心理科学进展 ›› 2024, Vol. 32 ›› Issue (6): 873-885.doi: 10.3724/SP.J.1042.2024.00873
• 研究构想 • 下一篇
刘海宁1(), 董现玲2, 刘海虹1, 刘艳丽2, 李现文3
收稿日期:
2023-10-13
出版日期:
2024-06-15
发布日期:
2024-04-07
通讯作者:
刘海宁, E-mail: liuhn0401@sina.com
基金资助:
LIU Hai-ning1(), DONG Xian-ling2, LIU Hai-hon1, LIU Yan-li2, LI Xian-wen3
Received:
2023-10-13
Online:
2024-06-15
Published:
2024-04-07
摘要:
阿尔茨海默病具有极高的发病率和致死率。遗忘型轻度认知障碍(Amnestic Mild Cognitive Impairment, aMCI)作为临床前驱期, 探究其形成和发展机制有助于预防阿尔茨海默病的发生。现有研究显示, 多个执行域缺陷与aMCI记忆衰退密切相关, 但尚未回答何种执行域是关键致病因子、关键干预治疗靶标等科学问题。为突破以往研究将执行功能视作整体抑或割裂元素的局限性, 本研究拟从执行功能结构全貌着眼, 在提出aMCI执行功能与记忆损害关系假说的基础上, 利用脑电技术系统考察aMCI抑制、刷新和转换三种执行功能子成分的时域、时频和动态脑网络特征; 并结合三维卷积神经网络筛选、识别执行功能缺陷的特异性神经靶标, 探索将抑制域相关神经标记物加入aMCI早期识别的可能性; 最后, 通过纵向因果设计分析不同靶向数字干预对aMCI患者的训练效果及神经基础, 以揭示抑制域相关额顶控制网络在干预中的重要作用。本研究有望从计算认知神经视角阐明抑制是aMCI执行功能缺损和干预的认知新靶点, 进而为aMCI早期识别和制定精准化诊疗方案提供循证依据。
中图分类号:
刘海宁, 董现玲, 刘海虹, 刘艳丽, 李现文. (2024). 老年遗忘型轻度认知障碍执行功能的神经机制及数字干预. 心理科学进展 , 32(6), 873-885.
LIU Hai-ning, DONG Xian-ling, LIU Hai-hon, LIU Yan-li, LI Xian-wen. (2024). Neural mechanisms and digital promotion of executive function in older adults with amnestic mild cognitive impairment. Advances in Psychological Science, 32(6), 873-885.
作者(年份) | ERP范式 | ERP成分 | 电极位置 | 波幅/能量效应 | 潜伏期效应 |
---|---|---|---|---|---|
抑制 | |||||
Chiang et al. (2018) | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, Pz | NS | N200: aMCI > HC P300: aMCI > HC |
Mudaret al. ( | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, CPz | NS | N200:aMCI > HC P300: NS |
Lydia T. Nguyen et al. ( | 语义 Go/no-go | Theta; Alpha 1; Alpha 2 | Fz, F1, F2, Cz, C1, C2, Pz, P1, P2 | Theta: aMCI< HC Alpha 1: NS Alpha 2: NS | / |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200 (Cz): aMCI < HC; P300: NS | NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300; PSW | Fz, Cz, Pz | N200: aMCI<HC P300: NS; PSW (Cz): sd-aMCI> md-aMCI, HC | N200: Go Md-aMCI> HC; P300: NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Cz, Pz | NS | N200: No-go aMCI>HC(Cz); P300: Go aMCI>HC(Pz) |
Lopez Zunini et al. ( | Go/no-go | N200; P300 | Fz, FCz, Cz, CPz, Pz | N200: NS; P300: aMCI < HC | NS |
Gu et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200: No-go md-aMCI< HC(Fz, Pz) sd-aMCI< HC(Pz) N200: Go md-aMCI< HC(all) P300: NS | NS |
Rabi et al. ( | Go/no-go | N200; P300 | FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2 | N200: NS; P300: aMCI < HC | NS |
刷新 | |||||
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | aMCI < HC (CPz, CP2, P1, P2) | NS |
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | 0-back: aMCI< HC(P1) 1-back: md-aMCI< HC (CP2, P1, Pz, P2) | NS |
Gu et al. ( | N-back | P300 | P1, Pz, P2 | 0-back: md-aMCI< HC(P1,P2) 1-back: md-aMCI< HC(all) | NS |
Zunini et al. ( | N-back | P200; N200; P300 | Fz, FCz, Cz, CPz, Pz | P200: NS N200: NS P300: aMCI< HC(all) | P200:aMCI>HC (CPz,Pz); N200:aMCI>HC(all); P300: NS |
Francisco J. Fraga et al. ( | N-back | Theta;Alpha; Beta;Gamma | C3, F4, Fz | Theta: NS Alpha: aMCI< HC Beta: aMCI< HC Gamma: NS | / |
转换 | |||||
Tsai et al. ( | Task-switching | P300 | Fz, Cz, Pz | aMCI < HC | aMCI > HC |
表1 遗忘型轻度认知障碍执行功能脑电研究简概
作者(年份) | ERP范式 | ERP成分 | 电极位置 | 波幅/能量效应 | 潜伏期效应 |
---|---|---|---|---|---|
抑制 | |||||
Chiang et al. (2018) | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, Pz | NS | N200: aMCI > HC P300: aMCI > HC |
Mudaret al. ( | 语义 Go/no-go | N200; P300 | N200: Fz, FCz, Cz; P300: FCz, Cz, CPz | NS | N200:aMCI > HC P300: NS |
Lydia T. Nguyen et al. ( | 语义 Go/no-go | Theta; Alpha 1; Alpha 2 | Fz, F1, F2, Cz, C1, C2, Pz, P1, P2 | Theta: aMCI< HC Alpha 1: NS Alpha 2: NS | / |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200 (Cz): aMCI < HC; P300: NS | NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300; PSW | Fz, Cz, Pz | N200: aMCI<HC P300: NS; PSW (Cz): sd-aMCI> md-aMCI, HC | N200: Go Md-aMCI> HC; P300: NS |
Cid-Fernández et al. ( | Go/no-go | N200; P300 | Cz, Pz | NS | N200: No-go aMCI>HC(Cz); P300: Go aMCI>HC(Pz) |
Lopez Zunini et al. ( | Go/no-go | N200; P300 | Fz, FCz, Cz, CPz, Pz | N200: NS; P300: aMCI < HC | NS |
Gu et al. ( | Go/no-go | N200; P300 | Fz, Cz, Pz | N200: No-go md-aMCI< HC(Fz, Pz) sd-aMCI< HC(Pz) N200: Go md-aMCI< HC(all) P300: NS | NS |
Rabi et al. ( | Go/no-go | N200; P300 | FC1, FCz, FC2, C1, Cz, C2, CP1, CPz, CP2 | N200: NS; P300: aMCI < HC | NS |
刷新 | |||||
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | aMCI < HC (CPz, CP2, P1, P2) | NS |
Gu et al. ( | N-back | P300 | CP1, CPz, CP2, P1, Pz, P2 | 0-back: aMCI< HC(P1) 1-back: md-aMCI< HC (CP2, P1, Pz, P2) | NS |
Gu et al. ( | N-back | P300 | P1, Pz, P2 | 0-back: md-aMCI< HC(P1,P2) 1-back: md-aMCI< HC(all) | NS |
Zunini et al. ( | N-back | P200; N200; P300 | Fz, FCz, Cz, CPz, Pz | P200: NS N200: NS P300: aMCI< HC(all) | P200:aMCI>HC (CPz,Pz); N200:aMCI>HC(all); P300: NS |
Francisco J. Fraga et al. ( | N-back | Theta;Alpha; Beta;Gamma | C3, F4, Fz | Theta: NS Alpha: aMCI< HC Beta: aMCI< HC Gamma: NS | / |
转换 | |||||
Tsai et al. ( | Task-switching | P300 | Fz, Cz, Pz | aMCI < HC | aMCI > HC |
[1] | 区健新, 吴寅, 刘金婷, 李红. (2020). 计算精神病学:抑郁症研究和临床应用的新视角. 心理科学进展, 28(01), 111−127. |
[2] | 张军鹏, 施玉杰, 蒋睿, 董静静, 邱昌建. (2023). 基于脑电信号的认知功能障碍识别与分类进展综述. 计算机应用, 43(10), 3297−3308. |
[3] | Anderson N. D. (2019). State of the science on mild cognitive impairment (MCI). CNS Spectrums, 24(1), 78−87. |
[4] | Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., ... Gazzaley A. (2013). Video game training enhances cognitive control in older adults. Nature, 501(7465), 97−101. |
[5] | Babiloni C., Arakaki X., Azami H., Bennys K., Blinowska K., Bonanni L., ... Guntekin B. (2021). Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimers & Dementia, 17(9), 1528−1553. |
[6] | Baddeley A. D., Bressi S., Sala S. D., Logie R. H., & Spinnler H. (1992). The decline of working memory in Alzheimer's disease: A longitudinal study. Brain, 114(Pt 6), 2521−2542. |
[7] | Blair C. (2016). Developmental Science and Executive Function. Current Directions in Psychological Science, 25(1), 3−7. |
[8] | Bondi M. W., Edmonds E. C., & Salmon D. P. (2017). Alzheimer's disease: Past, present, and future. Journal of the International Neuropsychological Society, 23(9-10), 818−831. |
[9] | Bull R., & Scerif G. (2001). Executive functioning as a predictor of children's mathematics ability: Inhibition, switching, and working memory. Developmental Neuropsychology, 19(3), 273−293. |
[10] | Chainay H., Joubert C., & Massol S. (2021). Behavioural and ERP effects of cognitive and combined cognitive and physical training on working memory and executive function in healthy older adults. Advances in Cognitive Psychology, 17(1), 58−69. |
[11] | Chatzikostopoulos A., Moraitou D., Tsolaki M., Masoura E., Papantoniou G., Sofologi M., ... Papatzikis E. (2022). Episodic memory in amnestic mild cognitive impairment (aMCI) and Alzheimer's disease dementia (ADD): Using the "doors and people" tool to differentiate between early aMCI-Late aMCI-Mild ADD diagnostic groups. Diagnostics (Basel), 12(7), 1768. |
[12] | Chiang H. S., Spence J. S., Kraut M. A., & Mudar R. A. (2018). Age effects on event-related potentials in individuals with amnestic Mild Cognitive Impairment during semantic categorization Go/NoGo tasks. Neuroscience Letters, 670, 19−21. |
[13] | Cid-Fernández S., Lindín M., & Díaz F. (2014). Effects of amnestic mild cognitive impairment on N2 and P3 Go/NoGo ERP components. Journal of Alzheimers Disease, 38(2), 295−306. |
[14] | Cid-Fernández S., Lindín M., & Díaz F. (2017). Neurocognitive and behavioral indexes for identifying the amnestic subtypes of mild cognitive impairment. Journal of Alzheimers Disease, 60(2), 633−649. |
[15] | da Costa Armentano C. G., Porto C. S., Nitrini R., & Dozzi Brucki S. M. (2013). Ecological evaluation of executive functions in mild cognitive impairment and Alzheimer disease. Alzheimer Disease & Associated Disorders, 27(2), 95−101. |
[16] | De Wit L., Marsiske M., O'Shea D., Kessels R. P. C., Kurasz A. M., DeFeis B., ... Smith G. E. (2021). Procedural learning in individuals with amnestic mild cognitive impairment and Alzheimer's dementia: A systematic review and meta-analysis. Neuropsychology Reveiw, 31(1), 103−114. |
[17] | Domhardt M., Steubl L., Boettcher J., Buntrock C., Karyotaki E., Ebert D. D., ... Baumeister H. (2021). Mediators and mechanisms of change in internet- and mobile-based interventions for depression: A systematic review. Clinical Psychology Reveiw, 83, 101953. |
[18] | Fields E. C., & Kuperberg G. R. (2020). Having your cake and eating it too: Flexibility and power with mass univariate statistics for ERP data. Psychophysiology, 57(2), e13468. |
[19] | Fraga F. J., Ferreira L. A., Falk T. H., Johns E., & Phillips N. D. (2017). Event-related synchronisation responses to N-back memory tasks discriminate between healthy ageing, mild cognitive impairment, and mild Alzheimer's disease. New Orleans, LA. |
[20] | Friedman N. P., & Robbins T. W. (2022). The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology, 47(1), 72−89. |
[21] | Gauthier S., Reisberg B., Zaudig M., Petersen R. C., Ritchie K., Broich K., ... Winblad B. (2006). Mild cognitive impairment. Lancet, 367(9518), 1262−1270. |
[22] | Gu L., Chen J., Gao L., Shu H., Wang Z., Liu D., ... Zhang Z. (2019). Deficits of visuospatial working memory and executive function in single- versus multiple-domain amnestic mild cognitive impairment: A combined ERP and sLORETA study. Clinical Neurophysiology, 130(5), 739−751. |
[23] |
Gu L. H., Chen J., Gao L. J., Shu H., Wang Z., Liu D., ... Zhang Z. J. (2017). The effect of Apolipoprotein E ε4 (APOE ε4) on visuospatial working memory in healthy elderly and amnestic mild cognitive impairment patients: An event-related potentials study. Frontiers in Aging Neuroscience, 9, 145.
doi: 10.3389/fnagi.2017.00145 pmid: 28567013 |
[24] | Gu L. H., & Zhang Z. J. (2017). Exploring potential electrophysiological biomarkers in mild cognitive impairment: A systematic review and meta-analysis of event-related potential studies. Journal of Alzheimers Disease, 58(4), 1283−1292. |
[25] | Guo Q. H., Zhou B., Zhao Q. H., Wang B., & Hong Z. (2012). Memory and Executive Screening (MES): A brief cognitive test for detecting mild cognitive impairment. BMC Neurology, 12(1), 119. |
[26] | Hillary F. G., & Grafman J. H. (2017). Injured brains and adaptive networks: The benefits and costs of hyperconnectivity. Trends in Cognitive Sciences, 21(5), 385−401. |
[27] | Holmes E. A., Ghaderi A., Harmer C. J., Ramchandani P. G., Cuijpers P., Morrison A. P., ... Craske M. G. (2018). The Lancet Psychiatry Commission on psychological treatments research in tomorrow's science. Lancet Psychiatry, 5(3), 237−286. |
[28] | Huang J. (2023). Functional and effective connectivity based classification and prediction of Alzheimer’s disease. North Carolina State University. |
[29] | Iachini T., Ruotolo F., Iavarone A., Mazzi M. C., & Ruggiero G. (2021). From aMCI to AD: The role of visuo-spatial memory span and executive functions in egocentric and allocentric spatial impairments. Brain Sciences, 11(11), 1536. |
[30] | Jia J., Wei C., Chen S., Li F., Tang Y., Qin W., ... Gauthier S. (2018). The cost of Alzheimer's disease in China and re-estimation of costs worldwide. Alzheimers & Dementia, 14(4), 483−491. |
[31] | Kappenman E. S., MacNamara A., & Proudfit G. H. (2015). Electrocortical evidence for rapid allocation of attention to threat in the dot-probe task. Social Cognitive and Affective Neuroscience, 10(4), 577−583. |
[32] | Karr J. E., Areshenkoff C. N., Rast P., Hofer S. M., Iverson G. L., & Garcia-Barrera M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 1147−1185. |
[33] | Kim J. G., Kim H., Hwang J., Kang S. H., Lee C. N., Woo J., ... Park K. W. (2022). Differentiating amnestic from non-amnestic mild cognitive impairment subtypes using graph theoretical measures of electroencephalography. Scientific Reports, 12(1), 6219. |
[34] | Kollins S. H., DeLoss D. J., Cañadas E., Lutz J., Findling R. L., Keefe R. S. E., ... Faraone S. V. (2020). A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): A randomised controlled trial. Lancet Digital Health, 2(4), Article e168−e178. |
[35] | Krumpe T., Scharinger C., Rosenstiel W., Gerjets P., & Spüler M. (2018). Unity and diversity in working memory load: Evidence for the separability of the executive functions updating and inhibition using machine learning. Biological Psychology, 139, 163−172. |
[36] |
Kumar N., & Michmizos K. P. (2022). A neurophysiologically interpretable deep neural network predicts complex movement components from brain activity. Scientific Reports, 12(1), 1101.
doi: 10.1038/s41598-022-05079-0 pmid: 35058514 |
[37] | Li J., Broster L. S., Jicha G. A., Munro N. B., Schmitt F. A., Abner E., ... Jiang Y. (2017). A cognitive electrophysiological signature differentiates amnestic mild cognitive impairment from normal aging. Alzheimer's Research & Therapy, 9(1), 3. |
[38] | López Zunini R. A., Knoefel F., Lord C., Breau M., Sweet L., Goubran R., ... Taler V. (2016). P300 amplitude alterations during inhibitory control in persons with Mild Cognitive Impairment. Brain Research, 1646, 241−248. |
[39] | López Zunini R. A., Knoefel F., Lord C., Dzuali F., Breau M., Sweet L., ... Taler V. (2016). Event-related potentials elicited during working memory are altered in mild cognitive impairment. International Journal of Psychophysiology, 109, 1−8. |
[40] | Marks D. F. (2019). I am conscious, therefore, I am: Imagery, affect, action, and a general theory of behavior. Brain Science, 9(5), 107. |
[41] | May K. E., & Kana R. K. (2020). Frontoparietal network in executive functioning in autism spectrum disorder. Autism Research, 13(10), 1762−1777. |
[42] | Moshe I., Terhorst Y., Philippi P., Domhardt M., Cuijpers P., Cristea I., ... Sander L. B. (2021). Digital interventions for the treatment of depression: A meta-analytic review. Psychological Bulletin, 147(8), 749−786. |
[43] | Mudar R. A., Chiang H. S., Eroh J., Nguyen L. T., Maguire M. J., Spence J. S., ... Hart J. (2016). The effects of amnestic mild cognitive impairment on go/nogo semantic categorization task performance and event-related potentials. Journal of Alzheimers Disease, 50(2), 577−590. |
[44] | Musaeus C. S., Engedal K., Høgh P., Jelic V., Mørup M., Naik M., ... Andersen B. B. (2018). EEG theta power is an early marker of cognitive decline in dementia due to Alzheimer's disease. Journal of Alzheimers Disease, 64(4), 1359−1371. |
[45] | Nguyen L. T., Shende S. A., Rackley A., Chapman S. B., & Mudar R. A. (2018). Strategy-based cognitive training effects on event-related neural oscillations in amnestic mild cognitive impairment. Alzheimer's & Dementia, 14(7), 1067. |
[46] | Panza F., Frisardi V., Capurso C., D'Introno A., Colacicco A. M., Imbimbo B. P., ... Solfrizzi V. (2010). Late-life depression, mild cognitive impairment, and dementia: Possible continuum? American Journal of Geriatric Psychiatry, 18(2), 98−116. |
[47] | Petersen R. C., Lopez O., Armstrong M. J., Getchius T. S. D., Ganguli M., Gloss D., ... Rae-Grant A. (2018). Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 90(3), 126−135. |
[48] | Petersen R. C., Smith G. E., Waring S. C., Ivnik R. J., Tangalos E. G., & Kokmen E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303−308. |
[49] | Rabi R., Vasquez B. P., Alain C., Hasher L., Belleville S., & Anderson N. D. (2020). Inhibitory control deficits in individuals with amnestic mild cognitive impairment: A meta-analysis. Neuropsychology Reveiw, 30(1), 97−125. |
[50] | Schmeichel B. J. (2007). Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. Journal of Experimental Psychology- Genaral, 136(2), 241−255. |
[51] | Sherman D. S., Mauser J., Nuno M., & Sherzai D. (2017). The efficacy of cognitive intervention in mild cognitive impairment (MCI): A meta-analysis of outcomes on neuropsychological measures. Neuropsychology Review, 27(4), 440−484. |
[52] | Stahl D., Pickles A., Elsabbagh M., & Johnson M. H. (2012). Novel machine learning methods for ERP analysis: A validation from research on infants at risk for autism. Develomental Neuropsychology, 37(3), 274−298. |
[53] | Taylor R. L., Cooper S. R., Jackson J. J., & Barch D. M. (2020). Assessment of neighborhood poverty, cognitive function, and prefrontal and hippocampal volumes in children. JAMA Network Open, 3(11), e2023774. |
[54] | Tsai C. L., Pai M. C., Ukropec J., & Ukropcová B. (2016). The role of physical fitness in the neurocognitive performance of task switching in older persons with mild cognitive impairment. Journal of Alzheimers Disease, 53(1), 143−159. |
[55] |
Tusch E. S., Alperin B. R., Ryan E., Holcomb P. J., Mohammed A. H., & Daffner K. R. (2016). Changes in neural activity underlying working memory after computerized cognitive training in older adults. Frontiers in Aging Neuroscience, 8, 255.
pmid: 27877122 |
[56] | Ulbl J., & Rakusa M. (2023). The importance of subjective cognitive decline recognition and the potential of molecular and neurophysiological biomarkers-A systematic review. International Journal of Molecular Sciences, 24(12), 10158. |
[57] |
Wang P., Li R., Liu B., Wang C., Huang Z., Dai R., ... Li J. (2019). Altered static and temporal dynamic amplitude of low-frequency fluctuations in the background network during working memory states in mild cognitive impairment. Frontiers in Aging Neuroscience, 11, 152.
doi: 10.3389/fnagi.2019.00152 pmid: 31316370 |
[58] | Wen D., Cheng Z., Li J., Zheng X., Yao W., Dong X., ... Zhou Y. (2021). Classification of ERP signal from amnestic mild cognitive impairment with type 2 diabetes mellitus using single-scale multi-input convolution neural network. Journal of Neuroscience Methods, 363, 109353. |
[59] | Youn Y. C., Kang S. W., Lee H., & Park U. (2020). Machine-learning based EEG biomarker for early screening of amnestic mild cognitive impairment (aMCI). Alzheimer's Dementia, 16(S4), e044381. |
[60] | Yuan B., Chen J., Gong L., Shu H., Liao W., Wang Z., ... Zhang Z. (2016). Mediation of episodic memory performance by the executive function network in patients with amnestic mild cognitive impairment: A resting-state functional MRI study. Oncotarget, 7(40), 64711−64725. |
[61] | Zhong X., Chen B., Hou L., Wang Q., Liu M., Yang M., ... Ning Y. (2022). Shared and specific dynamics of brain activity and connectivity in amnestic and nonamnestic mild cognitive impairment. CNS Neuroscience & Therapeutics, 28(12), 2053−2065. |
[1] | 雷怡, 梅颖, 王金霞, 袁子昕. 焦虑青少年无意识恐惧的神经机制及干预[J]. 心理科学进展, 2024, 32(8): 1221-1232. |
[2] | 曾庆贺, 崔晓宇, 唐为, 李娟. 记忆辨别力受老化影响的认知神经机制及其应用[J]. 心理科学进展, 2024, 32(7): 1138-1151. |
[3] | 蒋莹, 胡佳, 冯靓瑜, 任启丹. 贫困经历下稀缺心态对儿童执行功能的影响及其机制[J]. 心理科学进展, 2024, 32(5): 728-737. |
[4] | 冯攀, 赵恒越, 姜雨矇, 张悦彤, 冯廷勇. 催产素影响条件化恐惧情绪加工的认知机制及神经基础[J]. 心理科学进展, 2024, 32(4): 557-567. |
[5] | 郑好, 陈荣荣, 买晓琴. 第三方惩罚行为的认知神经机制[J]. 心理科学进展, 2024, 32(2): 398-412. |
[6] | 李泽堃, 陈汝印, 周佳玮. 基于深度学习的动态瞳孔检测斜视算法[J]. 心理科学进展, 2023, 31(suppl.): 140-140. |
[7] | 赵世轩, 杨开富, 李永杰. 受知觉组织规则启发的一种计算模型与眼底血管分割应用[J]. 心理科学进展, 2023, 31(suppl.): 176-176. |
[8] | 曹晋菁, 仇式明, 定险峰, 程晓荣, 范炤. 意识的层级性和丰富性:解读意识的两条路径[J]. 心理科学进展, 2023, 31(7): 1172-1185. |
[9] | 李子颖, 李佳璟, 蒋家丽, 雷秀雅, 孟泽龙. 媒体多任务与创造力的关系:基于多视角的解释[J]. 心理科学进展, 2023, 31(7): 1195-1205. |
[10] | 王雪珂, 冯廷勇. “冷”/“热”执行功能缺陷影响ADHD儿童核心症状的作用机制[J]. 心理科学进展, 2023, 31(11): 2106-2128. |
[11] | 刘永, 陈红. 超重/肥胖个体工作记忆的神经机制及干预[J]. 心理科学进展, 2023, 31(10): 1775-1784. |
[12] | 邓尧, 王梦梦, 饶恒毅. 风险决策研究中的仿真气球冒险任务[J]. 心理科学进展, 2022, 30(6): 1377-1392. |
[13] | 李亮, 李红. 人们为什么会羞怯:认知机制及神经基础[J]. 心理科学进展, 2022, 30(5): 1038-1049. |
[14] | 麻雅洁, 赵鑫, 贺相春, 任丽萍. 社交媒体使用对执行功能的影响:有益还是有害?[J]. 心理科学进展, 2022, 30(2): 406-413. |
[15] | 程诚, 郭培杨, 杨丽, 王梦雅. 基于三元精神病态模型的精神病态认知-情感加工框架[J]. 心理科学进展, 2021, 29(9): 1628-1646. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||