predicts impaired cognitive performance and greater disability in geriatric but not midlife adult depression.Translational Psychiatry, 10(1), 317. [18] Ciesielska N., Sokołowski R., Mazur E., Podhorecka M., Polak-Szabela A., .. Kędziora-Kornatowska K. (2016). Is the Montreal Cognitive Assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis.Psychiatria Polska, 50(5), 1039-1052. [19] Clarke A. R., Barry R. J., Karamacoska D., & Johnstone S. J. (2019). The EEG theta/beta ratio: A marker of arousal or cognitive processing capacity? Applied Psychophysiology and Biofeedback, 44(2), 123-129. [20] Diamond, A. (2013). Executive functions.Annual Review of Psychology, 64, 135-168. [21] Doniger G. M., Beeri M. S., Bahar-Fuchs A., Gottlieb A., Tkachov A., Kenan H., .. Plotnik M. (2018). Virtual reality-based cognitive-motor training for middle-aged adults at high Alzheimer's disease risk: A randomized controlled trial.Alzheimers & Dementia, 4, 118-129. [22] Faria A. L., Andrade A., Soares L., & Badia S. B. (2016). Benefits of virtual reality based cognitive rehabilitation through simulated activities of daily living: A randomized controlled trial with stroke patients.Journal of NeuroEngineering and Rehabilitation, 13(1), 96. [23] Ferreira-Brito F., Fialho M., Virgolino A., Neves I., Miranda A. C., Sousa-Santos N., .. Santos O. (2019). Game-based interventions for neuropsychological assessment, training and rehabilitation: Which game-elements to use? A systematic review.Journal of Biomedical Informatics, 98, 103287. [24] Finnigan S., Wong A., & Read S. (2016). Defining abnormal slow EEG activity in acute ischaemic stroke: Delta/alpha ratio as an optimal QEEG index.Clinical Neurophysiology, 127(2), 1452-1459. [25] García-Betances R. I., Waldmeyer M. T. A., Fico G., & Cabrera-Umpiérrez M. F. (2015). A succinct overview of virtual reality technology use in Alzheimer's disease.Frontiers in Aging Neuroscience, 7, 80. [26] Garcia L., Kartolo A., & Méthot-Curtis E. (2012). A discussion of the use of virtual reality in dementia. In C. Eichenberg (Ed.), [27] Goumopoulos C., Skikos G., & Frounta M. (2023). Feasibility and effects of cognitive training with the COGNIPLAT game platform in elderly with mild cognitive impairment: Pilot randomized controlled trial.Games for Health Journal, 12(5), 414-425. [28] Haense C., Kalbe E., Herholz K., Hohmann C., Neumaier B., Krais R., .. Heiss W. D. (2012). Cholinergic system function and cognition in mild cognitive impairment.Neurobiology of Aging, 33(5), 867-877. [29] Hassandra M., Galanis E., Hatzigeorgiadis A., Goudas M., Mouzakidis C., Karathanasi E. M., .. Theodorakis Y. (2021). A virtual reality APP for physical and cognitive training of older people with mild cognitive impairment: Mixed methods feasibility study.JMIR Serious Games, 9(1), e24170. [30] Herold F., Hamacher D., Schega L., & Müller N. G. (2018). Thinking while moving or moving while thinking - Concepts of motor-cognitive training for cognitive performance enhancement.Frontiers in Aging Neuroscience, 10, 228. [31] Hu M., Wu X., Shu X., Hu H., Chen Q., Peng L., .. Feng H. (2021). Effects of computerised cognitive training on cognitive impairment: A meta-analysis.Journal of Neurology, 268(5), 1680-1688. [32] Huang X., Zhao X., Li B., Cai Y., Zhang S., Wan Q., .. Yu F. (2022). Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia: A systematic review and network meta-analysis.Journal of Sport and Health Science, 11(2), 212-223. [33] Iliadou P., Paliokas I., Zygouris S., Lazarou E., Votis K., Tzovaras D., .. Tsolaki M. (2021). A comparison of traditional and serious game-based digital markers of cognition in older adults with mild cognitive impairment and healthy controls.Journal of Alzheimers Disease, 79(4), 1747-1759. [34] Jahn F. S., Skovbye M., Obenhausen K., Jespersen A. E., & Miskowiak K. W. (2021). Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials.Psychiatry Research, 300, 113928. [35] Kang J. M., Kim N., Lee S. Y., Woo S. K., Park G., Yeon B. K., .. Cho S. J. (2021). Effect of cognitive training in fully immersive virtual reality on visuospatial function and frontal-occipital functional connectivity in predementia: Randomized controlled trial.Journal of Medical Internet Research, 23(5), e24526. [36] Kennedy R. S., Fowlkes J. E., & Lilienthal M. G. (1993). Postural and performance changes following exposures to flight simulators.Aviation Space and Environmental Medicine, 64(10), 912-920 [37] Kwan R. Y. C., Liu J. Y. W., Fong K. N. K., Qin J., Leung P. K., Sin O. S. K., .. Lai, C. K. Y. (2021). Feasibility and effects of virtual reality motor-cognitive training in community-dwelling older people with cognitive frailty: Pilot randomized controlled trial.JMIR Serious Games, 9(3), e28400. [38] Lai F. H., Tong A. Y., Fung A. W., Yu K. K., Wong S. S., Lai C. Y., .. Man D. W. (2022). Information communication technology as instrumental activities of daily living for aging-in-place in Chinese older adults with and without cognitive impairment: The validation study of advanced instrumental activities of daily living scale.Frontiers in Neurology, 13, 746640. [39] Lauenroth A., Ioannidis A. E., & Teichmann B. (2016). Influence of combined physical and cognitive training on cognition: A systematic review.BMC Geriatrics, 16, 141. [40] Lejko N., Larabi D. I., Herrmann C. S., Aleman A., & Ćurčić-Blake B. (2020). Alpha power and functional connectivity in cognitive decline: A systematic review and meta-analysis.Journal of Alzheimers Disease, 78(3), 1047-1088. [41] Li X., Li K., Zhu Z., Jin Y., Gao Z., Xu J., .. Zhang L. (2022). Exercise regulates the metabolic homeostasis of methamphetamine dependence.Metabolites, 12(7), 606. [42] Liao Y., Chen I., Lin Y., Chen Y., & Hsu W. (2019). Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: A randomized control trial.Frontiers in Aging Neuroscience, 11, 162. [43] Liao Y., Tseng H., Lin Y., Wang C., & Hsu W. (2020). Using virtual reality-based training to improve cognitive function, instrumental activities of daily living and neural efficiency in older adults with mild cognitive impairment.European Journal of Physical and Rehabilitation Medicine, 56(1), 47-57. [44] Liu Z., He Z., Yuan J., Lin H., Fu C., Zhang Y., .. Jia J. (2022). Application of immersive virtual-reality-based puzzle games in elderly patients with post-stroke cognitive impairment: A pilot study.Brain Sciences, 13(1), 79. [45] Llinás-Reglá J., Vilalta-Franch J., Lopez-Pousa S., Calvo-Perxas L., Torrents Rodas D., .. Garre-Olmo J. (2017). The trail making test: Association with other neuropsychological measures and normative values for adults aged 55 years and older from a Spanish-speaking population-based sample.Assessment, 24(2), 183-196. [46] Lustig C., Shah P., Seidler R., & Reuter-Lorenz P. A. (2009). Aging, training, and the brain: A review and future directions.Neuropsychology Review, 19(4), 504-522. [47] Lv H., Wang Z., Tong E., Williams L. M., Zaharchuk G., Zeineh M., .. Wintermark M. (2018). Resting-state functional MRI: Everything that nonexperts have always wanted to know.American Journal of Neuroradiology, 39(8), 1390-1399. [48] Maeng S., Hong J. P., Kim W., Kim H., Cho S., Kang J. M., .. Cho S. (2021). Effects of virtual reality-based cognitive training in the elderly with and without mild cognitive impairment.Psychiatry Investigation, 18(7), 619-627. [49] Mirelman A., Rochester L., Maidan I., Del Din S., Alcock L., Nieuwhof F., .. Hausdorff J. M. (2016). Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): A randomised controlled trial.Lancet, 388(10050), 1170-1182. [50] Mondellini M., Arlati S., Gapeyeva H., Lees K., Märitz I., Pizzagalli S. L., .. Teder-Braschinsky A. (2022). User experience during an immersive virtual reality-based cognitive task: A comparison between Estonian and Italian older adults with MCI.Sensors, 22(21), 8249. [51] Monllor P., Cervera-Ferri A., Lloret M. A., Esteve D., Lopez B., Leon J. L., .. Lloret A. (2021). Electroencephalography as a non-invasive biomarker of Alzheimer's disease: A forgotten candidate to substitute CSF molecules? International Journal of Molecular Sciences, 22(19), 10889. [52] Moulaei K., Sharifi H., Bahaadinbeigy K., & Dinari F. (2024). Efficacy of virtual reality-based training programs and games on the improvement of cognitive disorders in patients: A systematic review and meta-analysis.BMC Psychiatry, 24(1), 116. [53] Mrakic-Sposta S., Di Santo S. G., Franchini F., Arlati S., Zangiacomi A., Greci L., .. Vezzoli A. (2018). Effects of combined physical and cognitive virtual reality-based training on cognitive impairment and oxidative stress in MCI patients: A pilot study.Frontiers in Aging Neuroscience, 10, 282. [54] Park, J. H. (2022). Effects of virtual reality-based spatial cognitive training on hippocampal function of older adults with mild cognitive impairment.International Psychogeriatrics, 34(2), 157-163. [55] Park, J. H., & Park, J. H. (2018). Does cognition-specific computer training have better clinical outcomes than non- specific computer training? A single-blind, randomized controlled trial.Clinical Rehabilitation, 32(2), 213-222. [56] Park J. H., Liao Y., Kim D. R., Song S., Lim J. H., Park H., .. Park K. W. (2020). Feasibility and tolerability of a culture-based virtual reality (VR) training program in patients with mild cognitive impairment: A randomized controlled pilot study.International Journal of Environmental Research and Public Health, 17(9), 3030. [57] Park J. S., Jung Y. J., & Lee G. (2020). Virtual reality-based cognitive-motor rehabilitation in older adults with mild cognitive impairment: A randomized controlled study on motivation and cognitive function.Healthcare, 8(3), 335. [58] Perry R. J., Watson P., & Hodges J. R. (2000). The nature and staging of attention dysfunction in early (minimal and mild) Alzheimer's disease: Relationship to episodic and semantic memory impairment.Neuropsychologia, 38(3), 252-271. [59] Petersen R. C.(Ed.). (2003). Mild cognitive impairment: aging to Alzheimer's disease Oxford University Press aging to Alzheimer's disease. Oxford University Press. [60] Petersen R. C., Lopez O., Armstrong M. J., Getchius T., Ganguli M., Gloss D., .. Rae-Grant A. (2018). Practice guideline update summary: Mild cognitive impairment: Report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology.Neurology, 90(3), 126-135. [61] Potmesilova P., Potmesil M., & Mareckova J. (2023). Basal stimulation as developmental support in at-risk newborns: A literature review.Children, 10(2), 389. [62] Prichep L. S., John E. R., Ferris S. H., Rausch L., Fang Z., Cancro R., .. Reisberg B. (2006). Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging.Neurobiology of Aging, 27(3), 471-481. [63] Putman P., Verkuil B., Arias-Garcia E., Pantazi I., & van Schie C. (2014). EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention.Cognitive Affective & Behavioral Neuroscience, 14(2), 782-791. [64] Qu J., Zhang Y., & Bu L. (2023). Functional near-infrared spectroscopy in the assessment of rehabilitation efficacy of virtual reality products for people with cognitive disorders.International Journal of Industrial Ergonomics, 97, 103500. [65] Raimondo L., Oliveira Ĺ., Heij J., Priovoulos N., Kundu P., Leoni R. F., .. van der Zwaag, W. (2021). Advances in resting state fMRI acquisitions for functional connectomics.Neuroimage, 243, 118503. [66] Reason, J. T. (1978). Motion sickness adaptation: A neural mismatch model.Journal of The Royal Society of Medicine, 71(11), 819-829. [67] Reuter-Lorenz, P. (2002). New visions of the aging mind and brain.Trends in Cognitive Sciences, 6(9), 394. [68] Roberts R. O., Knopman D. S., Mielke M. M., Cha R. H., Pankratz V. S., Christianson T. J., .. Petersen R. C. (2014). Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal.Neurology, 82(4), 317-325. [69] Salatino A., Zavattaro C., Gammeri R., Cirillo E., Piatti M. L., Pyasik M., .. Ricci R. (2023). Virtual reality rehabilitation for unilateral spatial neglect: A systematic review of immersive, semi-immersive and non-immersive techniques.Neuroscience and Biobehavioral Reviews, 152, 105248. [70] Sánchez-Moguel S. M., Alatorre-Cruz G. C., Silva-Pereyra J., González-Salinas S., Sanchez-Lopez J., Otero-Ojeda G. A., .. Fernández T. (2017). Two different populations within the healthy elderly: Lack of conflict detection in those at risk of cognitive decline.Frontiers in Human Neuroscience, 11, 658. [71] Stern Y., Habeck C., Moeller J., Scarmeas N., Anderson K. E., Hilton H. J., .. van Heertum R. (2005). Brain networks associated with cognitive reserve in healthy young and old adults.Cerebral Cortex, 15(4), 394-402. [72] Suffczynski P., Kalitzin S., Pfurtscheller G., & Lopes da Silva, F. H. (2001). Computational model of thalamo- cortical networks: Dynamical control of alpha rhythms in relation to focal attention.International Journal of Psychophysiology, 43(1), 25-40. [73] Thapa N., Park H. J., Yang J. G., Son H., Jang M., Lee J., .. Park H. (2020). The effect of a virtual reality-based intervention program on cognition in older adults with mild cognitive impairment: A randomized control trial.Journal of Clinical Medicine, 9(5), 1283. [74] Tian M., Cai Y., & Zhang J. (2023). The impact of virtual reality-based products on mild cognitive impairment senior subjects: An experimental study using multiple sources of data.Applied Sciences-Basel, 13(4), 2372. [75] Torpil B., Şahin S., Pekçetin S., & Uyanık M. (2021). The effectiveness of a virtual reality-based intervention on cognitive functions in older adults with mild cognitive impairment: A single-blind, randomized controlled trial.Games for Health Journal, 10(2), 109-114. [76] Tortora C., Di Crosta A., La Malva P., Prete G., Ceccato I., Mammarella N., .. Palumbo R. (2024). Virtual reality and cognitive rehabilitation for older adults with mild cognitive impairment: A systematic review.Ageing Research Reviews, 93, 102146. [77] Tseng, K. C., & Giau, D. T. N. (2022). A feasibility study of using virtual reality as a pre-occupancy evaluation tool for the elderly.Automation in Construction, 134, 104037. [78] Tuena C., Pedroli E., Trimarchi P. D., Gallucci A., Chiappini M., Goulene K., .. Stramba-Badiale M. (2020). Usability issues of clinical and research applications of virtual reality in older people: A systematic review.Frontiers in Human Neuroscience, 14, 93. [79] Van Son D., De Blasio F. M., Fogarty J. S., Angelidis A., Barry R. J., .. Putman P. (2019). Frontal EEG theta/beta ratio during mind wandering episodes.Biological Psychology, 140, 19-27. [80] Vermeij A., Kessels R., Heskamp L., Simons E., Dautzenberg P., .. Claassen J. (2017). Prefrontal activation may predict working-memory training gain in normal aging and mild cognitive impairment.Brain Imaging and Behavior, 11(1), 141-154. [81] Walsh E. I., Smith L., Northey J., Rattray B., & Cherbuin N. (2020). Towards an understanding of the physical activity-BDNF-cognition triumvirate: A review of associations and dosage.Ageing Research Reviews, 60, 101044. [82] Winblad B., Palmer K., Kivipelto M., Jelic V., Fratiglioni L., Wahlund L. O., .. Petersen R. C. (2004). Mild cognitive impairment - beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment.Journal of Internal Medicine, 256(3), 240-246. [83] Xie J., Zhang W., Shen Y., Wei W., Bai Y., Zhang G., .. Wang M. (2023). Abnormal spontaneous brain activity in females with autism spectrum disorders.Frontiers in Neuroscience, 17, 1189087. [84] Yan M., Zhao Y., Meng Q., Wang S., Ding Y., Liu Q., .. Chen L. (2022). Effects of virtual reality combined cognitive and physical interventions on cognitive function in older adults with mild cognitive impairment: A systematic review and meta-analysis.Ageing Research Reviews, 81, 101708. [85] Yang J., Thapa N., Park H., Bae S., Park K. W., Park J., .. Park H. (2022). Virtual reality and exercise training enhance brain, cognitive, and physical health in older adults with mild cognitive impairment.International Journal of Environmental Research and Public Health, 19(20), 13300. [86] You S. H., Jang S. H., Kim Y. H., Hallett M., Ahn S. H., Kwon Y. H., .. Lee M. Y. (2005). Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: An experimenter-blind randomized study.Stroke, 36(6), 1166-1171. [87] Yu D., Li X., & Lai F. H. (2023). The effect of virtual reality on executive function in older adults with mild cognitive impairment: A systematic review and meta-analysis.Aging & Mental Health, 27(4), 663-673. [88] Zhao T., Huang H., Li J., Shen J., Zhou C., Xiao R., .. Ma W. (2023). Association between erythrocyte membrane fatty acids and gut bacteria in obesity-related cognitive dysfunction.AMB Express, 13(1), 148. [89] Zhu K., Zhang Q., He B., Huang M., Lin R., .. Li H. (2022). Immersive virtual reality-based cognitive intervention for the improvement of cognitive function, depression, and perceived stress in older adults with mild cognitive impairment and mild dementia: Pilot pre-post study.JMIR Serious Games, 10(1), e32117. [90] Zhu S., Sui Y., Shen Y., Zhu Y., Ali N., Guo C., .. Wang T. (2021). Effects of virtual reality intervention on cognition and motor function in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis.Frontiers in Aging Neuroscience, 13, 586999. |
[1] | 刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预[J]. 心理科学进展, 2024, 32(6): 873-885. |
[2] | 苏瑞, 王成志, 李昊, 马海林, 苏彦捷. 高原运动对认知功能的影响[J]. 心理科学进展, 2024, 32(5): 800-812. |
[3] | 喻婧, 牛程程, 徐红州, 姜海鑫, 林国俊, 吴柯, 续子含. 志愿服务对老年人认知功能的改善及神经心理机制[J]. 心理科学进展, 2024, 32(3): 413-420. |
[4] | 杨伟平, 李睿智, 李胜楠, 林金飞, 任艳娜. 视听知觉训练对老年人认知能力的促进及其机制[J]. 心理科学进展, 2024, 32(2): 318-329. |
[5] | 韩明, 蒯曙光. 面向心理学的虚拟现实实验开发工具[J]. 心理科学进展, 2024, 32(11): 1800-1813. |
[6] | 陆晓伟, 郭治斌, 程雨, 沈洁, 贵文君, 张林. 老年人面孔信任评价的积极效应及其发生机制[J]. 心理科学进展, 2023, 31(8): 1496-1503. |
[7] | 张才蕙, 叶渐桥, 杨静. 汉语作为第二语言学习的脑机制[J]. 心理科学进展, 2023, 31(5): 747-758. |
[8] | 周广方, 金花. 精准功能磁共振成像揭示个体化脑功能网络组织[J]. 心理科学进展, 2023, 31(11): 2078-2091. |
[9] | 杜宇飞, 欧阳辉月, 余林. 隔代抚养与老年人抑郁水平:一项基于东西方文化背景的元分析[J]. 心理科学进展, 2022, 30(9): 1981-1992. |
[10] | 张思源, 李雪冰. 不同频率经颅交流电刺激在精神疾病中的应用[J]. 心理科学进展, 2022, 30(9): 2053-2066. |
[11] | 徐潞杰, 张镇. 老年人的消极交往与心理健康[J]. 心理科学进展, 2021, 29(8): 1472-1483. |
[12] | 陈浩彬, 汪凤炎. 老年人的智慧[J]. 心理科学进展, 2021, 29(5): 885-893. |
[13] | 叶静, 张戌凡. 老年人心理韧性与幸福感的关系:一项元分析[J]. 心理科学进展, 2021, 29(2): 202-217. |
[14] | 陈娟, 何昊, 杨丹丹, 关青. 重复经颅磁刺激对轻度认知障碍的干预效果[J]. 心理科学进展, 2021, 29(11): 2002-2012. |
[15] | 钱柳, 汝涛涛, 罗雪, 牛佳兴, 马永骏, 周国富. 睡眠限制对认知功能的影响及其潜在作用机制[J]. 心理科学进展, 2020, 28(9): 1493-1507. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||